Solving a New Mathematical Model for a Periodic Vehicle Routing Problem by Particle Swarm Optimization

Size: px
Start display at page:

Download "Solving a New Mathematical Model for a Periodic Vehicle Routing Problem by Particle Swarm Optimization"

Transcription

1 Transportation Research Institute Iran University of Science and Technology Ministry of Science, Research and Technology Transportation Research Journal 1 (2012) TRANSPORTATION RESEARCH JOURNAL Solving a New Mathematical Model for a Periodic Vehicle Routing Problem by Particle Swarm Optimization Reza Tavakkoli Moghaddam a*, Amir Mohmmad Zohrevand b, Kousha Rafiee c a. Professor, Faculty of Industrial Engineering, University of Tehran, Tehran, Iran. b. M.Sc. Grad., Faculty of Industrial Engineering, University of Tehran, Tehran, Iran. c. Ph.D. Student, Faculty of Industrial Engineering, University of Houston, Houston, TX, USA Received: 5 February Accepted: 25 June 2012 ABSTRACT This paper presents a new mathematical model for a periodic vehicle routing problem (PVRP) considering several assumptions that minimizes vehicle travel costs. We incorporate four problems in periodic planning, namely a capacitated vehicle routing problem (CVRP), a vehicle routing problem with time windows (VRPTW), a vehicle routing problem with simultaneous pickup and delivery (VRPSPD), and a vehicle routing problem with split service (VRPSS). As it is a unified model, we impose its computational complexity and are notable to solve such a hard problem by any optimization software in a reasonably computational time, especially for large-sized problems. Thus, we propose a meta-heuristic method based on particle swarm optimization (PSO). A number of instances are solved by this proposed PSO. Finally, the related results are illustrated and discussed. Keywords: Periodic Vehicle Routing Problem, Capacitated VRP, VRP with Time Windows, VRP with Split Service, Particle Swarm Optimization 1- Introduction The vehicle routing problem (VRP) is a generic problem to specify a homogeneous set of vehicles and routes, in which each vehicle starts from a depot and traverses along a route in order to serve a set of customers with known geographical locations, and then finish its tour at the same depot. The service may involve delivering goods, picking up packages, and the like. The basic VRP consists of a single depot, a fleet of vehicles located at the depot, a set of customers who receive goods from the depot, and the objective of a basic VRP minimizing the total collection/delivery routing cost subject to the maximum working time and maximum capacity constraints on the vehicles (Christofides et al., 1979). However, many gaps may exist between the basic VRP and real applications; for example, the number of depots, customer requirements with multiple pickups, delivery, type of vehicles with different travel times, travel costs and capacity, time windows restrictions, and route restrictions for vehicles. Toth and Vigo (2002) studied comprehensive details on VRPs consisting of its variants, formulation, and solution methods. The most prevalent researches in VRPs are the capacitated vehicle routing problem (CVRP) considering the total demand on a route that should not exceed the capacity of the vehicle, and the VRP Corresponding Author's Tel: Transportation Research Journal, Vol. 2, No. 1, 2012 / 77 tavakoli@ut.ac.ir

