Factor Xa is a coagulation factor that acts at the convergence
|
|
|
- Moses Thornton
- 10 years ago
- Views:
Transcription
1 DVT: A New Era in Anticoagulant Therapy Rivaroxaban: A New Oral Factor Xa Inhibitor Elisabeth Perzborn, Susanne Roehrig, Alexander Straub, Dagmar Kubitza, Wolfgang Mueck, Volker Laux Abstract Rivaroxaban is a direct inhibitor of factor Xa, a coagulation factor at a critical juncture in the blood coagulation pathway leading to thrombin generation and clot formation. It is selective for human factor Xa, for which it has fold greater selectivity than for other biologically relevant serine proteases (half-maximal inhibitory concentration [IC 50 ], 20 mol/l). Rivaroxaban inhibits factor Xa in a concentration-dependent manner (inhibitory constant [K i ], 0.4 nmol/l) and binds rapidly (kinetic association rate constant [k on ], mol/l 1 s 1 ) and reversibly (kinetic dissociation rate constant [k off ], s 1 ). By inhibiting prothrombinase complex-bound (IC 50, 2.1 nmol/l) and clot-associated factor Xa (IC 50, 75 nmol/l), rivaroxaban reduces the thrombin burst during the propagation phase. In animal models of venous and arterial thrombosis, rivaroxaban showed dose-dependent antithrombotic activity. In healthy individuals, rivaroxaban was found to have predictable pharmacokinetics and pharmacodynamics across a 5- to 80-mg total daily dose range, inhibiting factor Xa activity and prolonging plasma clotting time. In phase III clinical trials, rivaroxaban regimens reduced rates of venous thromboembolism in patients after total hip or knee arthroplasty compared with enoxaparin regimens, without significant differences in rates of major bleeding, showing that rivaroxaban has a favorable benefit-to-risk profile. (Arterioscler Thromb Vasc Biol. 2010;30: ) Key Words: anticoagulants blood coagulation factor Xa rivaroxaban venous thromboembolism Factor Xa is a coagulation factor that acts at the convergence point of the intrinsic and extrinsic pathways in the blood coagulation system. 1 It catalyzes the cleavage of prothrombin and, therefore, is critical for thrombin generation (Figure 1). 1,2 Indirect factor Xa inhibitors, such as fondaparinux and biotinylated idraparinux, exert their thrombotic effect by binding to antithrombin; therefore, their efficacy depends on the circulating level of antithrombin. They are parenteral agents and cannot be administered orally. 3 Rivaroxaban is the first direct factor Xa inhibitor to be licensed (in the European Union 4 and several other countries) for the prevention of venous thromboembolism (VTE) in adult patients after elective hip or knee arthroplasty. Studies of rivaroxaban in the treatment of VTE, prevention of cardiovascular events in patients with acute coronary syndrome, prevention of stroke in those with atrial fibrillation, and prevention of VTE in hospitalized medically ill patients are ongoing (Supplementary Table I, available at atvb.ahajournals.org). Other direct factor Xa inhibitors are also in advanced development; apixaban and edoxaban (DU-176b) are undergoing phase III study, whereas betrixaban and YM150 have passed clinical phase II testing. This review discusses the properties of rivaroxaban and findings from clinical trials. See accompanying article on page 369 Pharmacological Properties Compound Characteristics Rivaroxaban (chemical name 5-chloro-N-[[(5S)-2-oxo-3-[4-(3- oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl]methyl]thiophene- 2-carboxamide) is a small-molecule factor Xa inhibitor (molecular weight, 436 g/mol). Rivaroxaban is only slightly soluble in organic solvents and is practically insoluble in water. 5 Plasma protein binding varies between species (rats, 98.7%; rabbits, 76.6% 5 ; and humans, 92% 95%), 4 and serum albumin is the main circulating binding component. 4,5 Mode of Binding As a prerequisite for potent activity, factor Xa inhibitors of the first generation, such as DX-9065a, needed a basic argininemimic P1 group for direct electrostatic interaction with Asp189 in the S1 pocket of factor Xa. However, those basic groups are also generally critical for oral bioavailability. The X-ray crystal structure of rivaroxaban in complex with human factor Xa 6 revealed a different binding mode for the S1 pocket, which no longer requires the P1 group to be basic. Instead, the key interaction in the S1 pocket involves the chlorine substituent of the chlorothiophene moiety, which interacts with the aromatic ring of Tyr228 at the bottom of the S1 pocket (Figure 2). This novel chlorine Tyr228 interaction enabled the combination of high potency and sufficient oral bioavailability for the nonbasic compound rivaroxaban. Preclinical In Vitro and In Vivo Pharmacological Profile In Vitro Studies Factor Xa Inhibition Rivaroxaban inhibits factor Xa in a concentration-dependent manner (inhibitory constant [K i ], 0.4 nmol/l), and it is a Received January 6, 2010; revision accepted January 15, From Bayer Schering Pharma AG, Wuppertal, Germany. Correspondence to Elisabeth Perzborn, PhD, Cardiovascular Pharmacology, Pharma R&D Discovery Research, Bayer Schering Pharma AG, Aprather Weg 18a, D Wuppertal, Germany. [email protected] 2010 American Heart Association, Inc. Arterioscler Thromb Vasc Biol is available at DOI: /ATVBAHA
2 Perzborn et al Rivaroxaban: A New Oral Factor Xa Inhibitor 377 Intrinsic pathway Extrinsic pathway Factor XIa Tenase complex Factor IXa Factor VIIIa Phospholipids Ca 2+ Factor VIIa Tissue factor Phospholipids Ca 2+ Free Factor Xa Rivaroxaban Phospholipids Factor Va Factor Xa Ca 2+ Prothrombinase complex Prothrombin Thrombin Fibrinogen Fibrin Figure 1. Role of factor Xa in the coagulation cascade. Tissue factor/factor VIIa activates factor X and factor IX. Factor IXa also activates factor X. Factor Xa binds factor Va on membrane surfaces. The prothrombinase and tenase trigger the amplified formation of thrombin. 2,53 Rivaroxaban inhibits factor Xa, free or within the prothrombinase. competitive inhibitor of the amidolytic activity of factor Xa. 7 It has a rapid onset of action (kinetic association rate constant [k on ], mol/l 1 s 1 ) and is reversible (kinetic dissociation rate constant [k off ], s 1 ). 8 Rivaroxaban inhibits prothrombinase-bound (half-maximal inhibitory concentration [IC 50 ], 2.1 nmol/l) 7 and clot-associated factor Xa (IC 50,75 nmol/l). 9 Rivaroxaban was found to be selective for human factor Xa, for which it has fold greater selectivity than for other biologically relevant serine proteases (IC 50, 20 mol/l). 7 The inhibition of factor Xa is species-dependent, as was shown for a number of factor Xa inhibitors Rivaroxaban showed a similar affinity to purified human and rabbit factor Xa (IC 50, 0.7 nmol/l and 0.8 nmol/l, respectively) but showed lower affinity to rat factor Xa (IC 50, 3.4 nmol/l). In commercially available chromogenic assays designed for measuring heparins in human plasma, rivaroxaban concentration-dependently inhibited factor Xa activity, with IC 50 values between 21 and 80 ng/ml, depending on the anti-factor Xa assay. 13 Inhibition of Thrombin Generation In vitro studies in platelet-poor and platelet-rich plasma demonstrated that rivaroxaban prolonged the initiation phase of thrombin generation and reduced the thrombin burst produced in the propagation phase. 14,15 In human plasma obtained from healthy volunteers receiving rivaroxaban, rivaroxaban inhibited thrombin generation at clinically relevant plasma concentrations and, thus, the propagation processes of coagulation through the inhibition of factor Xa generated via the intrinsic and extrinsic coagulation pathways. Plasma Clotting Times Rivaroxaban demonstrated effective anticoagulant effects in human plasma; it prolongs prothrombin time (PT) and activated partial thromboplastin time in a concentrationdependent manner, with greater sensitivity for PT. 7 However, the prolongation of clotting time varies depending on the PT Figure 2. The entire X-ray crystal structure of factor Xa (FXa) with a focus on the active site showing the key interaction between rivaroxaban and Tyr228 in the S1 pocket. or activated partial thromboplastin time reagent used because the reactivity of rivaroxaban in the clotting assays is influenced by the composition of the reagents. 