DAME Astrophysical DAta Mining Mining & & Exploration Exploration GRID
|
|
|
- Jewel Agnes Fowler
- 9 years ago
- Views:
Transcription
1 DAME Astrophysical DAta Mining & Exploration on GRID M. Brescia S. G. Djorgovski G. Longo & DAME Working Group Istituto Nazionale di Astrofisica Astronomical Observatory of Capodimonte, Napoli Department of Physics Sciences, Università Federico II, Napoli California Institute of Technology, Pasadena
2 The Problem Astrophysics communities share the same basic requirement: dealing with massive distributed datasets that they want to integrate together with services In this sense Astrophysics follows same evolution of other scientific disciplines: the growth of data is reaching historic proportions while data doubles every year, useful information seems to be decreasing, creating a growing gap between the generation of data and our understanding of it Required understanding include knowing how to access, retrieve, analyze, mine and integrate data from disparate sources But on the other hand, it is obvious that a scientist could not and does not want to become an expert in its science and in Computer Science or in the fields of algorithms and ICT In most cases (for mean square astronomers) algorithms for data processing and analysis are already available to the end user (sometimes himself has implemented over the years, private routines/pipelines to solve specific problems). These tools often are not scalable to distributed computing environments or are too difficult to be migrated on a GRID infrastructure
3 A Solution So far, our idea is to provide: User friendly GRID scientific gateway to easy the access, exploration, processing and understanding of the massive data sets federated under standards according Vobs (Virtual Observatory) rules There are important treasons why toadopt texisting iti Vb Vobsstandards: d long term interoperabilityof data, available e infrastructure support for data handling aspect in the future projects Standards for data representation are not sufficient. This useful feature needs to be extended to data analysis and mining methods and algorithms standardization process. It basically means to define standards in terms of ontologies and well defined taxonomy of functionalities to be applied in the astrophysical use cases The natural computing environment for the MDS processing is GRID, but again, we need to define standards in the development of higher level interfaces, in order to: isolate end user (astronomer) from technical details of VObs and GRID use and configuration; make it easier to combine existing services and resources into experiments;
4 The Required Approach At the end, to define, design andimplement all these standards, a new scientific discipline profile arises: the ASTROINFORMATICS, whose paradigm is based on the following scheme Unsupervised methods Associative networks Clustering Principal components Self Organizing Maps Data Sources Images Catalogs Time series Simulations Information Extracted Shapes & Patterns Science Metadata Distributions & Frequencies Model Parameters KDD Tools New Knowledge or causal connections between physical events within the science domain Supervised methods Neural Networks Bayesian Networks Support Vector Machines
5 The new science field Any observed (simulated) datum p defines a point (region) in a subset of R N Example: experimental setup (spatial and spectral resolution, limiting mag, limiting surface brightness, etc.) parameters RA and dec λ, time fluxes polarization The computational cost of DM: N = no. of data vectors, D = no. of data dimensions K = no. of clusters chosen, K max = max no. of clusters tried I = no. of iterations, M = no. of Monte Carlo trials/partitions K means: K N I D Expectation Maximization: K N I D 2 Monte Carlo Cross Validation: M K max2 N I D 2 Correlations ~ N log N or N 2, ~ D k (k 1) Likelihood, Bayesian ~ N m (m 3), ~ D k (k 1) SVM > ~ (NxD) 3 ASTROINFORMATICS (emerging field) N points in a DxK dimensional parameter space: N >10 9 D>>100 K>10