2 with time windows (VRPTW) (Laporte and Semet, 2002; Cordeau et al., 2002). Norouzi et al. (2011) presented a new mathematical model for an open vehicle routing problem (OVRP) with competitive time windows in which distributors intend to service customers earlier than rivals in order to gain the maximum sales. They proposed a multi-objective particle swarm optimization (MOPSO) algorithm and compared their results with those of a wellknown multi-objective evolutionary algorithm, namely NSGA-II. In addition, some attempts have been made to extend vehicle routing models (e.g., VRP with multiple pickups and delivery locations) (Salesbergh and Sol, 1995; Savelsbergh and Sol, 1998; Hasle, 2003). Another extension is the VRP with simultaneous pickup and delivery (VRPSPD), in which customers need the delivery of goods and the pickup of goods from them simultaneously. A comprehensive model of a dynamic VRP can be found in Psaraftis (1998) and Psaraftis (1995). Another variant is that the customer can be served by more than one vehicle however, in the classical VRP, each node must be served by only one vehicle. In many practical cases, it is possible that the customers at each node are served by several vehicles that transit from that node. In other words, a service can be divided between several vehicles, known as VRP with the same split service (VRPSS) (Tavakkoli-Moghadam et al., 2007). Wang and Wang (2009) proposed a new twophase heuristic method in order to solve vehicle routing problems with backhauls considering the travel speed of vehicles in time dependent. They first used traditional heuristic methods, and then the obtained solution was improved by a reactive tabu search. Tavakkoli-Moghaddam et al. (2006) considered a VRP with backhauls, in which a set of costumers is divided in two subsets, namely line haul and backhaul costumers. Due to NP-hardness of this problem, they proposed a memetic algorithm embedded with different local search algorithms in order to obtain good solutions. In some distribution systems, customers may be served several times within a certain time-period, and planning is not just for a day, rather there is periodic planning for a time horizon. Each customer has some feasible schedules of delivery days. This problem is well known as a periodic vehicle routing problem (PVRP). In other words, the PVRP extends the basic VRP to a planning time horizon of several days (Beltrami and Bodin, 1974; Christofides and Beasley, 1984; Russell and Igo, 1979). It attempts to specify an optimal schedule of customer s deliveries. Hence, one has to choose the visit days for each customer and to solve the VRP for each day. Based on the above discussion, we propose a comprehensive model for the PVRP incorporated with several assumptions that were considered separately in the previous studies. We incorporate the CVRP, VRPTW, VRPSPD, and VRPSS in periodic planning. As this is a unified model, we impose its computational complexity and cannot be solved by any optimization software, even for small problems. Thus, we devise a developed metaheuristic method based on particle swarm optimization (PSO). This paper is organized as follows. First, we discuss an introduction to the problem and a literature review about research background. In Section 2, we define the mathematical formulation, and then we present the proposed method based on PSO in order solve the given problem in Section 3. In Section 4, we show the computational results. Eventually, Section 5 concludes the result of this paper and suggests further direction in future. 2- Model formulations The presented model can be defined as follows. Let G = (V, A)be a graph where V = {v 0, v 1,,v n } and A = {(v i,v j ) v i,v j V,ij} area set of arc sand a set of nodes, respectively. There are two matrices corresponding to A for travel cost (c ij ) and travel time (t ij ). Vertexv 0 represents a depot and remaining vertices are related to n customers. Each customer has a set of allowable visiting schedules denoted by H i = {S i1,, S ih } and visiting schedule S defined by S = {l 1,, l T }; where l d denotes the demand of the customer on day d (e.g., l d = 0 means that the customer is not served on day d) and T presents a set of days in the period. The notations are given below (Goel and Gruhn, 2008; Angelelli and Speranza, 2002). 78/ Transportation Research Journal, Vol. 2, No. 1, 2012

3 2-1-Notations and variables Total number of customers Total number of vehicles Total number of period days Travel cost alongarc, Travel time alongarc, Service time for customer Pick up quantity for customer in the th day of period Delivery quantity for customer in the th day of period Capacity of vehicle Time windows for vehicle to serveall customers Lower bound of time windows for customer Upper bound of time windows for customer 1 if day is inschedule 0 other wise 2-2-Decision variables 1 if schedule chosen for customer 0 other wise Number of pick updem and sof customer served by vehicle in day Number of delivery demands of customer served by vehicle in day Starting service time of customer by vehicle in day 1 if vehicle serves customer immediately after customer in day 0 otherwise 1 if vehicle serves customer in day 0 otherwise Load of vehicle while traversing arc, in day 2-3-Mathematical model min s. t.. ; 1,1,1 (2) ; 1 1,1,1 (3). ; 1,1,1 (4) ; 1,1 (5) (1) Transportation Research Journal, Vol. 2, No. 1, 2012 /79