16,17 This variation cannot be reduced by conversion of PT values given in seconds to international normalized ratio values 17 ; therefore, PT and activated partial thromboplastin time are not useful for measuring the pharmacodynamic effects of rivaroxaban. Thrombin Thrombomodulin-Activated Protein C System The coagulation pathway comprises negative and positive feedback reactions to regulate hemostasis, and anticoagulants at therapeutic doses ideally should not interfere with the negative feedback mechanisms important in downregulating coagulation. One of the negative feedback reactions is the thrombin thrombomodulin-activated protein C system, which limits further thrombin generation by inhibiting factor Va and factor VIIIa. In in vitro investigations of human plasma from healthy individuals or protein C-deficient plasma, factor Xa inhibitors, such as rivaroxaban, inhibited thrombin generation in a concentration-dependent manner after stimulation by tissue factor and in the presence or absence of thrombomodulin. 18 This suggests that rivaroxaban does not measurably interfere with the thrombin thrombomodulin-activated protein C system. 18 Interestingly, direct thrombin inhibitors, such as melagatran and dabigatran, also showed a concentration-dependent inhibition of thrombin generation over the whole range in the absence of thrombomodulin or in protein C-deficient plasma but increased thrombin generation at low concentrations in the presence of thrombomodulin. 18,19 This suggests that low concentrations of a direct thrombin inhibitor may partly suppress the negative feedback by activated protein C. However, whether this effect will influence clinical efficacy or safety remains to be investigated. Platelet Aggregation Rivaroxaban does not affect platelet aggregation induced by collagen, adenosine diphosphate, the selective agonist of prostaglandin H 2 /thromboxane A 2 receptor U46619, or thrombin. 20,21 However, rivaroxaban effectively and concentrationdependently inhibited tissue factor-induced platelet
3 378 Arterioscler Thromb Vasc Biol March 2010 aggregation by the inhibition of thrombin generation (IC 50, 0.06 mol/l) in defibrinated plasma. 22 In addition to the anticoagulant effects of a factor Xa inhibitor, this indirect effect on platelet aggregation may be particularly beneficial for the prevention or treatment of arterial thrombosis. In Vivo Studies Venous Thrombosis Models Rivaroxaban reduced thrombus formation 7,23 in venous thrombosis models (fibrin-rich and platelet-poor) in which a combination of stasis and an injection of tissue factor was used to induce thrombus formation. In rabbits, rivaroxaban was administered orally, leading to a half-maximal effective dose (ED 50 ) of 1.3 mg/kg 23 ; in rats, rivaroxaban was administered intravenously, leading to ED 50 of 0.1 mg/kg. 7,24 These findings suggested rivaroxaban might reduce thrombus formation in humans. In a rabbit thrombosis model, rivaroxaban also inhibited thrombus growth of preformed clots in the jugular vein (assessed by measuring the accretion of radiolabeled fibrinogen), 23 which supported further research in VTE treatment. Arterial Thrombosis Models Rivaroxaban showed effective dose-dependent antithrombotic activity in arterial (fibrin-poor and platelet-rich) thrombosis models, such as the arteriovenous shunt model in rats and rabbits (ED 50, 5.0 mg/kg after oral rivaroxaban in rats; ED 50, 0.6 mg/kg after oral administration in rabbits 7 ), and the ferric chloride model in rats and mice (ED 50, 2.4 mg/kg after intravenous rivaroxaban in rats; ED 50, 1.0 mg/kg after intravenous rivaroxaban in mice 24 ). These results are consistent with a role of the coagulation system in arterial thrombus formation. Bleeding Models The antihemostatic effect of rivaroxaban was evaluated in well-characterized bleeding time models in rats (tail transection bleeding time model) and rabbits (ear-bleeding time model). Bleeding times were not significantly affected at antithrombotic doses below the ED 50 required for antithrombotic efficacy in the bleeding time models. At higher doses in the rat tail-bleeding time model, bleeding times were dosedependently prolonged. 7 Together with the antithrombotic findings, these findings demonstrate that rivaroxaban might have a favorable efficacy-to-bleeding ratio. Clinical Pharmacology Rivaroxaban has a favorable safety and tolerability profile in healthy individuals. 25,26 Pharmacodynamic and Pharmacokinetic Profiles Rivaroxaban was found to have predictable pharmacokinetics and pharmacodynamics across a wide range of doses in healthy individuals (5 80 mg total daily doses) 25,26 and patients undergoing total hip or total knee arthroplasty (5 60 mg total daily doses). 27 The inhibition of factor Xa activity and the prolongation of PT correlated strongly with the plasma concentrations of rivaroxaban in healthy individuals 28 and patients undergoing total hip arthroplasty or total knee arthroplasty, 27 corroborating the predictability of the pharmacodynamics and pharmacokinetics of rivaroxaban. Studies in healthy individuals showed that rivaroxaban is rapidly absorbed, with maximum concentrations appearing 2 to 4 hours after tablet intake. 4,25,26 Oral bioavailability for the 10-mg dose (which has health regulatory authority approval for thromboprophylaxis after elective hip or knee arthroplasty in adult patients) is high (80% 100%). 4 The mean terminal half-life of rivaroxaban is 7 to 11 hours. 4 The elimination of rivaroxaban from plasma was rapid, with no major or pharmacologically active circulating metabolites detected in plasma. 29 Excretion occurred via renal and fecal/biliary routes. Approximately two-thirds of the administered dose is metabolized to inactive metabolites, with half then being eliminated renally and the other half eliminated by the fecal route. The remaining one-third of the administered dose undergoes direct renal excretion as unchanged active substance in the urine. 29 Rivaroxaban is metabolized by a number of independent metabolic pathways involving different classes of enzymes; thus, rivaroxaban should be less prone to drug drug interactions. The main oxidative metabolic pathway is hydroxylation at the morpholinone moiety and, to a lesser extent, at the oxazolidinone moiety, catalyzed by CYP3A4/3A5 and CYP2J2. 30 In addition, hydrolytic pathways were identified, occurring at the morpholinone ring and the chlorothiophene amide moiety. Effect of Rivaroxaban in Different Populations Phase I and II clinical studies have investigated the effect of several factors on rivaroxaban pharmacokinetics and pharmacodynamics. The area under the plasma concentration curve was higher in healthy men and women older than age 75 years compared with younger men and women, but maximum plasma concentration was unaffected. 31,32 Gender did not affect the area under the plasma concentration curve or maximum plasma concentration of rivaroxaban. 31,32 Area under the plasma concentration curve was not affected by extreme body weight ( 50 kg or 120 kg), and although maximum plasma concentration was increased by 24% in those weighing 50 kg, this increase was not considered to be clinically relevant. 32 In patients with mild (creatinine clearance, ml/min), moderate (creatinine clearance, ml/min), or severe (creatinine clearance 30 ml/ min) impairment of renal function, area under the plasma concentration curve was 44%, 52%, and 64% higher, respectively, compared with control subjects, whereas maximum plasma concentration was relatively unaffected. 33 In patients with mild (Child Pugh A) hepatic functional impairment, there were no clinically relevant differences in pharmacokinetics and pharmacodynamics of rivaroxaban. 34 Together, these findings suggest that rivaroxaban can be administered to individuals with varying physical characteristics (age, gender, body weight, mild or moderate impairment of renal function, and mild hepatic functional impairment) at a fixed dose, with no requirement for dose adjustment or routine coagulation monitoring. 4 Interaction With Food and Drugs Phase I interaction studies have demonstrated no food interactions and no significant and few clinically relevant drug inter-
