CS440/ECE448: Artificial Intelligence. Course website:
|
|
|
- Benjamin Hutchinson
- 9 years ago
- Views:
Transcription
1 CS440/ECE448: Artificial Intelligence Course website:
2 Last time: What is AI? Definitions from Chapter 1 of the textbook: 1. Thinking humanly 2. Acting humanly 3. Thinking rationally 4. Acting rationally
3 Humans vs. rationality
4 AI: History and themes Image source
5 What are some successes of AI today?
6 IBM Watson and cognitive computing 2010 NY Times article, trivia demo February 2011: IBM Watson wins on Jeopardy Recently: Watson Analytics, social services, personal shopping, health care
7 Self-driving cars driverless-cars-are-further-away-than-you-think/ Google plans to assemble a test fleet of 100 electric two-seat prototypes in 2015 Uber employee of the future: The self-driving car
8 Speech and natural language Instant translation with Word Lens Have a conversation with Google Translate
9 Vision Computer Eyesight Gets a Lot More Accurate, NY Times Bits blog, August 18, 2014 Building A Deeper Understanding of Images, Google Research Blog, September 5, 2014 Baidu caught gaming recent supercomputer performance test, Engadget, June 3, 2015
10 Games 1997: IBM s Deep Blue defeats the reigning world chess champion Garry Kasparov 1996: Kasparov Beats Deep Blue I could feel I could smell a new kind of intelligence across the table. 1997: Deep Blue Beats Kasparov Deep Blue hasn't proven anything. 2007: Checkers is solved Though checkers programs had been beating the best human players for at least a decade before then 2014: Heads-up limit Texas Hold-em poker is solved First game of imperfect information 2015: Deep reinforcement learning beats humans at classic arcade games
11 Mathematics In 1996, a computer program written by researchers at Argonne National Laboratory proved a mathematical conjecture unsolved for decades NY Times story: [The proof] would have been called creative if a human had thought of it Mathematical software:
12 Logistics, scheduling, planning During the 1991 Gulf War, US forces deployed an AI logistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people NASA s Remote Agent software operated the Deep Space 1 spacecraft during two experiments in May 1999 In 2004, NASA introduced the MAPGEN system to plan the daily operations for the Mars Exploration Rovers
13 Robotics Mars rovers Autonomous vehicles DARPA Grand Challenge Self-driving cars Autonomous helicopters Robot soccer RoboCup Personal robotics Humanoid robots Robotic pets Personal assistants?
14 DARPA Robotics Challenge (2015) a15907/best-falls-from-darpa-robot-challenge/
15 Towel-folding robot YouTube Video J. Maitin-Shepard, M. Cusumano-Towner, J. Lei and P. Abbeel, Cloth Grasp Point Detection based on Multiple-View Geometric Cues with Application to Robotic Towel Folding, ICRA 2010 More clothes folding
16 Towel-folding robot
17 Origins of AI: Early excitement 1940s First model of a neuron (W. S. McCulloch & W. Pitts) Hebbian learning rule Cybernetics 1950s Turing Test Perceptrons (F. Rosenblatt) Computer chess and checkers (C. Shannon, A. Samuel) Machine translation (Georgetown-IBM experiment) Theorem provers (A. Newell and H. Simon, H. Gelernter and N. Rochester) 1956 Dartmouth meeting: Artificial Intelligence adopted
18 Herbert Simon, 1957 It is not my aim to surprise or shock you but there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until in a visible future the range of problems they can handle will be coextensive with the range to which human mind has been applied. More precisely: within 10 years a computer would be chess champion, and an important new mathematical theorem would be proved by a computer. Prediction came true but 40 years later instead of 10
19
20 Harder than originally thought 1966: Eliza chatbot (Weizenbaum) mother Tell me more about your family I wanted to adopt a puppy, but it s too young to be separated from its mother. 1954: Georgetown-IBM experiment Completely automatic translation of more than sixty Russian sentences into English Only six grammar rules, 250 vocabulary words, restricted to organic chemistry Promised that machine translation would be solved in three to five years (press release) Automatic Language Processing Advisory Committee (ALPAC) report (1966): machine translation has failed The spirit is willing but the flesh is weak. The vodka is strong but the meat is rotten.
