SOLAR POWERED WATER PUMPING SYSTEMS
|
|
|
- Stephany Woods
- 9 years ago
- Views:
Transcription
1 Trakia Journal of Sciences, Vol. 3, No. 7, pp 7-11, 2005 Copyright 2005 Trakia University Available online at: ISSN Feature Article SOLAR POWERED WATER PUMPING SYSTEMS B. Eker * Trakya University, Tekirdağ Agriculture Faculty, Agricultural Machinery Department,Tekirdağ,Turkey ABSTRACT Agricultural technology is changing rapidly. Farm machinery, farm building and production facilities are constantly being improved. Agricultural applications suitable for photovoltaic (PV) solutions are numerous. These applications are a mix of individual installations and systems installed by utility companies when they have found that a PV solution is the best solution for remote agricultural need such as water pumping for crops or livestock. A solar powered water pumping system is made up of two basic components. These are PV panels and pumps. The smallest element of a PV panel is the solar cell. Each solar cell has two or more specially prepared layers of semiconductor material that produce direct current (DC) electricity when exposed to light. This DC current is collected by the wiring in the panel. It is then supplied either to a DC pump, which in turn pumps water whenever the sun shines,or stored in batteries for later use by the pump. The aim of this article is to explain how solar powered water pumping system works and what the differences with the other energy sources are. Key words: Agriculture, water, solar cell, pump INTRODUCTION It is common to use diesel to power generators in agricultural operations. While these systems can provide power where needed1 there are some significant drawbacks, including: Fuel has to be transported to the generator s location, which may be quite a distance over some challenging roads and landscape. Their noise and fumes can disturb livestock. Fuel costs add up, and spills can contaminate the land. Generators require a significant amount of maintenance and, like all mechanical systems, they break down and need replacement parts that are not always available. There are also major disadvantages in using propane or bottled gas to heat water for pen cleaning or in crop processing applications, or *Correspondence to: Prof. Dr Bülent Eker, Trakya University, Tekirdağ Agriculture Faculty, Agricultural Machinery Department, 59030, Tekirdağ, Turkey; Tel.: , Fax: ; E mail:[email protected] to heat air for crop drying, including transportation to the location where you need the heat, costs of fuel and safety issues. For many agricultural needs, the alternative is solar energy. Modern, well-designed, simpleto-maintain solar systems can provide the energy that is needed where it is needed, and when it is needed. These are systems that have been tested and proven around the world to be cost-effective and reliable, and they are already raising levels of agricultural productivity worldwide (Figure 1). Figure 1. A range and solar system are side by side [1] In general, there are two types of solar systems those that convert solar energy to D.C. power and those that convert solar Trakia Journal of Sciences, Vol. 3, No. 7,
2 energy to heat. Both types have many applications in agricultural settings, making life easier and helping to increase the operation s productivity. First is solargenerated electricity, called photovoltaic (or PV). Photovoltaic are solar cells that convert sunlight to D.C. electricity. The solar cells in a PV module are made from semiconductor materials. When light energy strikes the cell, electrons are knocked loose from the material s atoms. Electrical conductors attached to the positive and negative sides of the material allow the electrons to be captured in the form of a D.C. current. This electricity can then be used to power a load, such as a water pump, or it can be stored in a battery [2] It s a simple fact that PV modules produce electricity only when the sun is shining, so some form of energy storage is necessary to operate systems at night. You can store the energy as water by pumping it into a tank while the sun is shining and distributing it by gravity when it s needed after dark. For electrical applications at night, you will need a battery to store the energy generated during the day (Figure 2). Figure 2. A typical assembly of solar cells [3] Photovoltaic is a well-established, proven technology with a substantial international industry network. And PV is increasingly more cost-effective compared with either extending the electrical grid or using generators in remote locations. The cost per peak watt of today s PV power is about $7. Local supply conditions, including shipping costs and import duties, vary and may add to the cost. PV systems are very economical in providing electricity at remote locations on farms, ranches, orchards and other agricultural operations. A remote location can be as little as 15 meters from an existing power source. PV systems can be much cheaper than installing power lines and step-down transformers in applications such as electric fencing, area or building lighting, and water pumping either for livestock watering or crop irrigation. WATER PUMPING Water pumping is one of the simplest and most appropriate uses for photovoltaic. From crop irrigation to stock watering to domestic uses, photovoltaic-powered pumping systems meet a broad range of water needs. Most of these systems have the added advantage of storing water for