4 Perzborn et al Rivaroxaban: A New Oral Factor Xa Inhibitor 379 actions with rivaroxaban, with the exception of azole antimycotics or human immunodeficiency virus protease inhibitors. These strong inhibitors of CYP3A4 and P-glycoprotein lead to reduced clearance of rivaroxaban; therefore, rivaroxaban is not recommended in patients receiving these drugs. Strong CYP3A4 inducers may lead to reduced rivaroxaban plasma concentrations and should be coadministered with caution. 4 No clinically significant interactions were observed when rivaroxaban was coadministered with the statin atorvastatin (a substrate of CYP3A4 and P-glycoprotein), 35 the cardiac glycoside digoxin (a substrate of P-glycoprotein), 36 or the benzodiazepine derivative midazolam (a substrate of CYP3A4). 4 The histamine H 2 -receptor antagonist ranitidine (a CYP3A4 inhibitor) and the antacid aluminum magnesium hydroxide have no significant effect on the pharmacokinetics and pharmacodynamics of rivaroxaban. 37 Coadministration of antiplatelet agents, such as the nonsteroidal antiinflammatory drugs acetylsalicylic acid 38 and naproxen, 39 had no significant effect on the pharmacokinetics and pharmacodynamics of rivaroxaban. The antiplatelet agent clopidogrel did not show a pharmacokinetic interaction with rivaroxaban. 40 Clinical Trials in the Prevention of Venous Thromboembolism Phase II Trials The Oral Direct Factor Xa (ODIXa) program of four phase II dose-finding studies of rivaroxaban for the prevention of VTE in patients undergoing total hip or knee arthroplasty suggested that rivaroxaban 10 mg once daily (compared with approved enoxaparin doses) would provide the best balance between efficacy and safety Phase III Trials In the orthopaedic setting, the phase III Regulation of Coagulation in Orthopaedic surgery to prevent deep vein thrombosis and pulmonary embolism (RECORD) program included patients undergoing total hip arthroplasty or total knee arthroplasty Patients were randomized to oral rivaroxaban 10 mg once daily administered 6 to 8 hours after wound closure or after adequate hemostasis had been achieved, or subcutaneous enoxaparin 40 mg once daily starting 12 hours before surgery (enoxaparin dose approved in the European Union, North America, and other countries) in RECORD1, 2, and 3 or 30 mg twice daily administered 12 to 24 hours after wound closure (dose approved and more often used in North America) in RECORD4. In RECORD1 and 2, patients undergoing total hip arthroplasty were administered rivaroxaban for 35 4 days. Enoxaparin was administered for 35 4 days in RECORD1 or 12 2 days followed by placebo for up to 35 4 days in RECORD2. In RECORD3 and 4, patients undergoing total knee arthroplasty received prophylaxis for 12 2 days. All patients were followed-up for 30 to 35 days after the last dose of study medication. The rivaroxaban regimens were significantly more effective than both enoxaparin regimens at reducing the composite of symptomatic and asymptomatic (detected by systematic bilateral venography) deep vein thrombosis, nonfatal pulmonary embolism, and all-cause mortality Rates of major bleeding did not differ significantly between rivaroxaban and enoxaparin regimens Also, the proportion of patients with elevated liver enzymes (alanine aminotransferase level 3-times the upper limit of the normal range) was low in the rivaroxaban and enoxaparin groups In a pooled analysis of the RECORD1 4 data, the composite of symptomatic VTE and death was reduced for the rivaroxaban regimens compared with the enoxaparin regimens at day 12 2 (0.47% vs 0.97%; P 0.001) and in the planned treatment period (rivaroxaban or enoxaparin for 12 2 days [RECORD3 and 4] or 35 4 days [RECORD1 and 2], including the enoxaparin placebo phase in RECORD2; 0.57% vs 1.32%; P 0.001). There were no statistical differences in the rates of major bleeding at any of the time points analyzed. The composite of major and clinically relevant nonmajor bleeding for the rivaroxaban and enoxaparin regimens were 2.85% vs 2.45% (P 0.186) at day 12 2 and 3.19% vs 2.55% (P 0.039) in the planned treatment period. 49 Clinical Trials in the Treatment of Venous Thromboembolism The phase III EINSTEIN EXT study (NCT ) showed that in patients who had completed 6 or 12 months of previous therapy for acute VTE, there was a risk reduction of 82% for rivaroxaban vs placebo for recurrent symptomatic VTE. 50 Research is ongoing in the EINSTEIN DVT (NCT ) and EINSTEIN PE (NCT ) studies (Supplementary Table I). Other Studies Rivaroxaban is also being studied for the prevention of cardiovascular events in patients with acute coronary syndrome (ATLAS ACS TIMI 51; NCT ), stroke prevention in patients with atrial fibrillation (ROCKET AF 51 ; NCT ), and thromboprophylaxis in hospitalized medically ill patients (MAGELLAN; NCT ; Supplementary Table I). Conclusion Rivaroxaban was selected as a drug candidate based on its hypothetical therapeutic potential as a direct inhibitor of factor Xa, in vitro potency, demonstrated selectivity against factor Xa, 7 anticoagulant activity in clotting assays in human plasma, 7 and consistent in vivo antithrombotic activity in venous and arterial thrombosis models. 7,23,24 Because of its favorable safety and tolerability profile in healthy individuals and a positive benefitto-risk ratio for the prevention of VTE in patients after total hip arthroplasty or total knee arthroplasty, the 10-mg once-daily dose has been granted health regulatory authority approval for the prevention of VTE after elective hip or knee arthroplasty in adult patients. 4 The oral bioavailability of rivaroxaban is an advantage over parenteral anticoagulant agents and could provide better convenience in outpatient settings. The pharmacodynamic and pharmacokinetic profiles, which were found to be predictable, together with the low interaction potential with food or other drugs, 4,35 40 the wide therapeutic window, 7 and the absence of a requirement for routine coagulation monitoring, 4 enhance the likelihood that oral factor Xa inhibitors such as rivaroxaban may become an alternative to vitamin K antagonists in patients at risk for thromboembolism.
5 380 Arterioscler Thromb Vasc Biol March 2010 Use of factor Xa inhibitors might also obviate the drawbacks of vitamin K antagonists, which include unpredictable pharmacodynamics and pharmacokinetics, multiple food drug and drug drug interactions, considerable interindividual variability in dose response, and requirement for regular coagulation monitoring. 52 At present, there is a substantial clinical need for an oral anticoagulant to replace vitamin K antagonists for long-term prevention or treatment of patients with venous and arterial thromboembolic events. There is currently a variety of new, promising, oral anticoagulants at various stages of clinical evaluation, with the most advanced being the direct factor Xa inhibitor rivaroxaban and the direct thrombin inhibitor dabigatran (reviewed in this series). One major focus in the development of drugs targeting 1 coagulation factor was factor Xa. Emerging data for rivaroxaban and other potent factor Xa inhibitors, such as apixaban, betrixaban, edoxaban, and YM150, suggest that factor Xa is a highly promising target for new antithrombotic agents for short-term and long-term usage. Orthopaedic surgery has proved to be a reliable clinical model for assessing the efficacy and safety profile of a new oral anticoagulant. Rivaroxaban has shown superiority over standard therapy with enoxaparin without significantly increasing the major bleeding rate; thus, it might be effective and safe in other indications such as the prevention and treatment of VTE, the prevention of stroke in patients with atrial fibrillation, and the recurrence of cardiovascular events in patients with acute coronary syndrome. Thus, new oral factor Xa inhibitors such as rivaroxaban herald a new era of anticoagulation. Acknowledgments The authors acknowledge Li Wan, who provided medical writing services with funding from Bayer Schering Pharma AG and Johnson & Johnson Pharmaceutical Research & Development, LLC. Disclosures The authors are employees of Bayer Schering Pharma AG. References 1. Ansell J. Factor Xa or thrombin: is factor Xa a better target? J Thromb Haemost. 