21 Blocks world (1960s 1970s) Larry Roberts, MIT, 1963???
22 History of AI: Taste of failure 1940s 1950s First model of a neuron (W. S. McCulloch & W. Pitts) Hebbian learning rule Cybernetics Turing Test Perceptrons (F. Rosenblatt) Computer chess and checkers (C. Shannon, A. Samuel) Machine translation (Georgetown-IBM experiment) Theorem provers (A. Newell and H. Simon, H. Gelernter and N. Rochester) Late 1960s Machine translation deemed a failure Neural nets deprecated (M. Minsky and S. Papert, 1969)* Early 1970s Intractability is recognized as a fundamental problem Late 1970s The first AI Winter *A sociological study of the official history of the perceptrons controversy
23 History of AI to the present day 1980s Late 1980s- Early 1990s Mid-1980s Expert systems boom Expert system bust; the second AI winter Neural networks and back-propagation Late 1980s Probabilistic reasoning on the ascent 1990s-Present Machine learning everywhere Big Data Deep Learning History of AI on Wikipedia AAAI Timeline Building Smarter Machines: NY Times Timeline
24 What accounts for recent successes in AI? Faster computers The IBM 704 vacuum tube machine that played chess in 1958 could do about 50,000 calculations per second Deep Blue could do 50 billion calculations per second a million times faster! Dominance of statistical approaches, machine learning Big data Crowdsourcing
25
26
27 Historical themes Boom and bust cycles Periods of (unjustified) optimism followed by periods of disillusionment and reduced funding Silver bulletism (Levesque, 2013): The tendency to believe in a silver bullet for AI, coupled with the belief that previous beliefs about silver bullets were hopelessly naïve Image problems AI effect: As soon as a machine gets good at performing some task, the task is no longer considered to require much intelligence AI as a threat?
28
29 /ai-weapons-are-a-threatto-humanity-warn-hawking-muskand-wozniak
30
31 Historical themes Moravec s paradox It is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a oneyear-old when it comes to perception and mobility [Hans Moravec, 1988] Why is this? Early AI researchers concentrated on the tasks that they themselves found the most challenging, abilities of animals and two-year-olds were overlooked We are least conscious of what our brain does best Sensorimotor skills took millions of years to evolve, whereas abstract thinking is a relatively recent development
32 Two brain systems? System 1: fast, automatic, subconscious, emotional Detect hostility on a face or in a voice Orient to the source of a sudden sound Answer to 2+2=? Read words on large billboards Drive on an empty road System 2: slow, effortful, logical, calculating, conscious Focus on the voice of a particular person in a crowded and noisy room Search memory to identify a melody Count the occurrences of the letter a on a page Compare two washing machines for overall value Fill out a tax form Check the validity of a complex logical argument
33 In this class Part 1: sequential reasoning Part 2: pattern recognition and learning
34 Philosophy of this class Goal: use machines to solve hard problems that are traditionally thought to require human intelligence We will try to follow a sound scientific/engineering methodology Consider relatively limited application domains Use well-defined input/output specifications Define operational criteria amenable to objective validation Zero in on essential problem features Focus on principles and basic building blocks
COMP 590: Artificial Intelligence
COMP 590: Artificial Intelligence Today Course overview What is AI? Examples of AI today Who is this course for? An introductory survey of AI techniques for students who have not previously had an exposure
What is Artificial Intelligence?
CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. 1 What is AI? What is
CSC384 Intro to Artificial Intelligence
CSC384 Intro to Artificial Intelligence What is Artificial Intelligence? What is Intelligence? Are these Intelligent? CSC384, University of Toronto 3 What is Intelligence? Webster says: The capacity to
CSE 517A MACHINE LEARNING INTRODUCTION
CSE 517A MACHINE LEARNING INTRODUCTION Spring 2016 Marion Neumann Contents in these slides may be subject to copyright. Some materials are adopted from Killian Weinberger. Thanks, Killian! Machine Learning
Introduction to Artificial Intelligence
Introduction to Artificial Intelligence Kalev Kask ICS 271 Fall 2014 http://www.ics.uci.edu/~kkask/fall-2014 CS271/ Course requirements Assignments: There will be weekly homework assignments, a project,
Artificial Intelligence
Artificial Intelligence Chapter 1 Chapter 1 1 Outline What is AI? A brief history The state of the art Chapter 1 2 What is AI? Systems that think like humans Systems that think rationally Systems that
Acting humanly: The Turing test. Artificial Intelligence. Thinking humanly: Cognitive Science. Outline. What is AI?