6 The SCoPE GRID Infrastructure SCoPE : Sistema Cooperativo distribuito ad alte Prestazioni per Elaborazioni Scientifiche Multidisciplinari (High Performance Cooperative distributed system for multidisciplinary scientific applications) Objectives: Innovative and original software for fundamental scientific research High performance Data & Computing Center for multidisciplinary applications Grid infrastructure and middleware INFNGRID LCG/gLite Compatibility with EGEE middleware Interoperability with the other three PON 1575 projects and SPACI in GRISU Integration in the Italian and European Gid Grid Infrastructure CAMPUS GRID ASTRONOMICAL MEDICINE OBSERVATORY CSI ENGINEERING ENGINEERING Fiber Optic Already Connected Work in Progress The SCoPE Data Center 33 Racks (of which 10 for Tier2 ATLAS) 304 Servers for a total of procs 170 TeraByte storage 5 remote sites (2 in progress)
7 What is DAME DAME is a joint effort between University Federico II, INAF OACN and Caltech aimed at implementing (as web application) a suite (scientific gateway) of data analysis, exploration, mining and visualization tools, on top of virtualized distributed computing environment. na it/ Technical and management info Documents Science cases Web application PROTOTYPE
8 What is DAME In parallel with the Suite R&D process, all data processing algorithms (foreseen to be plugged in) have been massively tested on real astrophysical cases. Technicaland and management info Documents Science cases Also, under design a web application for data exploration on globular clusters (VOGCLUSTERS)
9 DAME Work breakdown Data (storage) Semantic construction of BoKs BoK Models & Algorithms Transparent computing Infrastructure (GRID, CLOUD, etc.) PCA MLP SVM SOM PPS MLPGA NEXT Application DAME engine Catalogs and metadata results
10 user The DAME architecture FRONT END WEB APPL. GUI XML Restful, Stateless Web Service experiment data, working FRAMEWORK flow trigger and supervision WEB SERVICE Servlets based on XML Suite CTRL protocol DRIVER FILESYSTEM & HARDWARE I/F Library CALL HW env virtualization; Storage + Execution LIB Data format conversion Client server AJAX (Asynchronous JAva Xml) based; interactive web app based on Javascript (GWT EXT); servlet XML CALL REGISTRY & DATABASE & EXPERIMENT INFORMATION DATA MINING MODELS Model Functionality LIBRARY RUN regression MLP Stand Alone GRID CLOUD INFO SESSIONS EXPERIMENTS
11 Two ways to use DAME -1 Simple user FRONT END WEB APPL. GUI DATA MINING MODELS Model Functionality LIBRARY RUN regression FRAMEWORK WEB SERVICE Suite CTRL servlet MLP DRIVER FILESYSTEM & HARDWARE I/F REGISTRY & DATABASE & EXPERIMENT INFORMATION Stand Alone GRID CLOUD INFO SESSIONS EXPERIMENTS
12 Two ways to use DAME -2 FRONT END WEB APPL. GUI DATA MINING MODELS Model Functionality LIBRARY RUN regression developer user FRAMEWORK WEB SERVICE Suite CTRL DMPLUGIN MLP DRIVER FILESYSTEM & HARDWARE I/F REGISTRY & DATABASE & EXPERIMENT INFORMATION Stand Alone GRID CLOUD INFO SESSIONS EXPERIMENTS
13 Two ways to use DAME -2 FRONT END WEB APPL. GUI DATA MINING MODELS Model Functionality LIBRARY RUN regression developer user FRAMEWORK WEB SERVICE Suite CTRL DMPLUGIN MLP DRIVER FILESYSTEM & HARDWARE I/F REGISTRY & DATABASE & EXPERIMENT INFORMATION Stand Alone GRID CLOUD INFO SESSIONS EXPERIMENTS
14 DAME on GRID Scientific Gateway GRID CE DM Models Job Execution The two DR component processes DR Execution DR Storage make GRID environment embedded to other components GRID SE User & Experiment tdata Archives REDB Logical DB for user and working session archive management XML XML FW GRID UI FE Browser Requests (registration, accounting, experiment configuration and submission) Client
15 Coming soon now: suite deployed on SCoPE GRID, currently under testing; package under test (beta SW & Manual already available for download); End of October 2009: beta version of Suite and released to the community; Web applicationprototype Technicaland and management info Documents Science cases
How To Use Game To Learn From Data
Astronomical data Mining DAMEWARE and beyond Giuseppe Longo Università Federico II Napoli (Italy) M. Brescia INAF OAC G.S. Djorgovski Caltech S. Cavuoti INAF UFII & the DAMEWARE people Astroinformatics
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization Ángela Blanco Universidad Pontificia de Salamanca [email protected] Spain Manuel Martín-Merino Universidad
Instruments in Grid: the New Instrument Element
Instruments in Grid: the New Instrument Element C. Vuerli (1,2), G. Taffoni (1,2), I. Coretti (1), F. Pasian (1,2), P. Santin (1), M. Pucillo (1) (1) INAF Astronomical Observatory of Trieste (2) INAF Informative