2007;5(Suppl 1): Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359: Weitz JI, Hirsh J, Samama MM. New antithrombotic drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines, 8th Edition. Chest. 2008;133:234S 256S. 4. Xarelto. Summary of Product Characteristics. Available at: Characteristics_ May2009.pdf Accessed January 14, European Medicines Agency (EMEA). CHMP Assessment Report for Xarelto. Available at: xarelto/h-944-en6.pdf Accessed January 14, Roehrig S, Straub A, Pohlmann J, Lampe T, Pernerstorfer J, Schlemmer KH, Reinemer P, Perzborn E. Discovery of the novel antithrombotic agent 5-chloro-N-([(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3- oxazolidin-5-yl]methyl)thiophene-2-carboxamide (BAY ): an oral, direct Factor Xa inhibitor. J Med Chem. 2005;48: Perzborn E, Strassburger J, Wilmen A, Pohlmann J, Roehrig S, Schlemmer KH, Straub A. In vitro and in vivo studies of the novel antithrombotic agent BAY an oral, direct Factor Xa inhibitor. J Thromb Haemost. 2005;3: Tersteegen A, Schmidt S, Burkhardt N. Rivaroxaban an oral, direct Factor Xa inhibitor binds rapidly to Factor Xa. J Thromb Haemost. 2007;5(Suppl 2):Abstract P-W Depasse F, Busson J, Mnich J, Le Flem L, Gerotziafas GT, Samama MM. Effect of BAY a novel, oral, direct Factor Xa inhibitor on clot-bound Factor Xa activity in vitro. J Thromb Haemost. 2005;3: Abstract P Abendschein DR, Baum PK, Martin DJ, Vergona R, Post J, Rumennik G, Sullivan ME, Eisenberg PR, Light DR. Effects of ZK , a novel inhibitor of factor Xa, on arterial and venous thrombosis in rabbits. J Cardiovasc Pharmacol. 2000;35: Hara T, Yokoyama A, Morishima Y, Kunitada S. Species differences in anticoagulant and anti-xa activity of DX-9065a, a highly selective factor Xa inhibitor. Thromb Res. 1995;80: Wong PC, Pinto DJ, Knabb RM. Nonpeptide factor Xa inhibitors: DPC423, a highly potent and orally bioavailable pyrazole antithrombotic agent. Cardiovasc Drug Rev. 2002;20: Perzborn E, Harwardt M, Samama M. Assessment of Factor Xa chromogenic assays for measuring the pharmacodynamics of rivaroxaban an oral, direct Factor Xa inhibitor. Haemostaseologie. 2010;in press:abstract A Gerotziafas GT, Elalamy I, Depasse F, Perzborn E, Samama MM. In vitro inhibition of thrombin generation, after tissue factor pathway activation, by the oral, direct Factor Xa inhibitor rivaroxaban. J Thromb Haemost. 2007;5: Perzborn E, Harwardt M, Huetter J. Inhibition of thrombin generation by rivaroxaban (BAY ) an oral, direct Factor Xa inhibitor-in human plasma. Hamostaseologie. 2007;27:A Samama MM, Martinoli J, Leflem L, Guinet C, Plu-Bureau G, Depasse F, Perzborn E. Assessment of laboratory assays to measure rivaroxaban an oral, direct Factor Xa inhibitor. Thromb Haemost. Published online before print February 2, DOI: /th Smith SA, Morrissey JH. Thromboplastin composition affects the sensitivity of prothrombin time (PT) clotting tests to direct Factor Xa inhibitors. Blood. 2007;110:Abstract Perzborn E, Harwardt M. Direct Thrombin Inhibitors, but Not Factor Xa Inhibitors, Enhance Thrombin Formation in Human Plasma by Interfering with the Thrombin Thrombomodulin Protein C System. Blood. (ASH Annual Meeting Abstracts). 2008;112:Abstract Furugohri T, Shiozaki Y, Muramatsu S, Honda Y, Matsumoto C, Isobe K, Sugiyama N. Different antithrombotic properties of factor Xa inhibitor and thrombin inhibitor in rat thrombosis models. Eur J Pharmacol. 2005;514: Perzborn E, Strassburger J, Wilmen A, Lampe T, Pernerstorfer P, Pohlmann J, Roehrig S, Schlemmer KH, Straub A. Biochemical and pharmacologic properties of BAY , an oral, direct Factor Xa inhibitor. Pathophysiol Haemost Thromb. 2004;33(Suppl 2):Abstract PO Hoppensteadt D, Neville B, Schultz C, Cunanan J, Duff R, Perzborn E, Misselwitz F, Fareed J. Interaction of BAY a novel, oral, direct Factor Xa inhibitor with antiplatelet agents: monitoring and therapeutic applications. J Thromb Haemost. 2005;3 Suppl 1:Abstract P Perzborn E, Lange U. Rivaroxaban an oral, direct Factor Xa inhibitor inhibits tissue factor-mediated platelet aggregation. J Thromb Haemost. 2007;5(Suppl 2):Abstract P-W Biemond BJ, Perzborn E, Friederich PW, Levi M, Buetehorn U, Buller HR. Prevention and treatment of experimental thrombosis in rabbits with rivaroxaban (BAY ) an oral, direct Factor Xa inhibitor. Thromb Haemost. 2007;97: Perzborn E, Arndt B, Fischer E, Harwardt M, Lange U, Trabandt A. Antithrombotic effects of rivaroxaban an oral, direct Factor Xa inhibitor in animal models of arterial and venous thrombosis: comparison with enoxaparin, an antithrombin-dependent anticoagulant. Eur Heart J. 2006; 27(Suppl):762 Abstract P Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY , an oral, direct factor Xa inhibitor. Clin Pharmacol Ther. 2005;78: Kubitza D, Becka M, Wensing G, Voith B, Zuehlsdorf M. Safety, pharmacodynamics, and pharmacokinetics of BAY an oral, direct Factor Xa inhibitor after multiple dosing in healthy male subjects. Eur J Clin Pharmacol. 2005;61: Mueck W, Eriksson BI, Bauer KA, Borris L, Dahl OE, Fisher WD, Gent M, Haas S, Huisman MV, Kakkar AK, Kalebo P, Kwong LM, Misselwitz F, Turpie AG. Population pharmacokinetics and pharmacodynamics of rivaroxaban an oral, direct factor xa inhibitor in patients undergoing major orthopaedic surgery. Clin Pharmacokinet. 2008;47: Mueck W, Becka M, Kubitza D, Voith B, Zuehlsdorf M. Population model of the pharmacokinetics and pharmacodynamics of rivaroxa-
6 Perzborn et al Rivaroxaban: A New Oral Factor Xa Inhibitor 381 ban an oral, direct Factor Xa inhibitor in healthy subjects. Int J Clin Pharmacol Ther. 2007;45: Weinz C, Schwarz T, Kubitza D, Mueck W, Lang D. Metabolism and excretion of rivaroxaban, an oral, direct Factor Xa inhibitor, in rats, dogs and humans. Drug Metab Dispos. 2009;37: Lang D, Freudenberger C, Weinz C. In vitro metabolism of rivaroxaban an oral, direct Factor Xa inhibitor in liver microsomes and hepatocytes of rat, dog and man. Drug Metab Dispos. 2009;37: Kubitza D, Becka M, Mueck W, Zuehlsdorf M. The effect of extreme age, and gender, on the pharmacology and tolerability of rivaroxaban an oral, direct Factor Xa inhibitor. Blood. 2006;108:Abstract Kubitza D, Becka M, Zuehlsdorf M, Mueck W. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY ) in healthy subjects. J Clin Pharmacol. 2007;47: Halabi A, Maatouk H, Klause N, Lufft V, Kubitza D, Zuehlsdorf M, Becka M, Mueck W, Schaefers R, Wand D, Philipp T, Bruck H. Effect of renal impairment on the pharmacology of rivaroxaban (BAY ) an oral, direct Factor Xa inhibitor. Blood. 2006;108:Abstract Halabi A, Kubitza D, Zuehlsdorf M, Becka M, Mueck W, Maatouk H. Effect of hepatic impairment on the pharmacokinetics, pharmacodynamics and tolerability of rivaroxaban an oral, direct Factor Xa inhibitor. J Thromb Haemost. 2007;5(Suppl 2):Abstract P-M Kubitza D, Mueck W, Becka M. No interaction between rivaroxaban a novel, oral, direct factor Xa inhibitor and atorvastatin. Pathophysiol Haemost Thromb. 2008;36:A Kubitza D, Becka M, Zuehlsdorf M. No interaction between the novel, oral direct Factor Xa inhibitor BAY and digoxin. J Clin Pharmacol. 2006;46:702 Abstract Kubitza D, Becka M, Zuehlsdorf M, Mueck W. Effect of food, an antacid, and the H2 antagonist ranitidine on the absorption of BAY (rivaroxaban), an oral, direct Factor Xa inhibitor, in healthy subjects. J Clin Pharmacol. 