use when the sun is not shining, eliminating the need for batteries, enhancing simplicity and reducing overall system costs. Many people considering installing a solar water pumping system are put off by the expense. Viewing the expense over a period of 10 years, however, gives a better idea of the actual cost. By comparing installation costs (including labour), fuel costs, and maintenance costs over 10 years, you may find that solar is an economical choice. A solar-powered pumping system is generally in the same price range as a new windmill but tends to be more reliable and require less maintenance. A solar-powered pumping system generally costs more initially than a gas, diesel, or propane-powered generator but again requires far less maintenance and labour [4]. The cost of solarpumped water per cow ranged from $0.03 to $0.15 per day. The cost per gallon of water pumped ranged from $0.002 to $0.007 per gallon. Solar-Powered Water Pumping System Configurations There are two basic types of solar-powered water pumping systems, battery-coupled and direct-coupled. A variety of factors must be considered in determining the optimum system for a particular application [1]. Figure 3. Battery-coupled solar water pumping system [5] 8 Trakia Journal of Sciences, Vol. 3, No. 7, 2005
3 Battery-coupled water pumping systems consist of photovoltaic (PV) panels, charge control regulator, batteries, pump controller, pressure switch and tank and DC water pump (Figure 3). The electric current produced by PV panels during daylight hours charges the batteries, and the batteries in turn supply power to the pump anytime water is needed. The use of batteries spreads the pumping over a longer period of time by providing a steady operating voltage to the DC motor of the pump. Thus, during the night and low light periods, the system can still deliver a constant source of water for livestock. The use of batteries has its drawbacks. First, batteries can reduce the efficiency of the overall system because the operating voltage is dictated by the batteries and not the PV panels. Depending on their temperature and how well the batteries are charged, the voltage supplied by the batteries can be one to four volts lower than the voltage produced by the panels during maximum sunlight conditions. This reduced efficiency can be minimized with the use of an appropriate pump controller that boosts the battery voltage supplied to the pump. may drop by as much as 25 percent or more under these low-light conditions. During cloudy days, pump efficiency will drop off even more. To compensate for these variable flow rates, a good match between the pump and PV module(s) is necessary to achieve efficient operation of the system. Direct-coupled pumping systems are sized to store extra water on sunny days so it is available on cloudy days and at night. Water can be stored in a larger-than-needed watering tank or in a separate storage tank and then gravity-fed to smaller watering tanks. Water-storage capacity is important in this pumping system. Two to five days storage may be required, depending on climate and pattern of water usage. Storing water in tanks has its drawbacks. Considerable evaporation losses can occur if the water is stored in open tanks, while closed tanks big enough to store several days water supply can be expensive. Also, water in the storage tank may freeze during cold weather. Main solar powered stock watering system components A typical solar-powered stock watering system includes a solar array, pump, storage tank and controller [6], (Figure 5). Figure 4. Direct coupled solar pumping system [5] In direct-coupled pumping systems, electricity from the PV modules is sent directly to the pump, which in turn pumps water through a pipe to where it is needed (Figure 4). This system is designed to pump water only during the day. The amount of water pumped is totally dependent on the amount of sunlight hitting the PV panels and the type of pump. Because the intensity of the sun and the angle at which it strikes the PV panel changes throughout the day, the amount of water pumped by this system also changes throughout the day. For instance, during optimum sunlight periods (late morning to late afternoon on bright sunny days) the pump operates at or near 100 percent efficiency with maximum water flow. However, during early morning and late afternoon, pump efficiency Figure 5. A typical solar-powered stock watering system [1] Solar Modules Solar electric systems are sometimes called photovoltaic systems. The word photovoltaic is often abbreviated PV. Most solar panels, or modules, generate direct current (DC) electricity. A group of modules is called an array. Mounting Structures There are two ways to mount solar modules: either on a fixed structure or on a tracking structure. Fixed mounts are less expensive and tolerate higher wind loading but have to be Trakia Journal of Sciences, Vol. 3, No. 7,