Using the Grid for the interactive workflow management in biomedicine. Andrea Schenone BIOLAB DIST University of Genova
Using the Grid for the interactive workflow management in biomedicine Andrea Schenone BIOLAB DIST University of Genova overview background requirements solution case study results background A multilevel
VisIVO, an open source, interoperable visualization tool for the Virtual Observatory
Claudio Gheller (CINECA) 1, Ugo Becciani (OACt) 2, Marco Comparato (OACt) 3 Alessandro Costa (OACt) 4 VisIVO, an open source, interoperable visualization tool for the Virtual Observatory 1: [email protected]
VisIVO, a VO-Enabled tool for Scientific Visualization and Data Analysis: Overview and Demo
Claudio Gheller (CINECA), Marco Comparato (OACt), Ugo Becciani (OACt) VisIVO, a VO-Enabled tool for Scientific Visualization and Data Analysis: Overview and Demo VisIVO: Visualization Interface for the
Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo
Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Astrophysics with Terabyte Datasets. Alex Szalay, JHU and Jim Gray, Microsoft Research
Astrophysics with Terabyte Datasets Alex Szalay, JHU and Jim Gray, Microsoft Research Living in an Exponential World Astronomers have a few hundred TB now 1 pixel (byte) / sq arc second ~ 4TB Multi-spectral,
Exploring Oracle E-Business Suite Load Balancing Options. Venkat Perumal IT Convergence
Exploring Oracle E-Business Suite Load Balancing Options Venkat Perumal IT Convergence Objectives Overview of 11i load balancing techniques Load balancing architecture Scenarios to implement Load Balancing
Web Cloud Architecture
Web Cloud Architecture Introduction to Software Architecture Jay Urbain, Ph.D. [email protected] Credits: Ganesh Prasad, Rajat Taneja, Vikrant Todankar, How to Build Application Front-ends in a Service-Oriented
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
The Data Grid: Towards an Architecture for Distributed Management and Analysis of Large Scientific Datasets
The Data Grid: Towards an Architecture for Distributed Management and Analysis of Large Scientific Datasets!! Large data collections appear in many scientific domains like climate studies.!! Users and
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Client/server is a network architecture that divides functions into client and server
Page 1 A. Title Client/Server Technology B. Introduction Client/server is a network architecture that divides functions into client and server subsystems, with standard communication methods to facilitate
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Apache Hama Design Document v0.6
Apache Hama Design Document v0.6 Introduction Hama Architecture BSPMaster GroomServer Zookeeper BSP Task Execution Job Submission Job and Task Scheduling Task Execution Lifecycle Synchronization Fault
THE CCLRC DATA PORTAL
THE CCLRC DATA PORTAL Glen Drinkwater, Shoaib Sufi CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK. E-mail: [email protected], [email protected] Abstract: The project aims
Knowledge Discovery from patents using KMX Text Analytics
Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs [email protected] Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers
A Collaborative Approach to Building Personal Knowledge Networks or How to Build a Knowledge Advantage Machine?
A Collaborative Approach to Building Personal Knowledge Networks or How to Build a Knowledge Advantage Machine? Ramana Reddy SIP Lab, CSEE, West Virginia University Morgantown, WV, USA [email protected]
Learn Oracle WebLogic Server 12c Administration For Middleware Administrators
Wednesday, November 18,2015 1:15-2:10 pm VT425 Learn Oracle WebLogic Server 12c Administration For Middleware Administrators Raastech, Inc. 2201 Cooperative Way, Suite 600 Herndon, VA 20171 +1-703-884-2223
01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.
(International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models
DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2
DATA SCIENCE CURRICULUM Before class even begins, students start an at-home pre-work phase. When they convene in class, students spend the first eight weeks doing iterative, project-centered skill acquisition.