Acting humanly: The Turing test Artificial Intelligence Turing (1950) Computing machinery and intelligence : Can machines think? Can machines behave intelligently? Operational test for intelligent behavior:
COMP-424: Artificial intelligence. Lecture 1: Introduction to AI!
COMP 424 - Artificial Intelligence Lecture 1: Introduction to AI! Instructor: Joelle Pineau ([email protected]) Class web page: www.cs.mcgill.ca/~jpineau/comp424 Unless otherwise noted, all material
CHAPTER 15: IS ARTIFICIAL INTELLIGENCE REAL?
CHAPTER 15: IS ARTIFICIAL INTELLIGENCE REAL? Multiple Choice: 1. During Word World II, used Colossus, an electronic digital computer to crack German military codes. A. Alan Kay B. Grace Murray Hopper C.
Watson. An analytical computing system that specializes in natural human language and provides specific answers to complex questions at rapid speeds
Watson An analytical computing system that specializes in natural human language and provides specific answers to complex questions at rapid speeds I.B.M. OHJ-2556 Artificial Intelligence Guest lecturing
Applications of Artificial Intelligence. Omark Phatak
Applications of Artificial Intelligence Omark Phatak Applications of artificial intelligence (AI) are a convergence of cutting edge research in computer science and robotics. The goal is to create smart
History of Artificial Intelligence. Introduction to Intelligent Systems
History of Artificial Intelligence Introduction to Intelligent Systems What is An Intelligent System? A more difficult question is: What is intelligence? This question has puzzled philosophers, biologists
Learning is a very general term denoting the way in which agents:
What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);
Hyper-connectivity and Artificial Intelligence
Hyper-connectivity and Artificial Intelligence How hyper-connectivity changes AI through contextual computing Chuan (Coby) M 04/03/15 Description of Major Sections Background Artificial intelligence (AI)
BBC LEARNING ENGLISH 6 Minute English Do you fear Artificial Intelligence?
BBC LEARNING ENGLISH 6 Minute English Do you fear Artificial Intelligence? NB: This is not a word-for-word transcript Hello, I'm. Welcome to 6 Minute English and with me in the studio is. Hello,. Hello.
MAN VS. MACHINE. How IBM Built a Jeopardy! Champion. 15.071x The Analytics Edge
MAN VS. MACHINE How IBM Built a Jeopardy! Champion 15.071x The Analytics Edge A Grand Challenge In 2004, IBM Vice President Charles Lickel and coworkers were having dinner at a restaurant All of a sudden,
EXECUTIVE SUPPORT SYSTEMS (ESS) STRATEGIC INFORMATION SYSTEM DESIGNED FOR UNSTRUCTURED DECISION MAKING THROUGH ADVANCED GRAPHICS AND COMMUNICATIONS *
EXECUTIVE SUPPORT SYSTEMS (ESS) STRATEGIC INFORMATION SYSTEM DESIGNED FOR UNSTRUCTURED DECISION MAKING THROUGH ADVANCED GRAPHICS AND COMMUNICATIONS * EXECUTIVE SUPPORT SYSTEMS DRILL DOWN: ability to move
Regulating AI and Robotics
Regulating AI and Robotics Steve Omohundro, Ph.D. PossibilityResearch.com SteveOmohundro.com SelfAwareSystems.com http://i791.photobucket.com/albums/yy193/rokib50/sculpture/lady-justice-frankfurt_zps970c5d8f.jpg
The Turing Test! and What Computer Science Offers to Cognitive Science "
The Turing Test and What Computer Science Offers to Cognitive Science " Profs. Rob Rupert and Mike Eisenberg T/R 11-12:15 Muenzinger D430 http://l3d.cs.colorado.edu/~ctg/classes/cogsci12/ The Imitation
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
New Predictive Analysis Solutions for Health Care
New Predictive Analysis Solutions for Health Care More accurate forecasts of risk and cost for health care providers, payers, ACOs and Medical Home programs Leveraging HIT and Innovation to Support New
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Draft dpt for MEng Electronics and Computer Science
Draft dpt for MEng Electronics and Computer Science Year 1 INFR08012 Informatics 1 - Computation and Logic INFR08013 Informatics 1 - Functional Programming INFR08014 Informatics 1 - Object- Oriented Programming
Machine Learning. 01 - Introduction
Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge
Who needs humans to run computers? Role of Big Data and Analytics in running Tomorrow s Computers illustrated with Today s Examples
15 April 2015, COST ACROSS Workshop, Würzburg Who needs humans to run computers? Role of Big Data and Analytics in running Tomorrow s Computers illustrated with Today s Examples Maris van Sprang, 2015
COMP-424: Artificial intelligence. Lecture 2: Introduction to AI!