2006;46: Kubitza D, Becka M, Mueck W, Zuehlsdorf M. Safety, tolerability, pharmacodynamics, and pharmacokinetics of rivaroxaban an oral, direct Factor Xa inhibitor are not affected by aspirin. J Clin Pharmacol. 2006;46: Kubitza D, Becka M, Mueck W, Zuehlsdorf M. Rivaroxaban (BAY ) an oral, direct Factor Xa inhibitor has no clinically relevant interaction with naproxen. Br J Clin Pharmacol. 2007;63: Kubitza D, Becka M, Mueck W, Zuehlsdorf M. Co-administration of rivaroxaban a novel, oral, direct Factor Xa inhibitor and clopidogrel in healthy subjects. Eur.Heart J. 2007;28(Suppl 1):189 Abstract P Turpie AG, Fisher WD, Bauer KA, Kwong LM, Irwin MW, Kalebo P, Misselwitz F, Gent M. BAY : an oral, direct factor Xa inhibitor for the prevention of venous thromboembolism in patients after total knee replacement. A phase II dose-ranging study. J Thromb Haemost. 2005; 3: Eriksson BI, Borris LC, Dahl OE, Haas S, Huisman MV, Kakkar AK, Muehlhofer E, Dierig C, Misselwitz F, Kalebo P; ODIXa-HIP Study Investigators. A once-daily, oral, direct Factor Xa inhibitor, rivaroxaban (BAY ), for thromboprophylaxis after total hip replacement. Circulation. 2006;114: Eriksson BI, Borris L, Dahl OE, Haas S, Huisman MV, Kakkar AK, Misselwitz F, Kälebo P; ODIXa-HIP Study Investigators. Oral, direct Factor Xa inhibition with BAY for the prevention of venous thromboembolism after total hip replacement. J Thromb Haemost. 2006;4: Eriksson BI, Borris LC, Dahl OE, Haas S, Huisman MV, Kakkar AK, Misselwitz F, Muehlhofer E, Kalebo P. Dose-escalation study of rivaroxaban (BAY ) an oral, direct Factor Xa inhibitor for the prevention of venous thromboembolism in patients undergoing total hip replacement. Thromb Res. 2007;120: Eriksson BI, Borris LC, Friedman RJ, Haas S, Huisman MV, Kakkar AK, Bandel TJ, Beckmann H, Muehlhofer E, Misselwitz F, Geerts W; RECORD1 Study Group. Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty. N Engl J Med. 2008;358: Kakkar AK, Brenner B, Dahl OE, Eriksson BI, Mouret P, Muntz J, Soglian AG, Pap AF, Misselwitz F, Haas S. Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial. Lancet. 2008;372: Lassen MR, Ageno W, Borris LC, Lieberman JR, Rosencher N, Bandel TJ, Misselwitz F, Turpie AG. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty. N Engl J Med. 2008;358: Turpie AG, Lassen MR, Davidson BL, Bauer KA, Gent M, Kwong LM, Cushner FD, Lotke PA, Berkowitz SD, Bandel TJ, Benson A, Misselwitz F, Fisher WD. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial. Lancet. 2009;373: Turpie AGG, Lassen MR, Kakkar AK, Eriksson BI, Misselwitz F, Bandel TJ, Homering M, Westermeier T, Gent M. A pooled analysis of four pivotal studies of rivaroxaban for the prevention of venous thromboembolism after orthopaedic surgery: effect on symptomatic venous thromboembolism and death, and bleeding. Haematologica. 2009;94(Suppl 2):Abstract Buller HR. Once-daily oral rivaroxaban versus placebo in the long-term prevention of recurrent symptomatic venous thromboembolism. The Einstein-Extension Study. Late breaking abstract presented at 51st American Society of Haematology annual meeting and exposition, New Orleans, LA, December 5 8, Abstract /webprogram/Paper25669.html. Accessed January 14, Patel M, Becker R, Breithardt G, Hacke W, Halperin J, Hankey G, Mahaffey K, Singer D, Califf R, Fox K. Rationale and design of the ROCKET AF study: comparison of rivaroxaban with warfarin for the prevention of stroke and systemic embolism in patients with atrial fibrillation. Eur Heart J. 2009;30(Suppl): Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G; American College of Chest Physicians. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians evidence-based clinical practice guidelines (8th Edition). Chest. 2008;133:160S 198S. 53. Leadley RJ Jr. Coagulation factor Xa inhibition: biological background and rationale. Curr Top Med Chem. 2001;1:
Fundamental & Clinical Pharmacology
Fundamental & Clinical Pharmacology REVIEW ARTICLE Themed series on Platelet inhibition and anticoagulation in cardiovascular disorders Keywords anticoagulant, factor Xa, pharmacodynamics, pharmacokinetics,
ABOUT XARELTO CLINICAL STUDIES
ABOUT XARELTO CLINICAL STUDIES FAST FACTS Xarelto (rivaroxaban) is a novel, oral direct Factor Xa inhibitor. On September 30, 2008, the European Commission granted marketing approval for Xarelto for the
Analytical Specifications RIVAROXABAN
Page 1 of 9 ANALYTE NAME AND STRUCTURE - RIVAROXABAN SYNONYMS Xarelto CATEGORY Anticoagulant TEST CODE PURPOSE Therapeutic Drug Monitoring GENERAL RELEVANCY BACKGROUND Xarelto (rivaroxaban) is an orally
Rivaroxaban A new oral anti-thrombotic Dr. Hisham Aboul-Enein Professor of Cardiology Benha University 12/1/2012
Rivaroxaban A new oral anti-thrombotic Dr. Hisham Aboul-Enein Professor of Cardiology Benha University 12/1/2012 Agenda Ideal anticoagulant. Drawbacks of warfarin. Rivaroxaban in clinical trails. Present
Mehta Hiren R et al. IRJP 2 (8) 2011 16-21. RIVAROXABAN: AN ORAL DIRECT INHIBITOR OF FACTOR X-A Mehta Hiren R 1 *, Patel Paresh B 2, Galani Varsha J 2
INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN 2230 8407 Available online http://www.irjponline.com Review Article RIVAROXABAN: AN ORAL DIRECT INHIBITOR OF FACTOR X-A Mehta Hiren R 1 *, Patel Paresh B
Prior Authorization Guideline
Guideline Guideline Name Formulary Xarelto (rivaroxaban) UnitedHealthcare Community & State Approval Date 0/0/203 Revision Date 8//204 Technician Note: CPS Approval Date: /5/20; CPS Revision Date: 8/20/204
Randomized, double-blind, parallel-group, multicenter, doubledummy
ABOUT RECORD STUDIES FAST FACTS RECORD is a global program of four trials in more than 12,500 patients, comparing Xarelto (rivaroxaban) and enoxaparin in the prevention of venous thromboembolism (VTE)
THE BENEFITS OF RIVAROXABAN (XARELTO ) ACROSS MULTIPLE INDICATIONS AND THE RELEVANCE TO CARDIOLOGISTS
THE BENEFITS OF RIVAROXABAN (XARELTO ) ACROSS MULTIPLE INDICATIONS AND THE RELEVANCE TO CARDIOLOGISTS Ingo Ahrens, Christoph Bode Cardiology and Angiology I, Heart Center Freiburg University, Freiburg,
The novel anticoagulants: entering a new era
Review article Peer reviewed article SWISS MED WKLY 2009;139(5 6):60 64 www.smw.ch 60 The novel anticoagulants: entering a new era Henri Bounameaux Division of Angiology and Haemostasis, Department of
Breadth of indications matters One drug for multiple indications
Breadth of indications matters One drug for multiple indications Sylvia Haas, MD, PhD Formerly of the Technical University of Munich Munich, Germany Disclosures: Sylvia Haas 1 Novel oral anticoagulants:
The direct factor Xa inhibitor rivaroxaban
The direct factor Xa inhibitor rivaroxaban Abhishek K Verma and Timothy A Brighton Since the 1920s, when heparin was discovered by a medical student in liver cell extracts and warfarin was synthesised
New Anticoagulants: When and Why Should I Use Them? Disclosures
Winship Cancer Institute of Emory University New Anticoagulants: When and Why Should I Use Them? Christine L. Kempton, MD, MSc Associate Professor of Pediatrics and Hematology and Medical Oncology Hemophilia
Prevention of stroke and systemic embolism in adult patients with non-valvular atrial fibrillation (AF) with one or more risk factors
News Release For use outside the US and UK only Bayer Pharma AG 13342 Berlin Germany Tel. +49 30 468-1111 www.bayerpharma.com Bayer s Xarelto Approved in the EU for the Prevention of Stroke in Patients
Clinical Use of Rivaroxaban: Pharmacokinetic and Pharmacodynamic Rationale for Dosing Regimens in Different Indications
Drugs (2014) 74:1587 1603 DOI 10.1007/s40265-014-0278-5 REVIEW ARTICLE Clinical Use of Rivaroxaban: Pharmacokinetic and Pharmacodynamic Rationale for Dosing Regimens in Different Indications Toby Trujillo
DATE: 06 May 2013 CONTEXT AND POLICY ISSUES
TITLE: Low Molecular Weight Heparins versus New Oral Anticoagulants for Long-Term Thrombosis Prophylaxis and Long-Term Treatment of DVT and PE: A Review of the Clinical and Cost-Effectiveness DATE: 06
New anticoagulants: Monitoring or not Monitoring? Not Monitoring
