Observational properties of ellipticals

Size: px
Start display at page:

Download "Observational properties of ellipticals"

From this document you will learn the answers to the following questions:

  • What type of spiral is a luminous elliptical?

  • Ordered Motions and Rotation Parametrize degree of what is supported by what?

  • What type of galaxy has very long power envelopes?

Transcription

1 Observational properties of ellipticals Ellipticals are deceptively simple it is so tempting to treat them as a pressure supported gas of stars but this is not correct. Too bad that only dwarf ellipticals are members of the Local Group! 1

2 Structure of Galactic Spheroids Recall: radial structure if we approximate spheroids as relaxed, purely stellar systems, stellar dynamical theory provides a semi-empirical description (King 1962, AJ, 67, 471) isothermal core, with projected brightness I(r ) = I 0 / (1 + r/r c ) r c --> core radius King model also requires outer truncation, parametrized by a tidal radius c --> log (r t / r c ) King 1966, AJ, 71, 64 2

3 King profile fit to NGC 4472 King 1972, ApJ, 333, 1 3

4 Empirical luminosity laws Hubble (1926) profile I(r ) = I 0 / (1 + r/r o ) 2 de Vaucouleurs r 1/4 law log I(r )/I(r e ) = [(r/r e ) 1/4-1] where r e --> effective radius (radius containing half of integrated luminosity) although the r 1/4 law is empirical in origin, n-body simulations of merging/forming spheroids can reproduce the profile 4

5 de Vaucouleurs, Capaccioli 1979, ApJS, 40, 699 5

6 Structure of elliptical galaxy cores Lauer et al. 1995, AJ, 110, 2622 ( Nuker team ) Jaffe et al. 1995, AJ, 108, 1567 subject revolutionized by HST luminous galaxies show strong turnover in inner ~100 pc, cores or shallow cusps lower luminosity galaxies show continued (1/r) increase in brightness into the galactic centers few ellipticals show asymptotic flat brightness profile in center older results influenced by seeing 6

7 Lauer et al. 1995, AJ, 110,

8 Many spheroids possess nuclear disks with gas, dust Nuclear dust ring in NGC3379, Gebhardt et al

9 2 2 2 x y z + + = a a b c Possible Shapes for Elliptical Galaxies Oblate a > c a = equi radius c = polar radius x + y z + = a c Prolate c > a Triaxial x y z + + = a b c Projection effects make it difficult to disentangle the true shape of ellipticals can t simply invert the observed brightness distribution to get the 3-D luminosity density Need to know the shape to interpret kinematics amount of dark matter that one deduces depends on the expected distribution of shapes of stellar orbits. Much trickier than for spirals where rotation of the disk leads to a clear prediction of the amount of matter 9

10 Photometric and kinematic tests more consistent with oblate geometry Many galaxies show evidence of at least slight triaxiality (eg. isophote twists would not be seen in axisymmetric galaxies) Sandage, Freeman, Stokes 1970, ApJ, 160,

11 R Deprojecting Surface Brightness Profiles z r I(R)=observed surface brightness j(r) = luminosity density Calc indicated by (2) works poorly in practice due to noise problems (1) (3) (2) I(R) = dzj(r) = 2 j(r) = π r R j(r)rdr r di dr dr R r 2 2 R I 0 j0 I( R) = j( r) = ( R/ r0 ) 1 + ( r/ r0 ) Handy but bad total luminosity diverges! 2 Various analytical schemes have been used Hernquist model has been useful but (3), the modified Hubble Law, has its problems. 3 γ La (4) jr ( ) = γ=1 for Hernquist γ 4 γ 4 π r ( r+ a) L = total luminosity a = scale length 11

12 Can We Determine the True Shapes? Only in a few special cases Lack of knowledge of the inclination of a spheroidal shape means that a unique solution cannot be found If I(R) is circularly symmetric, then the galaxy is spherical but otherwise it might or might not be even axisymmetric Addition of kinematic data helps 12

13 High S/N images reveal significant departures from elliptical geometry isophotal twists ellipticity variations boxy isophotes disky isophotes NGC 1600 Barbon et al. 1984, A&A, 137,