COMP 424 - Artificial Intelligence Lecture 2: Introduction to AI! Instructor: Joelle Pineau ([email protected]) Class web page: www.cs.mcgill.ca/~jpineau/comp424 Unless otherwise noted, all material
Game Playing in the Real World. Next time: Knowledge Representation Reading: Chapter 7.1-7.3
Game Playing in the Real World Next time: Knowledge Representation Reading: Chapter 7.1-7.3 1 What matters? Speed? Knowledge? Intelligence? (And what counts as intelligence?) Human vs. machine characteristics
(Academy of Economic Studies) Veronica Adriana Popescu (Academy of Economic Studies) Cristina Raluca Popescu (University of Bucharest)
24 (Academy of Economic Studies) Veronica Adriana Popescu (Academy of Economic Studies) Cristina Raluca Popescu (University of Bucharest) Abstract: the importance of computer science, with the most important
CSE841 Artificial Intelligence
CSE841 Artificial Intelligence Dept. of Computer Science and Eng., Michigan State University Fall, 2014 Course web: http://www.cse.msu.edu/~cse841/ Description: Graduate survey course in Artificial Intelligence.
Final Assessment Report of the Review of the Cognitive Science Program (Option) July 2013
Final Assessment Report of the Review of the Cognitive Science Program (Option) July 2013 Review Process This is the second program review of the Cognitive Science Option. The Cognitive Science Program
Artificial Intelligence (AI)
Overview Artificial Intelligence (AI) A brief introduction to the field. Won t go too heavily into the theory. Will focus on case studies of the application of AI to business. AI and robotics are closely
Artificial Intelligence and Robotics @ Politecnico di Milano. Presented by Matteo Matteucci
1 Artificial Intelligence and Robotics @ Politecnico di Milano Presented by Matteo Matteucci What is Artificial Intelligence «The field of theory & development of computer systems able to perform tasks
Artificial Intelligence Beating Human Opponents in Poker
Artificial Intelligence Beating Human Opponents in Poker Stephen Bozak University of Rochester Independent Research Project May 8, 26 Abstract In the popular Poker game, Texas Hold Em, there are never
Neural Networks and Back Propagation Algorithm
Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland [email protected] Abstract Neural Networks (NN) are important
Artificial Intelligence for ICT Innovation
2016 ICT 산업전망컨퍼런스 Artificial Intelligence for ICT Innovation October 5, 2015 Sung-Bae Cho Dept. of Computer Science, Yonsei University http://sclab.yonsei.ac.kr Subjective AI Hype Cycle Expert System Neural
Learning to Process Natural Language in Big Data Environment
CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview
Fact sheet. Tractable. Automating visual recognition tasks with Artificial Intelligence
Fact sheet Tractable Automating visual recognition tasks with Artificial Intelligence Tractable enables computers to see better than humans We develop artificial neural networks capable of recognising
LONG BEACH CITY COLLEGE MEMORANDUM
LONG BEACH CITY COLLEGE MEMORANDUM DATE: May 5, 2000 TO: Academic Senate Equivalency Committee FROM: John Hugunin Department Head for CBIS SUBJECT: Equivalency statement for Computer Science Instructor
What is Learning? CS 391L: Machine Learning Introduction. Raymond J. Mooney. Classification. Problem Solving / Planning / Control
What is Learning? CS 391L: Machine Learning Introduction Herbert Simon: Learning is any process by which a system improves performance from experience. What is the task? Classification Problem solving
CAD and Creativity. Contents