The 2 nd World Congress on CONTROVERSIES IN HEMATOLOGY (COHEM) Barcelona, Spain September 6 8, 2012 New anticoagulants: Monitoring or not Monitoring? Not Monitoring Anna Falanga, MD Immunohematology and
DVT/PE Management with Rivaroxaban (Xarelto)
DVT/PE Management with Rivaroxaban (Xarelto) Rivaroxaban is FDA approved for the acute treatment of DVT and PE and reduction in risk of recurrence of DVT and PE. FDA approved indications: Non valvular
Session 3 Topics. Argatroban. Argatroban. Drug Use and Adverse Effects. Laboratory Monitoring of Anticoagulant Therapy
~~Marshfield Labs Presents~~ Laboratory Monitoring of Anticoagulant Therapy Session 3 of 4 Michael J. Sanfelippo, M.S. Technical Director, Coagulation Services Session 3 Topics Direct Thrombin Inhibitors:
Anticoagulant agents are mainstays
clinical review : An oral direct inhibitor of factor Xa Michael P. Gulseth, Jessica Michaud, and Edith A. Nutescu Anticoagulant agents are mainstays in the prevention and treatment of arterial and venous
Rivaroxaban (Xarelto ) by
Essentia Health Med Moment Short Video Tune-Up A brief overview of a new medication, or important new medication information Rivaroxaban (Xarelto ) by Richard Mullvain RPH BCPS (AQC) Current - August 2011
Rivaroxaban (Xarelto) for preventing venous thromboembolism after hip or knee replacement surgery
for preventing venous thromboembolism after hip or knee replacement surgery (riv-ah-rocks-ah-ban) Summary Rivaroxaban is an oral anticoagulant and the first direct factor Xa inhibitor. Rivaroxaban has
Bayer Initiates Rivaroxaban Phase III Study to Support Dose Selection According to Individual Benefit-Risk Profile in Long- Term VTE Prevention
Investor News Not intended for U.S. and UK Media Bayer AG Investor Relations 51368 Leverkusen Germany www.investor.bayer.com Long-term prevention of venous blood clots (VTE): Bayer Initiates Rivaroxaban
Thrombosis and Hemostasis
Thrombosis and Hemostasis Wendy Lim, MD, MSc, FRCPC Associate Professor, Department of Medicine McMaster University, Hamilton, ON Overview To review the important developments in venous thromboembolism
Rivaroxaban Bibliography
Rivaroxaban Bibliography Rivaroxaban is the most studied oral, direct Factor Xa inhibitor in the world today with more than 100 publications to date. Papers Abdulsattar Y, Bhambri R, Nogid A. Rivaroxaban
How To Get A Dose Of Bayer Healthcare'S Oral Anticoagulant, Xarelto
News Release FOR UK HEALTHCARE MEDIA ONLY Bayer HealthCare Bayer plc Bayer House Strawberry Hill Newbury Berkshire, RG14 1JA www.bayer.co.uk Bayer s Xarelto (rivaroxaban) Recommended by CHMP for EU Approval
New Anticoagulants for the Treatment of Thromboembolism With a little subplot on superficial thrombophlebitis. Mark Crowther
New Anticoagulants for the Treatment of Thromboembolism With a little subplot on superficial thrombophlebitis Mark Crowther 1 Disclosures Advisory Boards in last 24 months Pfizer, Alexion, Bayer, CSL Behring,
Management for Deep Vein Thrombosis and New Agents
Management for Deep Vein Thrombosis and New Agents Mark Malesker, Pharm.D., FCCP, FCCP, FASHP, BCPS Professor of Pharmacy Practice and Medicine Creighton University 5 th Annual Creighton Cardiovascular
MCHENRY WESTERN LAKE COUNTY EMS SYSTEM OPTIONAL CE ADVANCED LEVEL (EMTP, PHRN, ECRN) August 2013. Anticoagulants
MCHENRY WESTERN LAKE COUNTY EMS SYSTEM OPTIONAL CE ADVANCED LEVEL (EMTP, PHRN, ECRN) August 2013 Anticoagulants Anticoagulants are agents that prevent the formation of blood clots. Before we can talk about
Disclosure. New Agents for Treatment of DVT. Prevalence of DVT VTE. Normal Hemostasis 7/17/2015. Mark Oliver, MD, RVT, RPVI,FSVU
New Agents for Treatment of DVT Disclosure PI Adopt and Amplify trials Mark Oliver, MD, RVT, RPVI,FSVU BMS and Pfizer Speaker VTE Venous Thromboembolism Recognized DVT s New : 170,000 Recurrent : 90,000
NEWER ANTICOAGULANTS: FOCUS ON STROKE PREVENTION IN ATRIAL FIBRILLATION AND DEEP VEIN THROMBOSIS/PULMONARY EMBOLISM
NEWER ANTICOAGULANTS: FOCUS ON STROKE PREVENTION IN ATRIAL FIBRILLATION AND DEEP VEIN THROMBOSIS/PULMONARY EMBOLISM Carol Lee, Pharm.D., Jessica C. Song, M.A., Pharm.D. INTRODUCTION For many years, warfarin
Thrombosis management: A time for change practical management with NOACs Dr Wala Elizabeth Medical Director, Bayer Healthcare
Thrombosis management: A time for change practical management with NOACs Dr Wala Elizabeth Medical Director, Bayer Healthcare Kenya Association of Physicians Conference 10 th May 2013 New anticoagulants:
Clinical Study Synopsis
Clinical Study Synopsis This Clinical Study Synopsis is provided for patients and healthcare professionals to increase the transparency of Bayer's clinical research. This document is not intended to replace
Review Article The Efficacy and Safety of Rivaroxaban for Venous Thromboembolism Prophylaxis after Total Hip and Total Knee Arthroplasty
Thrombosis Volume 2013, Article ID 762310, 5 pages http://dx.doi.org/10.1155/2013/762310 Review Article The Efficacy and Safety of Rivaroxaban for Venous Thromboembolism Prophylaxis after Total Hip and
Xarelto (Rivaroxaban): Effective in a broad spectrum. Joep Hufman, MD Medical Scientific Liason
Xarelto (Rivaroxaban): Effective in a broad spectrum Joep Hufman, MD Medical Scientific Liason Xarelto : Effective in a broad spectrum Introduction Therapeutic areas SPAF VTE Prevention VTE treatment Practical
Devang M. Desai, MD, FACC, FSCAI Chief of Interventional Cardiology Director of Cardiac Catheterization Lab St. Mary s Hospital and Regional Medical
Devang M. Desai, MD, FACC, FSCAI Chief of Interventional Cardiology Director of Cardiac Catheterization Lab St. Mary s Hospital and Regional Medical Center A.Fib affects 2.2 million Americans. The lifetime
Are there sufficient indications for switching to new anticoagulant agents
Are there sufficient indications for switching to new anticoagulant agents Meyer Michel Samama et Gregoris Gerotziafas Groupe Hémostase-Thrombose Hôtel-Dieu, Hôpital Tenon, Paris & Biomnis Ivry/seine,
Xarelto (Rivaroxaban)
Xarelto (Rivaroxaban) Hightly selective, reversible, direct oral FXa inhibitor Maxium concentratiion after 2 to 4 hrs High bioavailability(66%),increase with food ( suggest with food) 1/3 from renal excretion,
Rivaroxaban for the prevention of venous thromboembolism: a single technology appraisal
DOI: 10.3310/hta13suppl3/07 Health Technology Assessment 2009; Vol. 13: Suppl. 3 Rivaroxaban for the prevention of venous thromboembolism: a single technology appraisal M Stevenson,* A Scope, M Holmes,
Clinical Study Synopsis
Clinical Study Synopsis This Clinical Study Synopsis is provided for patients and healthcare professionals to increase the transparency of Bayer's clinical research. This document is not intended to replace
East Kent Prescribing Group
East Kent Prescribing Group Rivaroxaban (Xarelto ) Safety Information Approved by the East Kent Prescribing Group. Approved by: East Kent Prescribing Group (Representing Ashford CCG, Canterbury and Coastal
3rd. VTE 7 (Venous Thromboembolism) most common cardiovascular condition worldwide 1. Most common avoidable cause of hospital death 2
most common cardiovascular condition worldwide 1 3rd VTE (Venous thromboembolism) Thromboembolism) 7 (Venous Thromboembolism) Most common avoidable cause of hospital death 2 EVERY Deep vein thrombosis
Comparison between New Oral Anticoagulants and Warfarin
Comparison between New Oral Anticoagulants and Warfarin Warfarin was the mainstay of oral anticoagulant therapy until the recent discovery of more precise targets for therapy. In recent years, several
Time of Offset of Action The Trial
New Antithrombotic Agents DISCLOSURE Relevant Financial Relationship(s) Speaker Bureau - None Consultant Amgen Tom DeLoughery, MD FACP FAWM Oregon Health and Sciences University What I am Talking About
4/9/2015. Risk Stratify Our Patients. Stroke Risk in AF: CHADS2 Scoring system JAMA 2001; 285: 2864-71
Anticoagulation in the 21 st Century Adam Karpman, D.O. Saint Francis Medical Center/Oklahoma State University Medical Center Disclosures: None Atrial Fibrillation Most common arrhythmia in clinical practice.