14 Capaccioli et al. 1988, AJ, 96,

15 At the 1-2% level most spheroids show systematic deviations from elliptical isophotes parametrize in terms of Fourier terms: +... I(θ) = a 0 + a 2 cos(2θ) + a 4 cos(4θ) a 4 = 0 pure ellipse a 4 < 0 boxy a 4 > 0 disky a 4 correlates with kinematic properties (i.e., disky galaxies rotate faster) it also correlates with most other properties along the fundamental plane 15

16 Bender et al. 1989, A&A, 217, 35 16

17 Shells Malin & Carter 1983, ApJ, 274, 534 faint(!) azimuthal shells are observed around a large fraction of elliptical galaxies shells are characterized by sharp edges, caustic structure galaxies with prominent shells have systematically bluer colors, evidence of intermediate age stars in spectra numerical simulations suggest shells are tidal remnants of satellite galaxy accretion, minor mergers cd Galaxies some luminous elliptical galaxies possess very extended powerlaw envelopes, extending up to >>100 kpc in radius predominantly seen in central galaxies in rich clusters multiple nuclei very common probably built up from multiple captures and mergers with neighboring galaxies --> galactic cannibalism Evidence for the importance of merging 17

18 Focus on the cd galaxy! 18

19 19

20 Malin & Carter 1983, ApJ, 274,

21 Internal Kinematics of Ellipticals Faber & Jackson

22 Kinematics of Elliptical Galaxies and Bulges Observational technique: obtain high S/N absorption line spectra for galaxies and template stars, use crosscorrelation techniques to measure velocity distribution, velocity dispersion Faber & Jackson 1976, ApJ, 204,

23 LOSVD Characterization Just as projection effects make extraction of a galaxy s shape from surface brightness difficult, the conversion of a measured line shape into a determination of the true velocity distribution, F(v LOS ) is difficult. LOSVD=line of sight velocity dispersion Must take account of the composite nature of a galaxy s stellar population (ideally would allow different velocity distributions for different stellar types) Cannot assume that LOSVD is Gaussian even if local regions of a galaxy have Gaussian velocity distributions, their superposition will not be Gaussian Could parameterize LOSVD by moments but higher order moments get weighted by large values of ( v v ) n LOS Van der Marel & Franx 1993 have devised a method expanding the LOSVD in terms of truncated Gaussian-Hermite polynomials that has proven to be robust in the face of observational errors 23

24 Mean velocity: Velocity dispersion: LOSVD Gaussian-Hermite expansion: w = (vlos v)/ σ vlos = dvlosvlosf(v LOS) σ = dv (v v ) F(v ) 2 2 LOS LOS LOS LOS LOS 1 2 n w 2 FGH e 1+ hkh k (w) k= 3 For distributions close to Gaussian, v, σ v LOS, σlos h 3 related to third moment of velocity distribution which is a measure of skewness, departure from symmetry in distribution h 4 related to fourth moment, kurtosis, departures from Gaussian (rectangular versus peaky) Hs are polynomials of order k 24

25 Ordered Motions and Rotation Parametrize degree of rotational support by: v m /σ = (maximum rotation velocity) / (velocity dispersion) luminous ellipticals: v m /σ < 0.2 independent of flattening(!) faint ellipticals: 0 < v m /σ < 1 bulges consistent with rotational flattening Davies & Illingworth 1983, ApJ, 266,

26 Carollo et al ApJL. Ellipticals rotate but not at a rate consistent with their flattening. 26

27 How can a galaxy be flattened without rotation? stellar systems need not behave like ideal gases, with isotropic velocity dispersion relaxation time for galaxies typically of order years gravitational potential in a flattened or triaxial system is highly non-spherical, so velocity dispersion may be anisotropic equilibrium configurations with non-spherical stellar distributions and anisotropic velocity ellipsoids possible anisotropic velocity dispersions also characteristic of rotating stellar disks 27

28 Variations in rotational support are strongly correlated with other parameters in the fundamental plane more luminous ellipticals tend to have more anisotropy, for example. Bender, Saglia, Gerhard 1994, MNRAS, 269,