CAD and Creativity K C Hui Department of Automation and Computer- Aided Engineering Contents Various aspects of CAD CAD training in the university and the industry Conveying fundamental concepts in CAD
Text Analytics with Ambiverse. Text to Knowledge. www.ambiverse.com
Text Analytics with Ambiverse Text to Knowledge www.ambiverse.com Version 1.0, February 2016 WWW.AMBIVERSE.COM Contents 1 Ambiverse: Text to Knowledge............................... 5 1.1 Text is all Around
The Relationship between Artificial Intelligence and Finance
Material 1 The Relationship between Artificial Intelligence and Finance University of Tokyo, Yutaka Matsuo Provisional Translation by the Secretariat Please refer to the original material in Japanese 1
CREATING EMOTIONAL EXPERIENCES THAT ENGAGE, INSPIRE, & CONVERT
CREATING EMOTIONAL EXPERIENCES THAT ENGAGE, INSPIRE, & CONVERT Presented by Tim Llewellynn (CEO & Co-founder) Presented 14 th March 2013 2 Agenda Agenda and About nviso Primer on Emotions and Decision
Computer-Based Text- and Data Analysis Technologies and Applications. Mark Cieliebak 9.6.2015
Computer-Based Text- and Data Analysis Technologies and Applications Mark Cieliebak 9.6.2015 Data Scientist analyze Data Library use 2 About Me Mark Cieliebak + Software Engineer & Data Scientist + PhD
Understanding Proactive vs. Reactive Methods for Fighting Spam. June 2003
Understanding Proactive vs. Reactive Methods for Fighting Spam June 2003 Introduction Intent-Based Filtering represents a true technological breakthrough in the proper identification of unwanted junk email,
School of Computer Science
School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level
Fall 2012 Q530. Programming for Cognitive Science
Fall 2012 Q530 Programming for Cognitive Science Aimed at little or no programming experience. Improve your confidence and skills at: Writing code. Reading code. Understand the abilities and limitations
Computers and the Creative Process
Computers and the Creative Process Kostas Terzidis In this paper the role of the computer in the creative process is discussed. The main focus is the investigation of whether computers can be regarded
Learning Styles and Aptitudes
Learning Styles and Aptitudes Learning style is the ability to learn and to develop in some ways better than others. Each person has a natural way of learning. We all learn from listening, watching something
Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15
Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries Copyright GENIVI Alliance
Lecture 1: Introduction to Reinforcement Learning
Lecture 1: Introduction to Reinforcement Learning David Silver Outline 1 Admin 2 About Reinforcement Learning 3 The Reinforcement Learning Problem 4 Inside An RL Agent 5 Problems within Reinforcement Learning
Appendices master s degree programme Artificial Intelligence 2014-2015
Appendices master s degree programme Artificial Intelligence 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information
John McCarthy Father of Artificial Intelligence
John McCarthy Father of Artificial Intelligence V Rajaraman V Rajaraman is at the Indian Institute of Science, Bangalore. Several generations of scientists and engineers in India have learnt computer science
COMPSCI 111/111G. Quantum Computing. Term 1, 2015. Prepared using LATEX Beamer by Cristian S.Calude 1 / 26
COMPSCI 111/111G Quantum Computing Prepared using LATEX Beamer by Cristian S.Calude Term 1, 2015 1 / 26 Classical vs. Quantum Computers Quantum computing was first introduced by Yuri Manin in 1980 and
Rafael Witten Yuze Huang Haithem Turki. Playing Strong Poker. 1. Why Poker?