4 , ; 1,1 (6) ; 1,1 (7) ; 1,1,1 (8) ; 1,1, 1 (9) 1 ; 1,,1,1 (10) 1 ; 1 (11) ; 1,1 (12) 1 ; 1 (13),, 0,1 ;,,, (14),, 0,1,2, ;,,, (15) The objective function minimizes the routing cost. Constraints (1) and (2) ensure every vehicle that arrives at a customer s address has to leave that customer (1), in which every vehicle that is assigned to a customer has to serve them once in a day (2). Constraint (3) is to prevent the vehicle capacity being exceeded, while vehicle k traverses arc (i, j), corresponding load (z ijk d ) must at most equal to vehicle capacity (Q k ). Constraints (4) and (5) impose vehicle transits as well as cover the pickup and delivery demand for each customer in a day. Constraint (6) states the limit of service duration of a vehicle. Constraint (7) balances the vehicle load after it serves a customer. Constraint (8) guarantees that each vehicle arrives to a customer s address within time window of the node. Constraint (9) ensures if x ijk d = 1, arrival time to the customer s location j must be greater or equal to the sum of arrival time to the customer s where about s i, service time in customer i and traveling time along arc (i, j). Constraint (10) represents just one visiting schedule is chosen for each customer. Constraint (11) expresses in days belonging to the chosen schedule for each customer, it may be served by more than one vehicle; otherwise, if a day does not belong to the chosen schedule, there is no visit in that day. Constraint (12) is a sub-tour elimination constraint. Finally, Constraint (13) ensures the integrality of the model variables. 3- Particle Swarm Optimization In this section, we propose a particle swarm optimization (PSO) method to solve a PVRP explained in Section 2. We first summaries a history of PSO, explain how it works, and then present key features including the solution representation and decoding procedure Brief introduction to PSO Particles warm optimization (PSO), which was first introduced by Kennedy and Eberhart (1995), is an efficient, stochastic and evolutionary optimization technique, through individual improvement plus population cooperation and competition. PSO is a meta-heuristic approach used 80/ Transportation Research Journal, Vol. 2, No. 1, 2012

5 for solving hard global optimization problems and some deals look like genetic algorithms. Both of them have the same specifications, such as initial randomly generated populations (or swarms), fitness functions to evaluate the individual and population, updating population and random searching techniques to find the optimum. However, PSO does not have genetic operators. The biological inspiration is based on social behavior of bird flocking or fish schooling. In these populations, a leader guides the movement of the whole swarm. PSO is a population based search method that uses movements of particles in the swarm as a searching method. In PSO, we serve a swarm including H particles as a search indicator for a particular problem s solution. A particle s position ( ) that consists of L dimensions is as agent of problem solution. Each particle has a velocity vector ( ), which exhibits the particle s ability to search for solutions. In each iteration of this algorithm, the particles move from one point to another based on their velocity. PSO also incorporates local and global search abilities. In the basic version of PSO, movement of each swarm is based on the leader and its own knowledge. The particle s personal best position ( ) and the global best position ( ) are always updated and saved. The particle s personal best position is specified as the solution, which gives the best objective function among solutions that have been visited by the particle up to now. If a particle is located in a new position that has the best objective function that has been reached by the particle (i.e., Z ( )<Z( )), the personal best position is replaced by this new position. The global best position indicates a solution that gives the best objective function among positions that have been visited by all particles in the swarm. If a particle is located in a new position that has the best objective function reached by the whole particles (i.e., Z( )<Z( )), the global best position is replaced by this new position. In each iteration, the particle velocity is updated using three terms: namely current velocity, personal best position, and global best position. The current velocity obliges the particle to move in the same direction of the last iteration. The first term is calculated by multiplying the current velocity and an inertia weight (w). The personal best position absorbs the particle and forces it to move back toward ( ). The second term is calculated by multiplying the difference of the personal best position ( ) and the current position ( ), a random number () and acceleration constant for the personal best (. The global best position also attracts all particles to move back toward itself. The last term is calculated by multiplying the difference between the global best position ( ) and the current position ( ), a random number () and acceleration constant for the global best (. In order to randomize the particle s movement, random numbers are synthesized in the velocity updating formula. Thus, two different particles with the same current positions, personal best positions and global best positions may shift to different positions by iterating the algorithm twice. In PSO, we have to limit the space of the particle movement, i.e. the confined bound for the position value of the particle dimension is [, ]. This limitation ensures that the solution does not get divergence. Thereupon, the velocity of a particle, which moves beyond the boundary which is set at zero and its position value, gets the minimum or maximum value (Ai and Kachitvichyanukul, 2009). Marinakis et al. (2010) implement a hybrid PSO to handle VRP effectively. Their main contribution was to show that applying particle swarm optimization in hybrid synthesis with other meta-heuristics increases both quality and computational efficiency of the VRP solution, remarkably. After that Miranakis and Miranaki (2010) propose another hybrid GA-PSO called HybGENPSO. A PSO algorithm for OVRP is presented by Mirhassani and Abolghasemi (2011). Recently, Norouzi et al., (2011) applied a novel particle swarm algorithm to solve multi-objective, competitive open vehicle routing problems. Tavakkoli-Moghaddam et al., (2010) proposed the improved particle swarm optimization (IPSO) algorithm to solve a VRP considering a balance of goods based on the vehicles capacity. To the best of our knowledge, this is the first application of PSO to the PVRP. Transportation Research Journal, Vol. 2, No. 1, 2012 /81