29 velocity dispersion and rotation velocity tend to remain roughly constant with radius (small radial increase in v m /σ Fried & Illingworth 1994, AJ, 107,192 29

30 A small fraction of spheroids contain kinematically decoupled cores, often with counter-rotation (e.g., IC 1459) Franx & Illingworth 1988, ApJ, 327, L55 30

31 Scaling laws projected radial velocity dispersion (σ) tightly correlated with luminosity: Faber-Jackson relation similar correlations observed between σ and diameter (D n ) and linestrength (usually measured via Mg lines) Faber & Jackson 1976, ApJ, 204, 668 Pahre et al. 1998, AJ, 116,

32 correlations (L ασ 4, D n ασ ) are projections of the fundamental plane for elliptical galaxies, bulges slope of correlations wavelength dependent strongest correlations found in principal axes of fundamental plane define mass/light ratio M/L = mass/luminosity in units of M o /L o mean M/L B ~ 10 (M/L R ~ 3) for ellipticals/bulges Jorgensen et al. 1996, MNRAS, 280,

33 How Much Dark Matter is Required? Many claims and counter claims have been made as to the amount of dark matter in ellipticals As mentioned earlier, lack of a priori knowledge of orbit shapes is a major problem Lack of a probe similar to HI that can be measured at large distances from a galaxy s center is another problem There is no doubt that clusters of galaxies (dominated by ellipticals) contain dark matter both x-ray data and lensing show this result Evidence is accumulating that ellipticals have dark matter but that stars dominate the mass budget inside R e 33

34 X-ray Gas as a Probe Many but not all ellipticals contain a hot plasma Typically T~ K, readily observable at x-ray wavelengths Gas originates from stellar mass loss, likely heated by SN The assumption that such gas is in hydrodynamic equilibrium can be used to estimate the mass of the galaxy dp GM(r) ρ ρkt = p = 2 dr r µ m ktr d ln ρ d ln T M(r)= G µ m p dlnr dlnr Has the virtue that there is no worry about anisotropic velocities but does require spatially resolved x-ray T data Leads to ellipticals needing dark matter p 34

35 From Humphrey et al,

36 Dotted line = stars Dashed = dark matter Dot-dash = gas 36

37 Chandra data also are revealing that the x-ray gas is so disturbed in some ellipticals that it should not be assumed to be in hydrostatic equilibrium. Supernovae, episodic outflows from nuclear black holes may be the culprits. Statler & Diehl

38 Velocity dispersion and rotation velocity rise sharply inside inner 100 pc M/L ratio also increases sharply, indicating central black hole nuclear BHs appear to be ubiquitous feature in spheroids 38

39 Tremaine et al

40 BH mass strongly correlated with spheroid/bulge mass ( Magorrian relation ) as represented by velocity dispersion Magorrian et al. 1998, AJ, 115, 2285 Tremaine et al. 2002, ApJ, 574,

41 Dwarf Galaxies Dwarf spheroidal and irregular galaxies extend the trends seen in elliptical and spiral galaxies, respectively, except: dsph galaxies lie off the fundamental plane for E/S0 galaxies fraction of mass in dark matter (within visible galaxy) often much higher in dwarfs e.g., DDO 154 the dark galaxy Carignan & Freeman 1988, ApJ, 332, L33 41

42 Dwarf spheroidal galaxies show different radial structure radial profiles fitted better with King profiles (like star clusters) or exponential profiles (like disks) these galaxies also have distinct dynamical properties, and deviate from normal fundamental plane Star counts for six dwarf spheroidals. Faber & Lin 1983, ApJ, 266, L17 42

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0 Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,

More information

Elliptical Galaxies. Old view: ellipticals are boring, simple systems

Elliptical Galaxies. Old view: ellipticals are boring, simple systems Eliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic collapse,

More information

Elliptical Galaxies. Virgo Cluster: distance 15Mpc

Elliptical Galaxies. Virgo Cluster: distance 15Mpc Elliptical Galaxies Virgo Cluster: distance 15Mpc Elliptical Galaxies Elliptical galaxies are thought to be the simplest of all types of galaxies. Yet, detailed analysis shows that they are much more complicated