4 carefully oriented so they face true south (not magnetic south). An array can easily be mounted on a trailer to make it portable. A tracking array follows the sun across the sky. A tracker will add at least $400 to $800 to the cost of a system, but can increase water volume by 25 percent or more in the summertime, compared to a fixed array. Pumps DC water pumps in general use one-third to one-half the energy of conventional AC (alternating current) pumps. DC pumps are classed as either displacement or centrifugal, and can be either submersible or surface types. Displacement pumps use diaphragms, vanes or pistons to seal water in a chamber and force it through a discharge outlet. Centrifugal pumps use a spinning impeller that adds energy to the water and pushes into the system, similar to a water wheel. Submersible pumps, placed down a well or sump, are highly reliable because they are not exposed to freezing temperatures, do not need special protection from the elements, and do not require priming. Surface pumps, located at or near the water surface, are used primarily for moving water through a pipeline. Some surface pumps can develop high heads and are suitable for moving water long distances or to high elevations. Storage Batteries are usually not recommended for solar-powered livestock watering systems because they reduce the overall efficiency of the system and add to the maintenance and cost. Instead of storing electricity in batteries, it is generally simpler and more economical to install 3 to 10 days worth of water storage. Controller or Inverter The pump controller protects the pump from high- or low-voltage conditions and maximizes the amount of water pumped in less than ideal light conditions. An AC pump requires an inverter, an electronic component that converts DC electricity from the solar panels into AC electricity to operate the pump. Other equipment A float switch turns a pump on and off when filling the stock tank. It s similar to the float in a toilet tank but is wired to the pump controller. Low water cut-off electrodes 10 Trakia Journal of Sciences, Vol. 3, No. 7, 2005 protect the pump from low water conditions in the well. Designing and Installing Systems Every pumping and stock-watering situation is unique. The average consumer is likely to be intimidated by the prospect of sizing and designing a solar pumping system, and most people need the assistance of a qualified solar dealer. In general dealers are eager to help. Many will provide a no-cost proposal based on a few simple questions that can be asked over the phone. If the price seems too high, you can easily get bids from other dealers. In order to size and design a system correctly, the dealer will want to know: how much water you need; when you need the water; whether your water source is a stream, pond, spring, or well; water available in gallons per minute (gpm); well depth; how far the water needs to be pumped, and with what elevation gain; water quality problems (e.g., silt or high mineral content) that may damage the pump; how much volume is available in storage tanks and how the tanks are arranged. Installing a solar pump is a complex task, combining elements of electrical work, plumbing, and heavy construction (often including earthmoving, pouring concrete, and welding). Written instructions are not always as complete as they should be. A backhoe or tractor with a front-end loader is almost a necessity for some larger projects. CONCLUSION Since the increase in price per increase in unit power output of a photovoltaic system is greater than that for a diesel, gasoline, or electric system, photovoltaic power is more cost competitive when the irrigation system with which it operates has a low total dynamic head. For this reason, photovoltaic power is more cost-competitive when used to power a micro irrigation system as compared to an overhead sprinkler system. Photovoltaic power for irrigation is cost-competitive with traditional energy sources for small, remote applications, if the total system design and utilisation timing is carefully considered and organised to use the solar energy as efficiently as possible. In the future, when the prices of
5 fossil fuels rise and the economic advantages of mass production reduce the peak watt cost of the photovoltaic cell, photovoltaic power will become more cost-competitive and more common. REFERENCES 1. Anonymous, Uni-solar, Solar energy produces catalog and brochures, USA, Anonymous, Solar Cells EİE Department of Research on electricity applications, Ankara, Turkey, Anonymous, 4. Eker, B and A.Akdogan, Protection methods of corrosion on solar systems, TMMOB Machinery Engineering Society, Mersin, Turkey, Anonymous, Solar Powered Livestock WateringSystems, 6. Helikson,H.J and Others, Pumping water for irrigation using solar energy, University of Florida, USA, Trakia Journal of Sciences, Vol. 3, No. 7,
Using Renewable Energy to Pump Water
L-5457 6/04 Using Renewable Energy to Pump Water Juan Enciso and Michael Mecke* You can save money and help reduce air pollution by using renewable energy sources such as solar or wind power for your home,
Solar Powered Pumping. Stock and domestic solutions
Solar Powered Pumping Stock and domestic solutions Reducing pumping costs Solar Photovoltaics (PV) is an ideal power source for stock and domestic pumping, providing free electricity once installed and
CUTES Solar Power System
Solar Power System Solar power systems provide a continuous, reliable power solution that's easily deployed, cost-effective and requires little maintenance. Solar Power Systems are complete, fully integrated
Solar-Powered Livestock Watering Systems
Agricultural Extension Service The University of Tennessee PB 1640 Solar-Powered Livestock Watering Systems Table of Contents Introduction How Does a Solar Water Pumping System Work? Photovoltaic Panels
An Introduction to Solar Energy. Applications for Agriculture. State of New York. George E. Pataki, Governor