6 3-2- Proposed PSO algorithm We propose a new version of PSO that has an additional term than the classic version. It considers the local best position ( ) in the velocity updating formula. The local best is the position with the best objective function among some neighbor particles. The PSO algorithm to solve the PVRP is presented below. In Step 1, particles are generated. In Steps 2 and 3, the corresponding fitness function to particle position is calculated. The global, local and personal bests are updated in Steps 4 to 6. The particle velocity and subsequently its position are updated in Step 7. Finally, in Step 8, the stopping or repeating criterion is controlled Notations Iteration index 1,, Dimension index 1,, Particle index 1,, Inertia weight in the iteration Velocity at dimension of particle in iteration Ω Position at dimension of particlein iteration Personal best position of particleat dimension Global best position at dimension Local best position of particle at dimension Uniform random number in the interval0, 1 Acceleration constant for the personal best position Acceleration constant for the local best position Acceleration constant for the global best position Minimum position value Maximum position value Fitness function of position Now, we use the PSO framework for the given PVRPs. Our proposed algorithm is a discrete one. Therefore, all mathematical operators in the above PSO algorithm are redefined. The idea to solve discrete problems with PSO comes from Clerc (2000). When the algorithm is being executed, all solutions are checked for feasibility. It only continues with feasible solutions; however, infeasible solutions must be changed to feasible solutions immediately. All symbols, operators and velocities are redefined as follows Velocity In this PSO algorithm, the velocity (v) is a set of numerical pairs. The number of numerical pairs in the velocity indicates the velocity size Velocity plus velocity The result of the summation of two velocities is a new velocity, which is a union of the selected velocities, and eliminates repetitive numerical pairs. For example, let 1,2, 3,2 and 3,1, 3,2, then 1,2, 3,1, 3, Velocity minus velocity The result of the subtraction between two velocities is a new velocity, which includes only non-repetitive numerical pairs. For illustration, let 1,2, 3,2 and 3,1, 3,2,, then 1,2, 3, Position plus velocity The result of summation, a velocity to a position, is a new position. This is a mutation on bits of the position based on corresponding numerical pairs of the velocity. When it is done, the position is checked for feasibility, and may need a corrective mutation to satisfy feasibility constraint. For an illustration, see Eq. (16) and 1,2, then 1 1 (16) Position minus position The result of the subtraction between two positions is a velocity. The resulting velocity is gained according to those different bits of two positions. 82/ Transportation Research Journal, Vol. 2, No. 1, 2012

7 3-3 Solution representation The key element of implementing PSO for the PVRP is how to define a solution representation for vehicle routes. The following proposed representation includes two parts referring to binary variables and integers. In the following, we describe how to decode this solution to vehicle routes, as shown in Figure Generate I particles as a swarm, initialize particle I with random position in the range,, set velocity 0, and personal best for i=1,, I, and t=1. 2. For i=1,, I, decode to a set of lot sizes. 3. For i=1,, I, compute fitness value. 4. Update p best: if, set for i=1,, I. 5. Update g best: if, set for i=1,, I. 6. Update l best: compare the personal best position among K neighbors of particle i, set the personal best position with the best fitness value to. 7. Update the velocity and position of each particle: 1 1 (17) 1 Ω (18) 1 1 (19) if 1, then 1 and 1 0 (20) if 1, then 1 and 1 0 (21) 8. Check improvement of p best in each 100 iteration 9. If t=t, stop; otherwise, set t=t+1 and go to Step 2. Figure 1. Proposed PSO algorithm for the integrated PVRP Table 1. PSO constant parameters Parameter Value Number of iterations in each replication T=1000 Number of particles in a swarm L=100 Number of neighbors for each particle K=10 Acceleration constant for global best position =0.5 Acceleration constant for local best position =0.5 Acceleration constant for personal best position =1 First inertia weight Last inertia weight 1=0.8 =0.2 Transportation Research Journal, Vol. 2, No. 1, 2012 /83