Cardiovascular Disease
Cardiovascular Disease 1 Cardiovascular Disease 1. More target specific oral anticoagulants (TSOAC) 2. Vorapaxar (Zonivity) 3. Continued noise about a polypill 4. WATCHMAN 3 1 2 3 4 Left Atrial Appendage
DISCLOSURES CONFLICT CATEGORY. No conflict of interest to disclose
DISCLOSURES CATEGORY Employment Research support Scientific advisory board Consultancy Speakers bureau Major stockholder Patents Honoraria Travel support Other CONFLICT No conflict of interest to disclose
Venous Thromboembolism: Long Term Anticoagulation. Dan Johnson, Pharm.D.
Venous Thromboembolism: Long Term Anticoagulation Dan Johnson, Pharm.D. Disclosures No financial relationships with products discussed Off-label use of drug therapy always discussed Objectives Review clinical
Monitoring of new oral anticoagulants
Monitoring of new oral anticoagulants Jonathan Douxfils, Bernard Chatelain September 27th, 2012 1 Content Introduction Monitoring of NOACs Why? Dabigatran etexilate PD properties PK properties Rivaroxaban
How To Compare The New Oral Anticoagulants
Disclosures The New Oral Anticoagulants: Are they better than Warfarin? Alan P. Agins, Ph.D. does not have any actual or potential conflicts of interest in relation to this CE activity. Alan Agins, Ph.D.
New Oral AntiCoagulants (NOAC) in 2015
New Oral AntiCoagulants (NOAC) in 2015 William R. Hiatt, MD Professor of Medicine and Cardiology University of Colorado School of Medicine President CPC Clinical Research Disclosures Received research
1/7/2012. Objectives. Epidemiology of Atrial Fibrillation(AF) Stroke in AF. Stroke Risk Stratification in AF
Objectives Atrial Fibrillation and Prevention of Thrombotic Complications: Therapeutic Update Andrea C. Flores Pharm.D Pharmacy Resident at the Miami VA Healthcare System Review the epidemiology, pathophysiology
Dabigatran and rivaroxaban, new oral anticoagulants. new approaches in dentistry
Journal section: Oral Medicine and Pathology Publication Types: Research doi:10.4317/jced.2.e1 Dabigatran and rivaroxaban, new oral anticoagulants. new approaches in dentistry Gerardo Gómez-Moreno 1, Antonio
Anticoagulant therapy
Anticoagulation: The risks Anticoagulant therapy 1990 2002: 600 incidents reported 120 resulted in death of patient 92 deaths related to warfarin usage 28 reports related to heparin usage Incidents in
The management of cerebral hemorrhagic complications during anticoagulant therapy
The management of cerebral hemorrhagic complications during anticoagulant therapy Maurizio Paciaroni Stroke Unit Division of Cardiovascular Medicine University of Perugia - Italy Perugia Stroke Registry
Investor News. Not intended for U.S. and UK media
Investor News Not intended for U.S. and UK media Bayer AG Investor Relations 51368 Leverkusen Germany www.investor.bayer.com Bayer s Xarelto (Rivaroxaban) Approved for the Treatment of Pulmonary Embolism
New Oral Anticoagulants. How safe are they outside the trials?
New Oral Anticoagulants How safe are they outside the trials? Objectives The need for anticoagulant therapy Indications for anticoagulation Traditional anticoagulant therapies Properties of new oral anticoagulants
Bios 6648: Design & conduct of clinical research
Bios 6648: Design & conduct of clinical research Section 1 - Specifying the study setting and objectives 1. Specifying the study setting and objectives 1.0 Background Where will we end up?: (a) The treatment
EINSTEIN PE Data Summary & Perspectives on XARELTO (rivaroxaban) in ORS & NVAF. Recorded Webcast Update for Analysts and Investors March 26, 2012
EINSTEIN PE Data Summary & Perspectives on XARELTO (rivaroxaban) in ORS & NVAF Recorded Webcast Update for Analysts and Investors March 26, 2012 1 Webcast Presentation Agenda EINSTEIN PE Clinical Trial
Failure or significant adverse effects to all of the alternatives: Eliquis and Xarelto
This policy has been developed through review of medical literature, consideration of medical necessity, generally accepted medical practice standards, and approved by the IEHP Pharmacy and Therapeutics
Traditional anticoagulants
TEGH Family Practice Clinic Day April 4, 03 Use of Anticoagulants in 03: What s New (and What Isn t) Bill Geerts, MD, FRCPC Director, Thromboembolism Program, Sunnybrook HSC Professor of Medicine, University
Eliquis. Policy. covered: Eliquis is. indicated to. reduce the. therapy. Eliquis is. superior to. of 32 to. Eliquis is AMPLIFY. nonfatal. physicians.
Eliquis (apixaban) Policy Number: 5.01.573 Origination: 06/2014 Last Review: 07/2015 Next Review: 07/2016 Policy BCBSKC will provide coverage for Eliquis when it is determined to be medically necessary
Investor News. Phase III J-ROCKET AF Study of Bayer s Xarelto (rivaroxaban) Meets Primary Endpoint. Not intended for U.S.