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

Dwarf Elliptical andFP capture the Planets

Dwarf Elliptical andFP capture the Planets Rough subdivision Normal ellipticals. Giant ellipticals (ge s), intermediate luminosity (E s), and compact ellipticals (ce s), covering a range of luminosities from M B 23 m to M B 15 m. Dwarf ellipticals

More information

arxiv:astro-ph/0101553v1 31 Jan 2001

arxiv:astro-ph/0101553v1 31 Jan 2001 Evidence for Large Stellar Disks in Elliptical Galaxies. Andreas Burkert and Thorsten Naab Max-Planck-Institut für Astronomie, D-69242 Heidelberg, Germany arxiv:astro-ph/0101553v1 31 Jan 2001 Abstract.

More information

Lecture 6: distribution of stars in. elliptical galaxies

Lecture 6: distribution of stars in. elliptical galaxies Lecture 6: distribution of stars in topics: elliptical galaxies examples of elliptical galaxies different classes of ellipticals equation for distribution of light actual distributions and more complex

More information

S0 galaxy NGC 2787. Marcella Carollo, HST.

S0 galaxy NGC 2787. Marcella Carollo, HST. S0 galaxy NGC 2787. Marcella Carollo, HST. Dust lane in NGC 5128. Marina Rejkuba, ESO. Peculiar E galaxy NGC 1316. Paul Goudfrooij, HST. Dust-lane E galaxy NGC 5266. Carnegie Atlas of Galaxies. 1994ApJ...43

More information

Elliptical Galaxies. Galaxies and Their Properties, Part II: Fine Structure in E-Galaxies: A Signature of Recent Merging

Elliptical Galaxies. Galaxies and Their Properties, Part II: Fine Structure in E-Galaxies: A Signature of Recent Merging Elliptical Galaxies Ay 21 - Lecture 12 Galaxies and Their Properties, Part II: Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals

More information

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:

More information

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why

More information

arxiv:astro-ph/9908129v1 12 Aug 1999

arxiv:astro-ph/9908129v1 12 Aug 1999 On the Formation of Boxy and Disky Elliptical Galaxies Thorsten Naab & Andreas Burkert Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, arxiv:astro-ph/9908129v1 12 Aug 1999 Germany

More information

Qué pasa si n = 1 y n = 4?

Qué pasa si n = 1 y n = 4? Galaxias Elípticas Qué pasa si n = 1 y n = 4? Isophotal Shapes For normal elliptical galaxies the axis ratio lies in the range 0.3

More information

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints. Roeland van der Marel

Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints. Roeland van der Marel Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints Roeland van der Marel Why Study IMBHs in Globular Clusters (GCs)? IMBHs: IMBHs can probe a new BH mass range, between

More information

Properties of Elliptical Galaxies

Properties of Elliptical Galaxies Chapter 3 Properties of Elliptical Galaxies In the last 20 years our notions about elliptical galaxies have changed radically; these galaxies are much more complex than they seemed at first. 3.1 Folklore

More information

How Do Galeries Form?

How Do Galeries Form? 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-1 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-2 Galaxy Formation Leading questions for today How do

More information

Modeling Galaxy Formation

Modeling Galaxy Formation Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

More information

DYNAMICS OF GALAXIES

DYNAMICS OF GALAXIES DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Two-body

More information

Proceedings of the NATIONAL ACADEMY OF SCIENCES

Proceedings of the NATIONAL ACADEMY OF SCIENCES Proceedings of the NATIONAL ACADEMY OF SCIENCES Volume 55 * Number 1 * January 15, 1966 DYNAMICS OF SPHERICAL GALAXIES, II* BY PHILIP M. CAMPBELL LAWRENCE RADIATION LABORATORY, LIVERMORE, CALIFORNIA Communicated

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

Populations and Components of the Milky Way

Populations and Components of the Milky Way Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

The formation and evolution of massive galaxies: A major theoretical challenge

The formation and evolution of massive galaxies: A major theoretical challenge The formation and evolution of massive galaxies: A major theoretical challenge Thorsten Naab Max-Planck-Institute for Astrophysics L. Oser, M. Hilz, P. Johansson, J. P. Ostriker Tähtitieteilijäpäivät Haikko,