8 4- Computational Results Since there are no computational results in the previous literature of the PVRP that incorporated all given complexities, we have to randomly generate a number of test problems to evaluate our integrated PVRP model. In this section, we present the computational results in two parts. The first part is related to a small sized problem solved by the GAMS software and our proposed PSO algorithm. Then, compare them with each other. In the second part, a medium sized problem is used to test our presented model. Because of dignity of the problem size, we are capable of using the PSO algorithm only. The PSO algorithm is coded by using C++ language on a PC with Intel Core 2 Duo 2.5 GHz CPU, and 4GB RAM. This algorithm runs 10 times for each instance. The fixed parameters of PSO are indicated by preliminary experiments to find out which parameter setting behaves best. There are two stopping rules, namely 1) the maximum iteration number and 2) the less improvement in p best after every 100 iteration. Table 1 summarizes these parameters. The stopping rule is based on the maximum iteration. In addition, for simplicity, we assume that all vehicle fleets are heterogeneous with the same capacity (i.e., Q=100) and time window (i.e., D=500). The required data related with costumers, such as quantity of demand in each period, location of each costumer, distance between each pair of costumers and time horizon to visit each costumer, are gathered from a well-known test problem that can be found at A set of 16 random instances is generated for the small sized integrated PVRP. Problem Table 2. Comparison of optimal solution and the PSO algorithm results for small sized instances No. of vehicles No. of days No. of costumers Optimal solution Best cost Worst cost PSO solution Mean cost Deviation (%) Mean time (s) < < / Transportation Research Journal, Vol. 2, No. 1, 2012

9 Problem No. of vehicles Table 3. PSO algorithm results for medium-sized instances No. of No. of PSO solution days costumers Best cost Worst cost Mean cost Mean time(s) Transportation Research Journal, Vol. 2, No. 1, 2012 /85

10 Table 2 shows parameters of random instances and the related results of the PSO algorithm and optimal solution obtained by the GAMS software. This set is generated by the combination of members to the set number of vehicles = {2, 3, 4, 5}, number of days = {2,3,4,6}, and number of customers = {10}. Moreover, Table 3 illustrates the features of 48 random instances, and the related results of the proposed PSO algorithm for medium sized problems consisting of all feasible combinations of members to set the number of vehicles = {2,3,4,5}, number of days = {2,3,4,6}, and number of customers = {50,100,150}. To get a more reliable evaluation of the proposed algorithm, we compare the optimal solution with the mean cost of our proposed PSO algorithm in small sized instances, and the variance of the best and worst costs divided into the mean cost in medium sized instances. We use two types of the deviation factor that their formulas are shown by: Deviation MeanPSO OptimalSolution OptimalSolution 100% Deviation WorstPSO BestPSO 100% MeanPSO (22) (23) 5- Conclusion Many real routing problems hold their own complexities that are not regarded in the previous models. In this study, we have presented an integrated periodic vehicle routing problem (PVRP) that is able to meet various practical requirements. It incorporates the popular models of the PVRP. Moreover, it combines many additions of the previous models, which have never been considered simultaneously. This paper has presented a specific kind of the CPVRP containing the split service, in which the demand of each customer can be divided between several vehicles. This problem can take place in a transportation system when a number of vehicles have to be passed by a node or customer. Furthermore, it would be possible that the order in some nodes would be greater than the maximum capacity in the fleet. This paper has aimed to maximize the utilization of the fleet s capacity. Therefore, several vehicles could fulfill the demand of some customers. The presented model can find optimal routes with the minimum cost of fleet. The computational results prove that the PSO algorithm has solved the proposed integrated PVRP model effectively. However, it was not the best one and it would improve by optimizing the PSO parameters and programming implementation. These further efforts improve the solution quality and computational time. In addition, further research should be conducted to extend the model for highconstrained real-life problems. References Ai, T. J. and Kachitvichyanukul, V. (2009) "A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery", Computers & Operations Research, Vol. 36, No. 5, pp Angelelli, E. and Speranza, M. G. (2002) "The vehicle routing problem with intermediate facilities", European Journal of Operational Research, Vol. 137, pp Beltrami, E. and Bodin, L. (1974) "Networks and vehicle routing for municipal waste collection", Networks, Vol. 4, No. 1, pp Christofides, N. and Beasley, J. (1984) "The period routing problem", Networks, Vol. 14, No. 2, pp Christofides, N., Mingozzi, A. and Toth, P. (1979) "The vehicle routing problem", In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C., (Eds.), Combinatorial optimization. Chicester: John Wiley, pp Clerc, M., (2000) "Discrete particle swarm optimization illustrated by the traveling salesman problem", Available on: Cordeau, J. F., Desaulniers, G., Desrosiers, J., Solomon, M. and Soumis, F. (2002) "VRP with time windows", In: Toth, P., Vigo, D. (Eds.), The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, pp / Transportation Research Journal, Vol. 2, No. 1, 2012