How To Retire A Legacy System From Healthcare With A Flatirons Eas Application Retirement Solution
EAS Application Retirement Case Study: Health Insurance Introduction A major health insurance organization contracted with Flatirons Solutions to assist them in retiring a number of aged applications that
Building Semantic Content Management Framework
Building Semantic Content Management Framework Eric Yen Computing Centre, Academia Sinica Outline What is CMS Related Work CMS Evaluation, Selection, and Metrics CMS Applications in Academia Sinica Concluding
IT Infrastructure and Emerging Technologies
IT Infrastructure and Emerging Technologies Content IT Infrastructure Infrastructure Components Contemporary Hardware Platform Trends Contemporary Software Platform Trends Management Issues 2 IT infrastructure
Computational Science and Informatics (Data Science) Programs at GMU
Computational Science and Informatics (Data Science) Programs at GMU Kirk Borne George Mason University School of Physics, Astronomy, & Computational Sciences http://spacs.gmu.edu/ Outline Graduate Program
Massive Cloud Auditing using Data Mining on Hadoop
Massive Cloud Auditing using Data Mining on Hadoop Prof. Sachin Shetty CyberBAT Team, AFRL/RIGD AFRL VFRP Tennessee State University Outline Massive Cloud Auditing Traffic Characterization Distributed
Cloud application for water resources modeling. Faculty of Computer Science, University Goce Delcev Shtip, Republic of Macedonia
Cloud application for water resources modeling Assist. Prof. Dr. Blagoj Delipetrev 1, Assist. Prof. Dr. Marjan Delipetrev 2 1 Faculty of Computer Science, University Goce Delcev Shtip, Republic of Macedonia
What Is the Java TM 2 Platform, Enterprise Edition?
Page 1 de 9 What Is the Java TM 2 Platform, Enterprise Edition? This document provides an introduction to the features and benefits of the Java 2 platform, Enterprise Edition. Overview Enterprises today
Amit Sheth & Ajith Ranabahu, 2010. Presented by Mohammad Hossein Danesh
Amit Sheth & Ajith Ranabahu, 2010 Presented by Mohammad Hossein Danesh 1 Agenda Introduction to Cloud Computing Research Motivation Semantic Modeling Can Help Use of DSLs Solution Conclusion 2 3 Motivation
Learning from Big Data in
Learning from Big Data in Astronomy an overview Kirk Borne George Mason University School of Physics, Astronomy, & Computational Sciences http://spacs.gmu.edu/ From traditional astronomy 2 to Big Data
NASA s Big Data Challenges in Climate Science
NASA s Big Data Challenges in Climate Science Tsengdar Lee, Ph.D. High-end Computing Program Manager NASA Headquarters Presented at IEEE Big Data 2014 Workshop October 29, 2014 1 2 7-km GEOS-5 Nature Run
CHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION 1.1 Background The command over cloud computing infrastructure is increasing with the growing demands of IT infrastructure during the changed business scenario of the 21 st Century.
Master of Science in Health Information Technology Degree Curriculum
Master of Science in Health Information Technology Degree Curriculum Core courses: 8 courses Total Credit from Core Courses = 24 Core Courses Course Name HRS Pre-Req Choose MIS 525 or CIS 564: 1 MIS 525
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
zen Platform technical white paper
zen Platform technical white paper The zen Platform as Strategic Business Platform The increasing use of application servers as standard paradigm for the development of business critical applications meant
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup
Network Anomaly Detection A Machine Learning Perspective Dhruba Kumar Bhattacharyya Jugal Kumar KaKta»C) CRC Press J Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor
Data Mining Challenges and Opportunities in Astronomy
Data Mining Challenges and Opportunities in Astronomy S. G. Djorgovski (Caltech) With special thanks to R. Brunner, A. Szalay, A. Mahabal, et al. The Punchline: Astronomy has become an immensely datarich
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Google Web Toolkit (GWT) Architectural Impact on Enterprise Web Application
Google Web Toolkit (GWT) Architectural Impact on Enterprise Web Application First Generation HTTP request (URL or Form posting) W HTTP response (HTML Document) W Client Tier Server Tier Data Tier Web CGI-Scripts
Cluster, Grid, Cloud Concepts
Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of
An Experimental Workflow Development Platform for Historical Document Digitisation and Analysis
An Experimental Workflow Development Platform for Historical Document Digitisation and Analysis Clemens Neudecker, Mustafa Dogan, Sven Schlarb (IMPACT) Paolo Missier, Shoaib Sufi, Alan Williams, Katy Wolstencroft
How To Teach Data Science
The Past, Present, and Future of Data Science Education Kirk Borne @KirkDBorne http://kirkborne.net George Mason University School of Physics, Astronomy, & Computational Sciences Outline Research and Application
Figure 1: Architecture of a cloud services model for a digital education resource management system.