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Galaxy Classification and Evolution

Galaxy Classification and Evolution name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally

More information

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

More information

ASTRONOMY AND ASTROPHYSICS. Color distributions in E-S0 galaxies. II. Evidence for diffuse dust concentration in the disks of disky E-type galaxies

ASTRONOMY AND ASTROPHYSICS. Color distributions in E-S0 galaxies. II. Evidence for diffuse dust concentration in the disks of disky E-type galaxies Astron. Astrophys. 335, 479 487 (1998) Color distributions in E-S0 galaxies ASTRONOMY AND ASTROPHYSICS II. Evidence for diffuse dust concentration in the disks of disky E-type galaxies R. Michard 1 Observatoire

More information

How the properties of galaxies are affected by the environment?

How the properties of galaxies are affected by the environment? How the properties of galaxies are affected by the environment? Reinaldo R. de Carvalho - DAS/INPE Marina Trevisan Reinaldo Rosa The activities in this project follow from the Tatiana Moura general context

More information

Structure & Kinematics of Early-Type Galaxies from Integral-Field Spectroscopy

Structure & Kinematics of Early-Type Galaxies from Integral-Field Spectroscopy arxiv:162.4267v1 [astro-ph.ga] 13 Feb 216 Annu. Rev. Astron. Astrophys. 216. 54:1 67 This article s doi:.1146/annurev-astro-82214-122432 Copyright c 216 by Annual Reviews. All rights reserved Structure

More information

ELLIPTICAL GALAXIES: ROTATIONALLY DISTORTED, AFTER ALL

ELLIPTICAL GALAXIES: ROTATIONALLY DISTORTED, AFTER ALL Serb. Astron. J. 179 (2009), 31-47 UDC 524.7 327 DOI: 10.2298/SAJ0979031C Original scientific paper ELLIPTICAL GALAXIES: ROTATIONALLY DISTORTED, AFTER ALL R. Caimmi Dipartimento di Astronomia, Università

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

Observing the Universe

Observing the Universe Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

More information

Dynamics of Elliptical Galaxies

Dynamics of Elliptical Galaxies I ARTICLES m..o./4. Dynamics of Elliptical Galaxies David Merritt Elliptical galaxies were once thought to be similar in their structure and dynamics to rotationally flattened bodies like stars. The discovery

More information

THE CENTERS OF EARLY-TYPE GALAXIES WITH HUBBLE SPACE TELESCOPE. V. NEW WFPC2 PHOTOMETRY 1

THE CENTERS OF EARLY-TYPE GALAXIES WITH HUBBLE SPACE TELESCOPE. V. NEW WFPC2 PHOTOMETRY 1 The Astronomical Journal, 129:2138 2185, 2005 May # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A THE CENTERS OF EARLY-TYPE GALAXIES WITH HUBBLE SPACE TELESCOPE. V.

More information

Einstein Rings: Nature s Gravitational Lenses

Einstein Rings: Nature s Gravitational Lenses National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278

Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278 Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278 Tassos Fragos with V. Kalogera, K. Belczynski, G. Fabbiano et al. Department of Physics and Astronomy Northwestern University MODEST 7b

More information

A Universe of Galaxies

A Universe of Galaxies A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

More information

Physical Self-Calibration of X-ray and SZ Surveys

Physical Self-Calibration of X-ray and SZ Surveys Physical Self-Calibration of X-ray and SZ Surveys Greg L. Bryan, Zoltan Haiman (Columbia University) and Joshua D. Younger (CfA) 1. Cluster Surveys and Self-Calibration Clusters of galaxies form at the

More information

Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their photometric properties

Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their photometric properties A&A 379, 767 780 (2001) DOI: 10.1051/0004-6361:20011370 c ESO 2001 Astronomy & Astrophysics Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Detailed Mass Map of CL 0024+1654 from Strong Lensing

Detailed Mass Map of CL 0024+1654 from Strong Lensing Detailed Mass Map of CL 0024+1654 from Strong Lensing Tyson, Kochanski, & Dell Antonio (1998) HST WFPC2 image of CL0024+1654 slides based on presentation by Yue Zhao Rutgers Physics 690 February 21, 2008