11 Goel, A. and Gruhn, V. (2208) "A general vehicle routing problem", European Journal of Operational Research, Vol. 191, No. 3, pp Hasle, G. (2003) "Heuristics for rich VRP models", Presented at the Seminar at GERAD, Montreal, Canada. Kennedy, J. and Eberhart, R. (1995) "Particle swarm optimization", Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, pp Laporte, G. and Semet, F. (2002) "Classical heuristics for the capacitated VRP", In: Toth, P., Vigo, D. (Eds.), The vehicle routing problem, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, pp Marinakis, Y. and Miranaki, M. (2010) "A hybrid genetic - particle swarm optimization algorithm for the vehicle routing problem", Expert Systems with Applications, Vol. 37, pp Marinakis, Y., Miranaki, M. and Dounias, G. (2010) "A hybrid particle swarm optimization algorithm for the vehicle routing problem", Engineering Application of Artificial Intelligence, Vol. 23, pp Mirhassani, S.A. and Abolghasemi, N. (2011) "A particle swarm optimization algorithm for open vehicle routing problem", Expert Systems with Applications, Vol. 38, pp Norouzi, N., Tavakkoli Moghaddam, R., Ghazanfari, M., Alinaghian, M. and Salamatbakhsh, A. R. (2011) "A new multi-objective competitive open vehicle routing problem solved by particle swarm optimization", Networks and Spatial Economics, Accepted for publication, DOI: /s Psaraftis, H. (1988) "Dynamic vehicle routing problems", In: Golden, B., Assad, A. (Eds.), Vehicle routing: Methods and studies. North-Holland, Amsterdam, pp Psaraftis, H. (1979) "Dynamic vehicle routing: Status and prospects", Annals of Operations Research, Vol. 61, pp Russell, R. and Igo, W. (1979) "An assignment routing problem", Networks, Vol. 9, No. 1, pp Savelsbergh, M., and Sol, M. (1995) "The general pickup and delivery problem", Transportation Science, Vol. 29, No. 1, pp Savelsbergh, M. and Sol, M. (1998) "DRIVE: dynamic routing of independent vehicles", Operations Research, Vol. 46, pp Tavakkoli Moghaddam, R., Safaei, N., Kah, M.M.O. and Rabbani, M. (2007) "A new capacitated vehicle routing problem with split service for minimizing fleet cost by simulated annealing", J. of the Franklin Institute, Vol. 344, pp Tavakkoli Moghaddam, R., Saremi, A.R. and Ziaee, M.S. (2006) "A memetic algorithm for a vehicle routing problem with backhauls", Applied Mathematics and Computation, Vol. 181, No. 2, pp Tavakkoli Moghaddam, R., Norouzi, N., Salamatbakhsh, A. and Alinaghian, M. (2011) "A vehicle routing problem considering a balance of goods based on the vehicles capacity by improved particle swarm optimization", J. of Transportation Research, Accepted for publication, (in Farsi). Toth, P. and Vigo, D., (Eds.) (2002) "The vehicle routing problem", Philadelphia, PA: SIAM. Wang, Z. and Wang, Z. (2009) "A novel two-phase heuristic method for vehicle routing problem with backhauls", Computers & Mathematics with Applications, Vol. 57, Nos , pp Transportation Research Journal, Vol. 2, No. 1, 2012 /87

Two objective functions for a real life Split Delivery Vehicle Routing Problem

Two objective functions for a real life Split Delivery Vehicle Routing Problem International Conference on Industrial Engineering and Systems Management IESM 2011 May 25 - May 27 METZ - FRANCE Two objective functions for a real life Split Delivery Vehicle Routing Problem Marc Uldry

More information

Solving the Vehicle Routing Problem with Multiple Trips by Adaptive Memory Programming

Solving the Vehicle Routing Problem with Multiple Trips by Adaptive Memory Programming Solving the Vehicle Routing Problem with Multiple Trips by Adaptive Memory Programming Alfredo Olivera and Omar Viera Universidad de la República Montevideo, Uruguay ICIL 05, Montevideo, Uruguay, February