An Introduction to Solar Energy Applications for Agriculture State of New York George E. Pataki, Governor NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Vincent A. DeIorio, Esq., Chairman George
32/1/2013-14/PVSE(Part-II) Ministry of New and Renewable Energy SPV Off Grid Division
Annexure-A 32/1/2013-14/PVSE(Part-II) Ministry of New and Renewable Energy SPV Off Grid Division Scheme: Installation of 10,000 nos. of solar photovoltaic water pumping systems for irrigation purpose implemented
Solar Powered Smart Irrigation System
Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 341-346 Research India Publications http://www.ripublication.com/aeee.htm Solar Powered Smart Irrigation System
PV (photovoltaic) Basics There are generally two types of PV systems. The first and easiest (though the least flexible) is a grid tie system where
PV (photovoltaic) Basics There are generally two types of PV systems. The first and easiest (though the least flexible) is a grid tie system where the power generated by the solar panel (panels) runs an
The Basics of Solar Power for Producing Electricity An excellent place to start for those just beginning. The basics of solar power: 1000 W/m²
The Basics of Solar Power for Producing Electricity Learn the essential basics of using solar power so you can understand your project. Planning your project begins with understanding the basics found
Solar Aquaponics Designing a 100% Solar Aquaponics Greenhouse
Solar Aquaponics Designing a 100% Solar Aquaponics Greenhouse Dan Chiras, Ph.D. Director, The Evergreen Institute Gerald, MO 63037 www.evergreeninstitute.org Topics Creating a 100% solar operation Efficiency
Solar power Availability of solar energy
Solar Energy Solar Energy is radiant energy produced in the sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called
SOLAR ENERGY APPLICATIONS FOR AGRICULTURE
2010 Cenresin Publications www.cenresin.org SOLAR ENERGY APPLICATIONS FOR AGRICULTURE Chikaire, J. Nnadi, F.N., Nwakwasi, R.N., Anyoha, N.O, Aja O.O., Onoh, P.A., and Nwachukwu C.A. Department of Agricultural
Advancement in Solar Panels and Improvement in Power Production with Indoor Application
Advancement in Solar Panels and Improvement in Power Production with Indoor Application C.Hemalatha 1, A.Archana 2, B.Jayaprakash 2, Parvathi Jayakrishnan 2 Assistant Professor, Dept. of EEE, Gnanamani
Solar Photovoltaic Frequently Asked Questions
Table of Contents 1. What is Solar Energy?... 2 2. What are the basic component of a Solar PV system?.2 3. What are the different types of PV systems ATL offers?...2 4. What is the difference between mono-crystalline
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM J.Godson 1,M.Karthick 2,T.Muthukrishnan 3,M.S.Sivagamasundari 4 Final year UG students, Department of EEE,V V College of Engineering,Tisaiyanvilai, Tirunelveli,
Try to answer all of these questions. Be prepared to share your answers with a partner, and with the rest of the class.
U1YESCO Module 21: Photovoltaic systems - 'Photovoltaic' (or PV for short) means turning light into electricity Solar PV systems provide electricity from sunlight They can provide power for a wide variety
Information sheet. 1) Solar Panels - Basics. 2) Solar Panels Functionality
1) Solar Panels - Basics A solar cell, sometimes called a photovoltaic cell, is a device that converts light energy into electrical energy. A single solar cell creates a very small amount of energy so
Photovoltaic System Technology
Photovoltaic System Technology Photovoltaic Cells What Does Photovoltaic Mean? Solar electricity is created using photovoltaic cells (or PV cells). The word photovoltaic is made up of two words: photo
Solar technology. A guide to solar power at utility scale. in Africa
Solar technology A guide to solar power at utility scale in Africa About solar power Solar electricity is generated using a free and abundant energy source the sun. In a single hour, the sun transmits
Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2
Solar and Wind Energy for Greenhouses A.J. Both 1 and Tom Manning 2 1 Associate Extension Specialist 2 Project Engineer NJ Agricultural Experiment Station Rutgers University 20 Ag Extension Way New Brunswick,
NBF. Electrical. www.nbfelectrical.com.au WHY GO SOLAR? NBF ELECTRICAL EXPLAINS WHY
Electrical NBF www.nbfelectrical.com.au WHY GO SOLAR? NBF ELECTRICAL EXPLAINS WHY contact NBF Electrical Nathan Fielke Mobile: 0433 145 587 Fax: (08) 8346 4044 ABN 75 536 121 682 CEC A3966385 PGE197475
Solar systems provide a range of flexible heating
f a c t s h e e t 7 Solar Power Production photo by Alex Nikada Why solar? Solar systems provide a range of flexible heating and electricity options and are particularly wellsuited to remote or off-grid
Impact of Reflectors on Solar Energy Systems
Impact of Reflectors on Solar Energy Systems J. Rizk, and M. H. Nagrial Abstract The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve
SUSTAINABLE TECHNOLOGY
SUSTAINABLE TECHNOLOGY GREEN JOBS OF THE FUTURE The World Leader in Teaching Equipment SOLAR TECHNOLOGY Back View The Model H-SPT-AC-1A Solar Photovoltaic Trainer offers the user a practical alternative
A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW
WE BRING GREEN SOLUTIONS TO YOU A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW Provided by A COOLER PLANET A Cooler Planet 1 The Complete Solar Guide WHY GO SOLAR? TOP FIVE FACTORS TO CONSIDER FOR ADDING
Pumping Water for Irrigation Using Solar Energy 1