More information

Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, Atlanta, USA

Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, Atlanta, USA Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, Atlanta, USA The Transient Sky SN, GRBs, AGN or TDEs? Arcavi et al. 2014, ApJ, 793, 38 van Velzen et al. 2011, ApJ, 741,

More information

arxiv:astro-ph/0407219v1 12 Jul 2004

arxiv:astro-ph/0407219v1 12 Jul 2004 Astronomy & Astrophysics manuscript no. 1414 December 16, 2013 (DOI: will be inserted by hand later) Line-of-sight velocity distribution corrections for Lick/IDS indices of early-type galaxies Harald Kuntschner

More information

6 A High Merger Fraction in the Rich Cluster MS 1054 03 at z =0:83: Direct Evidence for Hierarchical Formation of Massive Galaxies y

6 A High Merger Fraction in the Rich Cluster MS 1054 03 at z =0:83: Direct Evidence for Hierarchical Formation of Massive Galaxies y 6 A High Merger Fraction in the Rich Cluster MS 1054 03 at z =0:83: Direct Evidence for Hierarchical Formation of Massive Galaxies y ABSTRACT We present a morphological study of the galaxy population of

More information

arxiv:astro-ph/9601169v1 30 Jan 1996

arxiv:astro-ph/9601169v1 30 Jan 1996 THE DISTRIBUTION OF DUST AND GAS IN ELLIPTICAL GALAXIES arxiv:astro-ph/9601169v1 30 Jan 1996 PAUL GOUDFROOIJ European Southern Observatory Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany Abstract.

More information

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003 ed. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium4/proceedings.html)

More information

1.1 Hubble's classification scheme of galaxies

1.1 Hubble's classification scheme of galaxies Chapter 1 Introduction Galaxies are the main building blocks of the extragalactic Universe. They are gravitationally bound stellar systems of about lou stars. Studies of the galaxies can range from dynamics

More information

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom kw@mssl.ucl.ac.uk

More information

Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt

Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Instructions: Answers are typed in blue. Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Crab Nebula What is embedded in the center of the nebula? Neutron star Who first

More information

Indiana University Science with the WIYN One Degree Imager

Indiana University Science with the WIYN One Degree Imager Indiana University Science with the WIYN One Degree Imager Katherine Rhode (Indiana University, WIYN SAC member) Indiana University Department of Astronomy Nine faculty members, plus active emeritus faculty

More information

Star Clusters and Stellar Dynamics

Star Clusters and Stellar Dynamics Ay 20 Fall 2004 Star Clusters and Stellar Dynamics (This file has a bunch of pictures deleted, in order to save space) Stellar Dynamics Gravity is generally the only important force in astrophysical systems

More information

Structure formation in modified gravity models

Structure formation in modified gravity models Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

The Formation of Dwarf Early-Type Galaxies. Reynier Peletier Kapteyn Astronomical Institute, Groningen

The Formation of Dwarf Early-Type Galaxies. Reynier Peletier Kapteyn Astronomical Institute, Groningen The Formation of Dwarf Early-Type Galaxies Reynier Peletier Kapteyn Astronomical Institute, Groningen From Kormendy et al. (2009) Definition of dwarf ellipticals: -15 < MB < -18 Here to be discussed the

More information

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe

More information

STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES 1,2,3

STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES 1,2,3 STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES 1,2,3 JOHN KORMENDY 4,5,6, DAVID B. FISHER 4,5,6, MARK E. CORNELL 4, AND RALF BENDER 4,5,6 Received 2006 September 6; accepted 2008 October

More information

Arjen van der Wel -- MPIA, Heidelberg

Arjen van der Wel -- MPIA, Heidelberg THE PATH FROM COMPACT Z = 2 GALAXY TO GIANT ELLIPTICAL Arjen van der Wel -- MPIA, Heidelberg with the 3D-HST and CANDELS teams THE PATH FROM COMPACT Z = 2 GALAXY TO GIANT ELLIPTICAL The size-mass relation