Rafael Witten Yuze Huang Haithem Turki Playing Strong Poker 1. Why Poker? Chess, checkers and Othello have been conquered by machine learning - chess computers are vastly superior to humans and checkers
Deep Learning Meets Heterogeneous Computing. Dr. Ren Wu Distinguished Scientist, IDL, Baidu [email protected]
Deep Learning Meets Heterogeneous Computing Dr. Ren Wu Distinguished Scientist, IDL, Baidu [email protected] Baidu Everyday 5b+ queries 500m+ users 100m+ mobile users 100m+ photos Big Data Storage Processing
CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015
CPSC 340: Machine Learning and Data Mining Mark Schmidt University of British Columbia Fall 2015 Outline 1) Intro to Machine Learning and Data Mining: Big data phenomenon and types of data. Definitions
Artificial Intelligence and Asymmetric Information Theory. Tshilidzi Marwala and Evan Hurwitz. [email protected], hurwitze@gmail.
Artificial Intelligence and Asymmetric Information Theory Tshilidzi Marwala and Evan Hurwitz [email protected], [email protected] University of Johannesburg Abstract When human agents come together to
GfK 2016 Tech Trends 2016
1 Contents 1 2 3 Evolving behavior today s connected consumers Driving you forward 10 tech trends for 2016 Growth from knowledge turning research into smart business decisions 2 Evolving behavior today
Hunting for Indicators of Compromise
Hunting for Indicators of Compromise Lucas Zaichkowsky Mandiant Session ID: END-R31 Session Classification: Intermediate Agenda Threat brief Defensive strategy overview Hunting for Indicators of Compromise
Laboratory work in AI: First steps in Poker Playing Agents and Opponent Modeling
Laboratory work in AI: First steps in Poker Playing Agents and Opponent Modeling Avram Golbert 01574669 [email protected] Abstract: While Artificial Intelligence research has shown great success in deterministic
Chapter 8 BRAIN VS MACHINE
Chapter 8 BRAIN VS MACHINE In this chapter we will examine the current state of the art insofar as we can compare the electronic computer with the human brain. Our conclusion, as you will see, is that
Game Development. What is a game?
Game Development Doron Nussbaum COMP 3501 - Game Development 1 What is a game? Doron Nussbaum COMP 3501 - Game Development 2 Books/Movie vs. Game Good books have Place Era Plot Characters Relationships
Brochure More information from http://www.researchandmarkets.com/reports/3181314/
Brochure More information from http://www.researchandmarkets.com/reports/3181314/ Artificial Intelligence for Enterprise Applications - Deep Learning, Predictive Computing, Image Recognition, Speech Recognition,
10Key buying criteria
110 Key Buying Criteria For Trade Show Displays 10Key buying criteria for trade show displays When you re shopping for your next trade show display, it s all too easy to focus just on the price. After
Game playing. Chapter 6. Chapter 6 1
Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.
Are you a Right-Brain or Left-Brain Thinker?
Are you a Right-Brain or Left-Brain Thinker? By Dr. John Robert Dew Originally published in Quality Progress Magazine, April 1996, pp. 91-93. One of the best ways to liven up a room of quality professionals
SQA Higher Computing Unit 3a Artificial Intelligence
SCHOLAR Study Guide SQA Higher Computing Unit 3a Artificial Intelligence David Bethune Heriot-Watt University Andy Cochrane Heriot-Watt University Tom Kelly Heriot-Watt University Ian King Heriot-Watt
Future Smart Cities. Dr. James Canton CEO & Chairman GlobalFuturist.com
Future Smart Cities Dr. James Canton CEO & Chairman GlobalFuturist.com Are you Future-Ready What is your Vision? Institute for Global Futures Think Tank: Forecast Future Trends, Global Advisory Keynotes,
1. INTRODUCTION Graphics 2
1. INTRODUCTION Graphics 2 06-02408 Level 3 10 credits in Semester 2 Professor Aleš Leonardis Slides by Professor Ela Claridge What is computer graphics? The art of 3D graphics is the art of fooling the
CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
010200 - «Mathematics and Computer Science»
Institute of Applied Mathematics and Mechanics Telematics Department (under the Central Scientific Research Institute of Robotics and Technical Cybernetics) announces admission to bachelor's and master's
How To Write A Computer Science Book
John McCarthy Father of Artificial Intelligence V Rajaraman Asia Pacific Mathematics Newsletter Introduction John McCarthy In this article we summarise the contributions of John McCarthy to Computer Science.