Fact Sheet EES-63 November 1991 Pumping Water for Irrigation Using Solar Energy 1 H.J. Helikson, D.Z. Haman and C.D. Baird 2 This publication discusses photovoltaic technology and the cost of photovoltaic
Lab 10. Solar and Wind Power
1 Name Lab 10. Solar and Wind Power INTRODUCTION Sunlight can be used to create heat or generate electrical power. This is referred to as solar energy. It is a clean form of energy production, which doesn't
NASS Solar DC Pool Pumps
Technical Data Manual For NASS Models: NASS 500 NASS 900 NASS 1200 NASS 2200 X NASS 2200 JP15-14/600 JP31-19/1000 JP35-22/2000 JP60-13/2200 NASS Solar DC Pool Pumps NASS JP Type DC Pool Pumps For pumping,
Ministry of New and Renewable Energy. Jawaharlal Nehru National Solar Mission SOLAR PHOTOVOLTAIC WATER PUMPING SYSTEMS (2015-16)
Ministry of New and Renewable Energy Jawaharlal Nehru National Solar Mission SOLAR PHOTOVOLTAIC WATER PUMPING SYSTEMS (2015-16) I. INTRODUCTION A Solar Photovoltaic (SPV) Water Pumping System consists
Solar Matters III Teacher Page
Solar Matters III Teacher Page Solar Powered System - 2 Student Objective Given a photovoltaic system will be able to name the component parts and describe their function in the PV system. will be able
Additional Solar System Information and Resources
Additional Solar System Information and Resources Background information a. Roughly 400 schools in NJ already have solar systems, producing more than 91 MW, out of approximately 2500 K- 12 schools in NJ.
CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN
CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN 5.1 Introduction So far in the development of this research, the focus has been to estimate the available insolation at a particular location on the earth s surface
Solar energy is available as long as the sun shines, but its intensity depends on weather conditions and geographic
Solar Energy What is Solar Energy? The radiation from the sun gives our planet heat and light. All living things need energy from the sun to survive. More energy from sunlight strikes the earth in one
Energy'Saving,'Thermal'Comfort'and'Solar'Power'Information'Sheet'
Energy'Saving,'Thermal'Comfort'and'Solar'Power'Information'Sheet' We ve prepared this information sheet to help you to minimise energy consumption and energy costs while maximising thermal comfort at home.
Alternative Energy Resources
Alternative Energy Resources Energy Resource Advantages Disadvantages What are some renewable energy resources? A nonrenewable resource cannot be replaced in a reasonable amount of time. Fossil fuels such
ENERGY PRODUCING SYSTEMS
ENERGY PRODUCING SYSTEMS SOLAR POWER INTRODUCTION Energy from the sun falls on our planet on a daily basis. The warmth of the sun creates conditions on earth conducive to life. The weather patterns that
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER A willingness to install east-west orientated photovoltaic (PV) systems has lacked in the past. Nowadays, however, interest in installing
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL SOLAR TECHNOLOGY Photovoltaics Funding Options Solar Thermal Photovoltaics 1. What are they and how do they work? 2. The Solar
Solar Electric Power System Owner s Manual
GE Energy Solar Electric Power System Owner s Manual v4.2nmtr Safety...3 Documents...4 Congratulations...5 Principles of Operation...5 Measuring Your Power and Energy...7 Table of Contents Estimating Your
Solar Energy. Airports Going Green Aimee Fenlon
Solar Energy Airports Going Green Aimee Fenlon 1 Renewable vs. Non-Renewable Electrical Generation Renewables: Source Advantages Disadvantages Solar PV No CO2; Needs no Fuel Intermittent no power at night,
Using the sun to generate electricity
Using the sun to generate electricity Image source: http://www.globalsolarcenter.com/files/2009/04/commercial-solar.jpg Solar panels information sheet What are the benefits? How does it work? What is the
Actualization of Charging Direct Current Electric Fan with Solar Energy
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 01-05 Actualization of Charging Direct Current Electric
Stand Alone PV System Sizing Worksheet (example)
Stand Alone PV System Sizing Worksheet (example) Application: Stand alone camp system 7 miles off grid Location: Baton Rouge, La Latitude: 31.53 N A. Loads A1 Inverter efficiency 85 A2 Battery Bus voltage
Photo Kirklees IS SOLAR ENERGY FOR ME? A guide to going solar
Photo Kirklees IS SOLAR ENERGY FOR ME? A guide to going solar WHY SOLAR? Economics Solar energy can reduce bills, earn you money and protect you from rising energy prices. Solar is a free source of energy
SatyaPrasanthYalla, B.Ramesh, A.Ramesh
Autonomous Solar Powered Irrigation System SatyaPrasanthYalla, B.Ramesh, A.Ramesh *Asst.Prof, EEE Dept Pragati Engineering College Surampalem, A.P-533437 **Asst.Prof, EEE Dept Pragati Engineering College
PHOTOVOLTAIC SOLAR PANEL SYSTEMS
PHOTOVOLTAIC SOLAR PANEL SYSTEMS PHOTOVOLTAIC SOLAR ENERGY Photovoltaic (or PV systems) offer consumers the ability to generate electricity in a clean, quiet and reliable way. Because the source of light
DESIGN AND DEVELOPMENT OF UTILITY INTERFACE ADAPTIVE SOLAR POWER CONVERTER FOR WATER PUMPING SYSTEM IN INDIAN VILLAGES
DESIGN AND DEVELOPMENT OF UTILITY INTERFACE ADAPTIVE SOLAR POWER CONVERTER FOR WATER PUMPING SYSTEM IN INDIAN VILLAGES 1 S. N. Singh, 2 Snehlata Mishra & 3 Vandana Neha Tigga Department of Electronics
Solar Powered Cars. How does the Sun make the solar car wheels spin?