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

The CGM around Dwarf Galaxies

The CGM around Dwarf Galaxies The CGM around Dwarf Galaxies Rongmon Bordoloi STScI + the COS-Halos Team What is the CGM? Shen et al. 212 jectedcolumndensityinacubeof5(proper)kpc Diffuse gas, including metals and dust, o2en on extending

More information

Highlights from the VLA/ANGST Survey

Highlights from the VLA/ANGST Survey Highlights from the VLA/ANGST Survey Evan Skillman U. Minnesota Gas in Galaxies 2011: From Cosmic Web to Molecular Clouds Kloster Seeon, Germany 16/06/2011 VLA/ANGST The ANGST HST Treasury Project allowed

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB)

Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB) Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System Man Hoi Lee (UCSB) Introduction: Extrasolar Planetary Systems Extrasolar planet searches have yielded ~ 150 planetary

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

The Messier Objects As A Tool in Teaching Astronomy

The Messier Objects As A Tool in Teaching Astronomy The Messier Objects As A Tool in Teaching Astronomy Dr. Jesus Rodrigo F. Torres President, Rizal Technological University Individual Member, International Astronomical Union Chairman, Department of Astronomy,

More information

arxiv:astro-ph/9611104v1 13 Nov 1996

arxiv:astro-ph/9611104v1 13 Nov 1996 Mon. Not. R. Astron. Soc. 000, 1 5 (1996) Printed 27 October 2013 (MN LATEX style file v1.4) The Shapes and Ages of Elliptical Galaxies University of Durham, Department of Physics, South Road, Durham DH1

More information

Direct Detections of Young Stars in Nearby Ellipticals

Direct Detections of Young Stars in Nearby Ellipticals Direct Detections of Young Stars in Nearby Ellipticals (NRAO Green Bank) Joel N. Bregman (University of Michigan) Click icon to add picture ApJ, in press (arxiv:1205.1066) Red and Dead Conventional wisdom:

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Specific Intensity. I ν =

Specific Intensity. I ν = Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-directed

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

Chapter 22: Electric Flux and Gauss s Law

Chapter 22: Electric Flux and Gauss s Law 22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

More information

Dinamica del Gas nelle Galassie II. Star formation

Dinamica del Gas nelle Galassie II. Star formation Dinamica del Gas nelle Galassie II. Star formation Overview on ISM Molecular clouds: composition and properties. Plasmas Charge neutrality, infinite conductivity; Field freezing; Euler equation with magnetic

More information

Intermediate Mass Black Holes near Galactic Center: Formation. and Evolution

Intermediate Mass Black Holes near Galactic Center: Formation. and Evolution Intermediate Mass Black Holes near Galactic Center: Formation and Evolution Yuan Yuan Johns Hopkins University Abstract: As a missing link between stellar mass black holes and supermassive black holes

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

PROPERTIES OF THE BRIGHTEST CLUSTER GALAXY AND ITS HOST CLUSTER Haruyoshi Katayama, 1 Kiyoshi Hayashida, 1 Fumio Takahara, 1 and Yutaka Fujita 2

PROPERTIES OF THE BRIGHTEST CLUSTER GALAXY AND ITS HOST CLUSTER Haruyoshi Katayama, 1 Kiyoshi Hayashida, 1 Fumio Takahara, 1 and Yutaka Fujita 2 The Astrophysical Journal, 585:687 693, 23 March 1 # 23. The American Astronomical Society. All rights reserved. Printed in U.S.A. PROPERTIES OF THE BRIGHTEST CLUSTER GALAXY AND ITS HOST CLUSTER Haruyoshi

More information

Delayed mergers: The contribution of ellipticals, globular clusters, and protoclusters to the LIGO detection rate

Delayed mergers: The contribution of ellipticals, globular clusters, and protoclusters to the LIGO detection rate Delayed mergers: The contribution of ellipticals, globular clusters, and protoclusters to the LIGO detection rate Aug 16, 2005 Richard O Shaughnessy (with O Leary, Fregeau, Kalogera, Rasio, Ivanova, Belczynski)