World Transactions on Engineering and Technology Education Vol.13, No.3, 2015 2015 WIETE Cloud service model for the management and sharing of massive amounts of digital education resources Binwen Huang
The PACS Software System. (A high level overview) Prepared by : E. Wieprecht, J.Schreiber, U.Klaas November,5 2007 Issue 1.
The PACS Software System (A high level overview) Prepared by : E. Wieprecht, J.Schreiber, U.Klaas November,5 2007 Issue 1.0 PICC-ME-DS-003 1. Introduction The PCSS, the PACS ICC Software System, is the
A Service for Data-Intensive Computations on Virtual Clusters
A Service for Data-Intensive Computations on Virtual Clusters Executing Preservation Strategies at Scale Rainer Schmidt, Christian Sadilek, and Ross King [email protected] Planets Project Permanent
2012 LABVANTAGE Solutions, Inc. All Rights Reserved.
LABVANTAGE Architecture 2012 LABVANTAGE Solutions, Inc. All Rights Reserved. DOCUMENT PURPOSE AND SCOPE This document provides an overview of the LABVANTAGE hardware and software architecture. It is written
The CMS analysis chain in a distributed environment
The CMS analysis chain in a distributed environment on behalf of the CMS collaboration DESY, Zeuthen,, Germany 22 nd 27 th May, 2005 1 The CMS experiment 2 The CMS Computing Model (1) The CMS collaboration
CYBERINFRASTRUCTURE FRAMEWORK FOR 21 st CENTURY SCIENCE AND ENGINEERING (CIF21)
CYBERINFRASTRUCTURE FRAMEWORK FOR 21 st CENTURY SCIENCE AND ENGINEERING (CIF21) Goal Develop and deploy comprehensive, integrated, sustainable, and secure cyberinfrastructure (CI) to accelerate research
IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications
Open System Laboratory of University of Illinois at Urbana Champaign presents: Outline: IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications A Fine-Grained Adaptive
Example application (1) Telecommunication. Lecture 1: Data Mining Overview and Process. Example application (2) Health
Lecture 1: Data Mining Overview and Process What is data mining? Example applications Definitions Multi disciplinary Techniques Major challenges The data mining process History of data mining Data mining
Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University. Xu Liang ** University of California, Berkeley
P1.1 AN INTEGRATED DATA MANAGEMENT, RETRIEVAL AND VISUALIZATION SYSTEM FOR EARTH SCIENCE DATASETS Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University Xu Liang ** University
How to Build an E-Commerce Application using J2EE. Carol McDonald Code Camp Engineer
How to Build an E-Commerce Application using J2EE Carol McDonald Code Camp Engineer Code Camp Agenda J2EE & Blueprints Application Architecture and J2EE Blueprints E-Commerce Application Design Enterprise
OBIEE 11g Analytics Using EMC Greenplum Database
White Paper OBIEE 11g Analytics Using EMC Greenplum Database - An Integration guide for OBIEE 11g Windows Users Abstract This white paper explains how OBIEE Analytics Business Intelligence Tool can be
Data analysis of L2-L3 products
Data analysis of L2-L3 products Emmanuel Gangler UBP Clermont-Ferrand (France) Emmanuel Gangler BIDS 14 1/13 Data management is a pillar of the project : L3 Telescope Caméra Data Management Outreach L1
White Paper: 1) Architecture Objectives: The primary objective of this architecture is to meet the. 2) Architecture Explanation
White Paper: 1) Architecture Objectives: The primary objective of this architecture is to meet the following requirements (SLAs). Scalability and High Availability Modularity and Maintainability Extensibility
High Productivity Data Processing Analytics Methods with Applications
High Productivity Data Processing Analytics Methods with Applications Dr. Ing. Morris Riedel et al. Adjunct Associate Professor School of Engineering and Natural Sciences, University of Iceland Research
Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University [email protected]
Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University [email protected] 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian
Analysis and Research of Cloud Computing System to Comparison of Several Cloud Computing Platforms
Volume 1, Issue 1 ISSN: 2320-5288 International Journal of Engineering Technology & Management Research Journal homepage: www.ijetmr.org Analysis and Research of Cloud Computing System to Comparison of
Visualisation in the Google Cloud
Visualisation in the Google Cloud by Kieran Barker, 1 School of Computing, Faculty of Engineering ABSTRACT Providing software as a service is an emerging trend in the computing world. This paper explores
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Making the Most of Missing Values: Object Clustering with Partial Data in Astronomy
Astronomical Data Analysis Software and Systems XIV ASP Conference Series, Vol. XXX, 2005 P. L. Shopbell, M. C. Britton, and R. Ebert, eds. P2.1.25 Making the Most of Missing Values: Object Clustering
EDG Project: Database Management Services
EDG Project: Database Management Services Leanne Guy for the EDG Data Management Work Package EDG::WP2 [email protected] http://cern.ch/leanne 17 April 2002 DAI Workshop Presentation 1 Information in
The Impact of PaaS on Business Transformation
The Impact of PaaS on Business Transformation September 2014 Chris McCarthy Sr. Vice President Information Technology 1 Legacy Technology Silos Opportunities Business units Infrastructure Provisioning
KNOWLEDGE GRID An Architecture for Distributed Knowledge Discovery
KNOWLEDGE GRID An Architecture for Distributed Knowledge Discovery Mario Cannataro 1 and Domenico Talia 2 1 ICAR-CNR 2 DEIS Via P. Bucci, Cubo 41-C University of Calabria 87036 Rende (CS) Via P. Bucci,
ENTERPRISE DOCUMENTS & RECORD MANAGEMENT
ENTERPRISE DOCUMENTS & RECORD MANAGEMENT DOCWAY PLATFORM ENTERPRISE DOCUMENTS & RECORD MANAGEMENT 1 DAL SITO WEB OLD XML DOCWAY DETAIL DOCWAY Platform, based on ExtraWay Technology Native XML Database,
CUMULUX WHICH CLOUD PLATFORM IS RIGHT FOR YOU? COMPARING CLOUD PLATFORMS. Review Business and Technology Series www.cumulux.com
` CUMULUX WHICH CLOUD PLATFORM IS RIGHT FOR YOU? COMPARING CLOUD PLATFORMS Review Business and Technology Series www.cumulux.com Table of Contents Cloud Computing Model...2 Impact on IT Management and
Data Lab System Architecture
Data Lab System Architecture Data Lab Context Data Lab Architecture Astronomer s Desktop Web Page Cmdline Tools Legacy Apps User Code User Mgmt Data Lab Ops Monitoring Presentation Layer Authentication
Data Center Virtualization and Cloud QA Expertise
Data Center Virtualization and Cloud QA Expertise Highlights Broad Functional QA Experience Deep understanding of Switching and Routing Protocols Strong hands on experience in multiple hyper-visors like
Google App Engine f r o r J av a a v a (G ( AE A / E J / )
Google App Engine for Java (GAE/J) What is Google App Engine? Google offers a cloud computing infrastructure calledgoogle App Engine(App Engine) for creating and running web applications. App Engine allows
SAP HANA Data Center Intelligence - Overview Presentation
SAP HANA Data Center Intelligence - Overview Presentation August, 2014 Customer Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase decision.
Journal of Global Research in Computer Science RESEARCH SUPPORT SYSTEMS AS AN EFFECTIVE WEB BASED INFORMATION SYSTEM
Volume 2, No. 5, May 2011 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info RESEARCH SUPPORT SYSTEMS AS AN EFFECTIVE WEB BASED INFORMATION SYSTEM Sheilini
(Possible) HEP Use Case for NDN. Phil DeMar; Wenji Wu NDNComm (UCLA) Sept. 28, 2015
(Possible) HEP Use Case for NDN Phil DeMar; Wenji Wu NDNComm (UCLA) Sept. 28, 2015 Outline LHC Experiments LHC Computing Models CMS Data Federation & AAA Evolving Computing Models & NDN Summary Phil DeMar:
Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.
Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,