Solar Powered Cars How does the Sun make the solar car wheels spin? The purpose of the solar cell is to capture energy from the sun and to turn this energy into electrical energy. The electric motor then
Everything you wanted to know (in simple language) about
DYSON E S We s e t E R t h e N E R G V I C E Y S s t a n d a r d s Everything you wanted to know (in simple language) about Solar Energy but were too afraid to ask This is your perfect little ray of sunshine
INTRODUCTION WARNING S!!! VOC SHOULD BE BETWEEN 78 95. MUST NOT EXCEED 96 VOC USE DC CIRCUIT BREAKER/ISOLATOR BETWEEN SOLAR PANELS & CONTROLLER
INTRODUCTION Thank you for purchasing a WATERBOY pumping system. We set the standard for quality and economy in solar pumping. The WATERBOY range incorporates the best solar pump technologies that were
Photovoltaic Cell: Converting Light to Electricity
Photovoltaic Cell: Converting Light to Electricity Outcomes: 1. Understand that a photovoltaic cell produces DC voltage when light shines on its surface. 2. Understand that the electrical voltage produced
FOR KIDS INSIDE. HOW solar power. panels! AND MORE!
solar POWER E D U C A T I O N A L I N F O R M A T I O N FOR KIDS INSIDE HOW solar power WORKS ALL ABOUT solar panels! YOUR QUESTIONS ANSWERED games, ACTIVITIES AND MORE! harnessing the energy solar energy
Solar Cars. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Energy Law Natalie Boulahanis nboulahanis@kentlaw.
Solar Cars TIFF (Uncompressed) decompressor Energy Law Natalie Boulahanis [email protected] What are Solar Cars? TIFF (Uncompressed) decompressor What are Solar Cars? Solar cars are cars powered
Renewable Energy. SESE Curriculum Link: Content Strand Environmental Awareness and Care Strand Unit Environmental Awareness
key message: Fossil fuels are becoming scarce and are non-renewable. We need to use renewable sources of energy which are less damaging to the environment. SESE Curriculum Link: Content Strand Environmental
Station #1 Interpreting Infographs
Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles
FACTORS AFFECTING SOLAR POWER PRODUCTION EFFICIENCY
FACTORS AFFECTING SOLAR POWER PRODUCTION EFFICIENCY New Mexico Supercomputing Challenge Final Report April 1, 2015 Team 88 Miyamura High School Team Members: Ericson Gordo Nashat Khalaf Tyler Strangeowl
Solar Home System. User Manual. AEH-SHS01-10W2L Solar Home System 2 Lamps
Solar Home System User Manual AEHSHS0110W2L Solar Home System 2 Lamps All rights reserved Specifications subject to change without prior notice 2 Dear Customer, Thank you for purchasing Schneider Electric
Powering Your Home with Solar Energy
Powering Your Home with Solar Energy Putting Your Roof to Work The sun is waiting to turn your roof into its own miniature electrical power plant. Using solar energy to power your home not only lowers
PV Meets EV. David Katz AEE SOLAR FOUNDER AND CTO
David Katz AEE SOLAR FOUNDER AND CTO TYPES OF ELECTRIC VEHICLES Hybrid Electric Vehicles HEV s HEV s have been on the market for over 10 years. They have a battery powered electric motor coupled with a
DESIGN AND ANALYSIS OF A LOW COST SOLAR WATER PUMP FOR IRRIGATION IN BANGLADESH
Design and Analysis of a Low Cost Solar Water Pump for Irrigation in Bangladesh 98 DESIGN AND ANALYSIS OF A LOW COST SOLAR WATER PUMP FOR IRRIGATION IN BANGLADESH Shahidul I. Khan 1*, Md. Mizanur R. Sarkar
Why is it renewable? Well, the sun will always be there for us, and we can use as much of the sun s energy as we want and it will never run out.