More information

arxiv:1211.3420v2 [astro-ph.ga] 26 Mar 2013

arxiv:1211.3420v2 [astro-ph.ga] 26 Mar 2013 Published by the Astrophysical Journal (ApJ, 766, 71) Preprint typeset using L A TEX style emulateapj v. 03/07/07 arxiv:1211.3420v2 [astro-ph.ga] 26 Mar 2013 THE DARK HALO SPHEROID CONSPIRACY AND THE ORIGIN

More information

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31 Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova based on astro-ph/0703757 by M. Fornasa, M. Taoso and G.Bertone Journal

More information

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

World of Particles Big Bang Thomas Gajdosik. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

The Orbital Period Distribution of Wide Binary Millisecond Pulsars

The Orbital Period Distribution of Wide Binary Millisecond Pulsars Binary Radio Pulsars ASP Conference Series, Vol. 328, 2005 F. A. Rasio and I. H. Stairs The Orbital Period Distribution of Wide Binary Millisecond Pulsars B. Willems Northwestern University, Department

More information

arxiv:1002.0847v1 [astro-ph.co] 3 Feb 2010

arxiv:1002.0847v1 [astro-ph.co] 3 Feb 2010 Mon. Not. R. Astron. Soc. 000, 1 19 (200x) Printed 3 February 2010 (MN LATEX style file v2.2) Formation, Evolution and Properties of Isolated Field Elliptical Galaxies arxiv:1002.0847v1 [astro-ph.co] 3

More information

Formation Mechanisms for Spheroidal Stellar Systems

Formation Mechanisms for Spheroidal Stellar Systems VARIABLE STARS, THE GALACTIC HALO AND GALAXY FORMATION C. Sterken, N. Samus and L. Szabados (Eds.) 2010 Formation Mechanisms for Spheroidal Stellar Systems O. K. Sil chenko 1 Sternberg Astronomical Institute

More information

The Evolution of GMCs in Global Galaxy Simulations

The Evolution of GMCs in Global Galaxy Simulations The Evolution of GMCs in Global Galaxy Simulations image from Britton Smith Elizabeth Tasker (CITA NF @ McMaster) Jonathan Tan (U. Florida) Simulation properties We use the AMR code, Enzo, to model a 3D

More information

Gravity Field and Dynamics of the Earth

Gravity Field and Dynamics of the Earth Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals

More information

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:

More information

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data The Gaia Archive Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de 1 2 Gaia 2013-2018 and beyond Progress with Gaia 3 HIPPARCOS Gaia accuracy

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

More information

National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As

National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As National Aeronautics and Space Administration Science Background Teacher s GalaxY Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust

More information

Galaxy Morphological Classification

Galaxy Morphological Classification Galaxy Morphological Classification Jordan Duprey and James Kolano Abstract To solve the issue of galaxy morphological classification according to a classification scheme modelled off of the Hubble Sequence,

More information

Spectral Line II. G ij (t) are calibrated as in chapter 5. To calibrated B ij (ν), observe a bright source that is known to be spectrally flat

Spectral Line II. G ij (t) are calibrated as in chapter 5. To calibrated B ij (ν), observe a bright source that is known to be spectrally flat Spectral Line II: Calibration and Analysis 2 Spectral Line II John Hibbard Bandpass Calibration Flagging Continuum Subtraction Imaging Visualization Analysis Reference: Michael Rupen, Chapter 11 Synthesis

More information

Present-day galaxies: disks vs. spheroids. Parameters of a starburst galaxy

Present-day galaxies: disks vs. spheroids. Parameters of a starburst galaxy Paul van der Werf Sterrewacht Leiden,$& 0D\ Present-day galaxies disks vs. spheroids Disks blue relatively young range in colours range in ages (age ~ 3 6 G, z f ~ 0.5 2) stars formed continually or in

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars

The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars Knut A.G. Olsen National Optical Astronomy Observatory kolsen@noao.edu Phone: (520)-318-8555 Co-authors: Aaron J. Romanowsky (UCO/Lick)

More information

Evolution of Close Binary Systems

Evolution of Close Binary Systems Evolution of Close Binary Systems Before going on to the evolution of massive stars and supernovae II, we ll think about the evolution of close binary systems. There are many multiple star systems in the

More information