Investor News Not intended for U.S. and UK Media Bayer AG Investor Relations 51368 Leverkusen Germany www.investor.bayer.com Phase III J-ROCKET AF Study of Bayer s Xarelto (rivaroxaban) Meets Primary Endpoint
Bayer Extends Clinical Investigation of Rivaroxaban into Important Areas of Unmet Medical Need in Arterial Thromboembolism
Investor News Not intended for U.S. and UK Media Bayer AG Investor Relations 51368 Leverkusen Germany www.investor.bayer.com Bayer Extends Clinical Investigation of Rivaroxaban into Important Areas of
Dabigatran vs rivaroxaban for thromboprophylaxis
Dabigatran vs rivaroxaban for thromboprophylaxis Dabigatran etexilate and rivaroxaban were both licensed recently for thromboprophylaxis following hip or knee surgery. In this article, the North Central
Medication Policy Manual. Topic: Eliquis, apixaban Date of Origin: July 12, 2013. Committee Approval Date: July 11, 2014 Next Review Date: July 2015
Medication Policy Manual Policy No: dru313 Topic: Eliquis, apixaban Date of Origin: July 12, 2013 Committee Approval Date: July 11, 2014 Next Review Date: July 2015 Effective Date: August 1, 2014 IMPORTANT
FDA Approved Oral Anticoagulants
FDA Approved Oral Anticoagulants Generic (Trade Name) Warfarin (Coumadin, Jantoven ) 1 FDA approved indication Prophylaxis and treatment of venous thromboembolism (VTE) Prophylaxis and treatment of thromboembolic
Prescriber Guide. 20mg. 15mg. Simply Protecting More Patients. Simply Protecting More Patients
Prescriber Guide 20mg Simply Protecting More Patients 15mg Simply Protecting More Patients 1 Dear Doctor, This prescriber guide was produced by Bayer Israel in cooperation with the Ministry of Health as
NnEeWw DdEeVvEeLlOoPpMmEeNnTtSs IiıNn OoRrAaLl AaNnTtIiıCcOoAaGgUuLlAaTtIiıOoNn AaNnDd RrEeVvEeRrSsAaLl
NnEeWw DdEeVvEeLlOoPpMmEeNnTtSs IiıNn OoRrAaLl AaNnTtIiıCcOoAaGgUuLlAaTtIiıOoNn AaNnDd RrEeVvEeRrSsAaLl Mikele Wissing, RN June 2014 Introduction until recently, was the unrivaled medication for treatment
How To Treat Aneuricaagulation
Speaker Introduction Jessica Wilhoite, PharmD, BCACP Doctor of Pharmacy: Purdue University Postgraduate Residency Training: PGY1 Pharmacy Practice St. Vincent Hospital PGY2 Ambulatory Care St. Vincent
Laboratory Testing in Patients on Novel Oral Anticoagulants (NOACs)
Laboratory Testing in Patients on Novel Oral Anticoagulants (NOACs) Dr. Art Szkotak [email protected] University of Alberta Hospital Edmonton, AB NOACs Direct Thrombin Inhibitors (DTI):
Anticoagulation at the end of life. Rhona Maclean [email protected]
Anticoagulation at the end of life Rhona Maclean [email protected] Content Anticoagulant Therapies Indications for anticoagulation Venous thromboembolism (VTE) Atrial Fibrillation Mechnical Heart
The Role of the Newer Anticoagulants
The Role of the Newer Anticoagulants WARFARIN = Coumadin DAGIBATRAN = Pradaxa RIVAROXABAN = Xarelto APIXABAN = Eliquis INDICATION DABIGATRAN (Pradaxa) RIVAROXABAN (Xarelto) APIXABAN (Eliquis) Stroke prevention
Novel Anticoagulation Agents DISCLOSURES. Objectives ATRIAL FIBRILLATION TRIALS. NOAC Comparison 6/12/2015
Novel Anticoagulation Agents DISCLOSURES James W. Haynes, MD Department of Family Medicine Univ of TN Health Science Center (Chattanooga) Objectives Understand mechanism of action behind the NOAC agents
Anticoagulants in Atrial Fibrillation
Anticoagulants in Atrial Fibrillation Starting and Stopping Them Safely Carmine D Amico, D.O. Overview Learning objectives Introduction Basic concepts Treatment strategy & options Summary 1 Learning objectives
Cardiovascular Subcommittee of PTAC Meeting held 27 February 2014. (minutes for web publishing)
Cardiovascular Subcommittee of PTAC Meeting held 27 February 2014 (minutes for web publishing) Cardiovascular Subcommittee minutes are published in accordance with the Terms of Reference for the Pharmacology
Assays for Measuring Rivaroxaban: Their Suitability and Limitations
REVIEW ARTICLE Assays for Measuring Rivaroxaban: Their Suitability and Limitations Edelgard Lindhoff-Last, MD,* Meyer Michel Samama, MD, Thomas L. Ortel, MD, Jeffrey I. Weitz, MD, k and Theodore E. Spiro,
Bayer Pharma AG 13342 Berlin Germany Tel. +49 30 468-1111 www.bayerpharma.com. News Release. Not intended for U.S. and UK Media
News Release Not intended for U.S. and UK Media Bayer Pharma AG 13342 Berlin Germany Tel. +49 30 468-1111 www.bayerpharma.com Bayer Forms Collaboration with Academic and Governmental Institutions for Rivaroxaban
STARTING, SWITCHING OR STOPPING NEW ORAL ANTICOAGULANTS: A Practical Approach
STARTING, SWITCHING OR STOPPING NEW ORAL ANTICOAGULANTS: A Practical Approach Jeffrey I Weitz, MD, FRCP(C), FACP Professor of Medicine and Biochemistry McMaster University Canada Research Chair in Thrombosis
New Oral Anticoagulants Increase Risk for Gastrointestinal Bleeding - A Systematic Review and Meta-Analysis
New Oral Anticoagulants Increase Risk for Gastrointestinal Bleeding - A Systematic Review and Meta-Analysis Holster IL, Valkhoff VE, Kuipers EJ, Tjwa ET Departments of Gastroenterology and Hepatology,
xaban) Policy covered: Coverage of following criteria: the following those who meet the or Hip Xarelto is For those impacted by this policy.
Xarelto (rivarox xaban) Policy Number: 5.01.575 Origination: 06/2014 Last Review: 07/2015 Next Review: 07/2016 Policy BCBSKC will provide coverage for Xarelto when it is determined to be medically necessary
http://www.medscape.org/viewarticle/808338_print
Page 1 of 18 From Medscape Education Cardiology Pharmacokinetics of Anticoagulants: Why It Matters Matthew A. Cavender, MD, MPH; Robert P. Giugliano, MD, SM CME Released: 07/31/2013 ; Valid for credit
48 th Annual Meeting. Non-VKA Oral Anticoagulants: Prevention & Treatment of Bleeding. Terminology. Disclosure. Public Health Impact.
48 th Annual Meeting Terminology Non-VKA Oral Anticoagulants: Prevention & Treatment of Bleeding Stacy A. Voils, PharmD, MS, BCPS Navigating the Oceans of Opportunity Target-specific oral anticoagulants
Post-ISTH review: Thrombosis-I New Oral Anticoagulants 臺 大 醫 院 內 科 部 血 液 科 周 聖 傑 醫 師
Post-ISTH review: Thrombosis-I New Oral Anticoagulants 臺 大 醫 院 內 科 部 血 液 科 周 聖 傑 醫 師 The antithrombotic efficacy is limited but the risk of bleeding is indefinite Fuster V et al. Circulation 2011;123:e269-e367
Lupus anticoagulant Pocket card
Lupus anticoagulant Pocket card Issue number 5 2012 Antiphospholipid Syndrome 1 The antiphospholipid syndrome (APS) is diagnosed in patients with recurrent thromboembolic events and /or pregnancy loss
COMPARISON OF NEW ORAL ANTICOAGULANTS AND FREQUENTLY- ASKED QUESTIONS FROM PATIENTS. TARGET AUDIENCE: All Canadian health care professionals.
COMPARISON OF NEW ORAL ANTICOAGULANTS AND FREQUENTLY- ASKED QUESTIONS FROM PATIENTS AND PHYSICIANS TARGET AUDIENCE: All Canadian health care professionals. OBJECTIVES: To provide a comparison of the new
Metabolism and Excretion of Rivaroxaban, an Oral, Direct Factor Xa Inhibitor, in Rats, Dogs, and Humans
0090-9556/09/3705-1056 1064$20.00 DRUG METABOLISM AND DISPOSITION Vol. 37, No. 5 Copyright 2009 by The American Society for Pharmacology and Experimental Therapeutics 25569/3457465 DMD 37:1056 1064, 2009
Speaker Disclosure. Outline. Pharmacist Objectives. Patient Case. Outline 9/4/2014
Speaker Disclosure Matthew K. Pitlick, Pharm.D., BCPS St. Louis College of Pharmacy/VA St. Louis HCS [email protected] Matthew K. Pitlick, Pharm.D., BCPS declares no conflicts of interest, real or apparent,