6. Solar Energy So far we have been looking at how to reduce CO 2 emissions by cutting down on our use of fossil fuels. Now let s look at getting renewable energy from the sun. Why is it renewable? Well,
Design of Solar Power Based Water Pumping System
Design of Solar Power Based Water Pumping System M.Bala Raghav 1, K.Naga Bhavya 2, Y.Suchitra 3 GUIDE:G.Srinivasa Rao 4 1,2,3- B.Tech(Electrical & Electronics Engg), 4-Asst.Professor,Electrical & Electronics
I = V/r P = VI. I = P/V = 100 W / 6 V = 16.66 amps. What would happen if you use a 12-volt battery and a 12-volt light bulb to get 100 watts of power?
Volts, Amps and Ohms Measuring Electricity The three most basic units in electricity are voltage (V), current (I) and resistance (r). Voltage is measured in volts, current is measured in amps and resistance
Solar Power at Vernier Software & Technology
Solar Power at Vernier Software & Technology Having an eco-friendly business is important to Vernier. Towards that end, we have recently completed a two-phase project to add solar panels to our building
Electricity from PV systems how does it work?
Electricity from photovoltaic systems Bosch Solar Energy 2 Electricity from PV systems Electricity from PV systems how does it work? Photovoltaics: This is the name given to direct conversion of radiant
Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System
Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System Brooks Martner Lafayette, Colorado University of Toledo Spring 2015 PHYS 4400 - Principles and Varieties
Replacing Fuel With Solar Energy
Replacing Fuel With Solar Energy Analysis by Michael Hauke, RSA Engineering January 22, 2009 The Right Place for Solar Energy Harvesting solar energy at South Pole can reduce the fuel consumption needed
Solar Powered Charging Station
ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA. Solar Powered Charging Station Kondracki, Ryan; Collins, Courtney; Habbab, Khalid Faculty Advisor: Bijan Karimi,
Activity 9: Solar-Electric System PUZZLE
Section 4 Activities Activity 9: Solar-Electric System Puzzle ACTIVITY TYPE: Worksheet Overview: Introduces the basic components of the Solar 4R Schools (S4RS) solar-electric system and identifies the
ALL STAR ELECTRIC COMPANY 10,000 Trumbull SE, Suite #F Albuquerque, NM 87123 (505) 856-1010 voice & fax NM License 21880 www.allstarelec.
ALL STAR ELECTRIC COMPANY 10,000 Trumbull SE, Suite #F Albuquerque, NM 87123 (505) 856-1010 voice & fax NM License 21880 www.allstarelec.com On-Site Power System Specialists: Photovoltaics, Wind Turbine
Solar Energy Discovery Lab
Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy
A reasonable, new furnace (mid efficiency) has the following electrical requirements:
June 2007 Power Backup Systems for Your Home. As promised from a previous safety meeting, a couple of options to protect you home in the event of a power failure. These options are for the most serious,
Energy Saving Company Profile. Sustainable Development
Energy Saving Company Profile Sustainable Development Our Mission Statement Identification and Development of Products and Services that distinguish Barcode as a Premium Innovative Energy Service Provider
Understanding Your Solar-Powered Electric Vehicle. Home of the Sunray and Kudo Solar-Powered Electric Vehicles
Understanding Your Electric Vehicle Home of the Sunray and Kudo Electric Vehicles Most people in today s age have heard about solar power. And most everyone understands the benefits of conserving energy...from
Introduction To Remote (Off-Grid) Power Systems
Introduction To Remote (Off-Grid) Power Systems The Cost of a Remote Power System The cost of a remote power system depends primarily on how much electricity you need. The amount of electricity you need
SA Power Networks Planning for Solar PV? Customer information guide to network connected solar PV inverter systems
SA Power Networks Planning for Solar PV? Customer information guide to network connected solar PV inverter systems Contents Introduction 3 How solar PV power systems work 4 Solar modules 5 Is solar power
Catching the Sun The Physics of Solar Energy
VEA Bringing Learning to Life Program Support Notes Junior Middle Secondary Catching the Sun The Physics of Solar Energy 18 mins Teacher Notes by Amanda Bianco, B.Sc.Ed. Produced by VEA Pty Ltd Commissioning
NOTICE OF INTENT Department of Revenue Policy Services Division. Income Tax Credits for Wind or Solar Energy Systems (LAC: 61:I.