Industrial Automation. A Manufacturing Revolution in Automotive and Industrial Equipment
Industrial Automation A Manufacturing Revolution in Automotive and Industrial Equipment 1 Automated production, integrated end-to-end: transparent, reliable, predictable and efficient. That s the promise
The future of Artificial Intelligence
The future of Artificial Intelligence The Role of Web and Emerging Technologies Babak Loni May 2011 Abstract In this paper we will try to predict the future of artificial intelligence by relying on the
TD-Gammon, A Self-Teaching Backgammon Program, Achieves Master-Level Play
TD-Gammon, A Self-Teaching Backgammon Program, Achieves Master-Level Play Gerald Tesauro IBM Thomas J. Watson Research Center P. O. Box 704 Yorktown Heights, NY 10598 ([email protected]) Abstract.
Intent Based Filtering: A Proactive Approach Towards Fighting Spam
Intent Based Filtering: A Proactive Approach Towards Fighting Spam By Priyanka Agrawal Abstract-The cyber security landscape has changed considerably over the past few years. Since 2003, while traditional
Computation Beyond Turing Machines
Computation Beyond Turing Machines Peter Wegner, Brown University Dina Goldin, U. of Connecticut 1. Turing s legacy Alan Turing was a brilliant mathematician who showed that computers could not completely
DRAFT TJ PROGRAM OF STUDIES: AP PSYCHOLOGY
DRAFT TJ PROGRAM OF STUDIES: AP PSYCHOLOGY COURSE DESCRIPTION AP Psychology engages students in a rigorous appraisal of many facets of our current understanding of psychology. The course is based on the
RANGER COLLEGE. Syllabus
RANGER COLLEGE Syllabus Course Number and Title: General Psychology PSYC 2301 Credit Hours: 3 HRS /WK LEC:3 HRS/WK LAB:0 LEC/LAB/HRS WK COMBINATION: 3 Name of Instructor: Donnie Armstrong, M.Ed. LPC Adjunct
A Beginners Guide To Responsive, Mobile & Native Websites 2013 Enhance.ie.All Rights Reserved.
A Beginners Guide To Responsive, Mobile & Native Websites 2013 Enhance.ie.All Rights Reserved. 1 The Mobile Web refers to access to the world wide web, i.e. the use of browser-based Internet services,
The Battle for the Future of Data Mining Oren Etzioni, CEO Allen Institute for AI (AI2) March 13, 2014
The Battle for the Future of Data Mining Oren Etzioni, CEO Allen Institute for AI (AI2) March 13, 2014 Big Data Tidal Wave What s next? 2 3 4 Deep Learning Some Skepticism about Deep Learning Of course,
How To Become Director Of Development At Northeastern
DIRECTOR OF DEVELOPMENT BOSTON, MA Position Overview The College of Computer and Information Science (CCIS) at Northeastern University seeks an entrepreneurial, proactive, and engaging fundraising professional
Manifesto for a Ludic Century Eric Zimmerman
Manifesto for a Ludic Century Eric Zimmerman Games are ancient. Like making music, telling stories, and creating images, playing games is part of what it means to be human. Games are perhaps the first
Bunzl Distribution. Solving problems for sales and purchasing teams by revealing new insights with analytics. Overview
Bunzl Distribution Solving problems for sales and purchasing teams by revealing new insights with analytics Overview The need Bunzl wanted to leverage its data for improved business decisions but gathering
Artificial neural networks
Artificial neural networks Now Neurons Neuron models Perceptron learning Multi-layer perceptrons Backpropagation 2 It all starts with a neuron 3 Some facts about human brain ~ 86 billion neurons ~ 10 15
M.S. Computer Science Program
M.S. Computer Science Program Pre-requisite Courses The following courses may be challenged by sitting for the placement examination. CSC 500: Discrete Structures (3 credits) Mathematics needed for Computer