NOTICE OF INTENT Department of Revenue Policy Services Division Income Tax Credits for Wind or Solar Energy Systems (LAC: 61:I.1907) Under the authority of R.S. 47:287.785, R.S. 47:295, R.S. 47:1511, and
Fuzzy Irrigation Controller Using Solar Energy
Fuzzy Irrigation Controller Using Solar Energy Eltahir Hussan 1, Ali Hamouda 2, HassanChaib 3 Associate Professor, Dept. of ME, Engineering College, Sudan University, Sudan 1 Instrumentation Assessor,
Sustainable Schools 2009. Renewable Energy Technologies. Andrew Lyle RD Energy Solutions
Sustainable Schools 2009 Renewable Energy Technologies Andrew Lyle RD Energy Solutions RD Energy Solutions Energy efficiency and renewable energy consultancy Project management of installations Maintenance
SOLAR COOLING WITH ICE STORAGE
SOLAR COOLING WITH ICE STORAGE Beth Magerman Patrick Phelan Arizona State University 95 N. College Ave Tempe, Arizona, 8581 [email protected] [email protected] ABSTRACT An investigation is undertaken of a
Energy Technology. Marco Ordonez
Energy Technology Marco Ordonez Solar Power Solar Power The conversion of sunlight into electricity. Solar Power can be done directly using photovoltaic's, or indirectly using concentrated power. Concentrated
CONCEPTUALIZATION OF UTILIZING WATER SOURCE HEAT PUMPS WITH COOL STORAGE ROOFS
CONCEPTUALIZATION OF UTILIZING WATER SOURCE HEAT PUMPS WITH COOL STORAGE ROOFS by Dr. Bing Chen and Prof. John Bonsell Passive Solar Research Group University of Nebraska-Lincoln Omaha campus and Richard
Harnessing the Sun s Energy 1. Harnessing the Sun s Energy: Solar Power for Homes
Harnessing the Sun s Energy 1 Harnessing the Sun s Energy: Solar Power for Homes Dan Tong Cluster 2 July 2008 Harnessing the Sun s Energy 2 Harnessing the Sun s Energy: Solar Power for Homes The use of
SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE
AIRE 160 CIC Approval: 12/11/2008 BOT APPROVAL: 01/22/2009 STATE APPROVAL: EFFECTIVE TERM: SECTION I SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE SUBJECT AREA AND COURSE
Operational experienced of an 8.64 kwp grid-connected PV array
Hungarian Association of Agricultural Informatics European Federation for Information Technology in Agriculture, Food and the Environment Journal of Agricultural Informatics. 2013 Vol. 4, No. 2 Operational
Naps Solar Systems. for Demanding Environments
Naps Solar Systems for Demanding Environments Naps Solar Systems The Sol Solar Electricity for Feeding the Grid In a grid-connected solar electricity system, DC electricity produce by the solar cells is
Solar Car. c t. r u. i o. n s. i n s t
Solar Car i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms around the US. Our
VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants?
VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001 Solar Power Photovoltaics or Solar Thermal Power Plants? Volker Quaschning 1), Manuel Blanco Muriel 2) 1) DLR, Plataforma Solar de Almería,
When Do Solar Electric & Utility Back-Up Systems Make Sense?
When Do Solar Electric & Utility Back-Up Systems Make Sense? Oil & Gas Industry Presentation Proprietary Information 2010 SunWize Technologies When Do Solar Electric and Utility Back-Up Systems Make Sense?
SOLARIS ENERGY SOLUTIONS
Solaris Energy Solutions is started in 2012 and successfully with rapid expanding in Distribution facility at Hyderabad, India. SES is preferred sales and marketing of Solar Home Lighting, Solar Water
Marketing Methodology of Solar PV Power Packs
Marketing Methodology of Solar PV Power Packs Somasekhar. G, Bharathi.G, and GirijaEureka.M* Department of Management Studies Madanapalle Institute of Technology & Science Post Box No: 14, Angallu, Madanapalle-
PERFORMANCE COMPARISON OF THE SUN TRACKING SYSTEM AND FIXED SYSTEM IN THE APPLICATION OF HEATING AND LIGHTING
PERFORMANCE COMPARISON OF THE SUN TRACKING SYSTEM AND FIXED SYSTEM IN THE APPLICATION OF HEATING AND LIGHTING Sabir Rustemli*¹ Electrical and Electronics Engineering Department, Yuzuncu Yil University,
MAINTENANCE OF WHEELMOVE IRRIGATION SYSTEMS
MAINTENANCE OF WHEELMOVE IRRIGATION SYSTEMS F. Richard Beard, Agricultural Equipment, Structures and Electricity Robert W. Hill, Biological & Irrigation Engineering Boyd Kitchen, Uintah County Extension
Coslight Hybrid Power System with Solar
Coslight Hybrid Power System with Solar (Technical Manual Draft V1.0) Harbin Coslight Power Co., Ltd. Contents I. Overview... 2 Characteristics of System with Solar 2 II. Composition of System with Solar......