More information

An Efficient Algorithm for Solving a Stochastic Location-Routing Problem

An Efficient Algorithm for Solving a Stochastic Location-Routing Problem Journal of mathematics and computer Science 12 (214) 27 38 An Efficient Algorithm for Solving a Stochastic LocationRouting Problem H.A. HassanPour a, M. MosadeghKhah a, M. Zareei 1 a Department of Industrial

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

Un algorithme génétique hybride à gestion adaptative de diversité pour le problème de tournées de véhicules et ses variantes

Un algorithme génétique hybride à gestion adaptative de diversité pour le problème de tournées de véhicules et ses variantes Un algorithme génétique hybride à gestion adaptative de diversité pour le problème de tournées de véhicules et ses variantes Thibaut VIDAL LOSI et CIRRELT Université de Technologie de Troyes et Université

More information

A Novel Binary Particle Swarm Optimization

A Novel Binary Particle Swarm Optimization Proceedings of the 5th Mediterranean Conference on T33- A Novel Binary Particle Swarm Optimization Motaba Ahmadieh Khanesar, Member, IEEE, Mohammad Teshnehlab and Mahdi Aliyari Shoorehdeli K. N. Toosi

More information

A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem

A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem Sayedmohammadreza Vaghefinezhad 1, Kuan Yew Wong 2 1 Department of Manufacturing & Industrial Engineering, Faculty of Mechanical

More information

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business 0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite

More information

VEHICLE ROUTING AND SCHEDULING PROBLEMS: A CASE STUDY OF FOOD DISTRIBUTION IN GREATER BANGKOK. Kuladej Panapinun and Peerayuth Charnsethikul.

VEHICLE ROUTING AND SCHEDULING PROBLEMS: A CASE STUDY OF FOOD DISTRIBUTION IN GREATER BANGKOK. Kuladej Panapinun and Peerayuth Charnsethikul. 1 VEHICLE ROUTING AND SCHEDULING PROBLEMS: A CASE STUDY OF FOOD DISTRIBUTION IN GREATER BANGKOK By Kuladej Panapinun and Peerayuth Charnsethikul Abstract Vehicle routing problem (VRP) and its extension

More information

An iterated local search platform for transportation logistics

An iterated local search platform for transportation logistics An iterated local search platform for transportation logistics Takwa Tlili 1, and Saoussen Krichen 1 1 LARODEC, Institut Supérieur de Gestion Tunis, Université de Tunis, Tunisia. Abstract. Recent technological

More information

Waste Collection Vehicle Routing Problem Considering Similarity Pattern of Trashcan

Waste Collection Vehicle Routing Problem Considering Similarity Pattern of Trashcan International Journal of Applied Operational Research Vol. 3, o. 3, pp. 105-111, Summer 2013 Journal homepage: www.ijorlu.ir Waste Collection Vehicle Routing Problem Considering Similarity Pattern of Trashcan

More information

Software Framework for Vehicle Routing Problem with Hybrid Metaheuristic Algorithms

Software Framework for Vehicle Routing Problem with Hybrid Metaheuristic Algorithms Software Framework for Vehicle Routing Problem with Hybrid Metaheuristic Algorithms S.MASROM 1, A.M. NASIR 2 Malaysia Institute of Transport (MITRANS) Faculty of Computer and Mathematical Science Universiti

More information

A Library of Vehicle Routing Problems

A Library of Vehicle Routing Problems A Library of Vehicle Routing Problems Tim Pigden and Optrak Distribution Software Ltd. Tim.Pigden@optrak.com Graham Kendall and The University of Nottingham Malaysia Campus Jalan Broga, 43500 Semenyih

More information

Adaptive Memory Programming for the Vehicle Routing Problem with Multiple Trips

Adaptive Memory Programming for the Vehicle Routing Problem with Multiple Trips Adaptive Memory Programming for the Vehicle Routing Problem with Multiple Trips Alfredo Olivera, Omar Viera Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Herrera y Reissig

More information

XOR-based artificial bee colony algorithm for binary optimization

XOR-based artificial bee colony algorithm for binary optimization Turkish Journal of Electrical Engineering & Computer Sciences http:// journals. tubitak. gov. tr/ elektrik/ Research Article Turk J Elec Eng & Comp Sci (2013) 21: 2307 2328 c TÜBİTAK doi:10.3906/elk-1203-104

More information

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,

More information

Research Paper Business Analytics. Applications for the Vehicle Routing Problem. Jelmer Blok

Research Paper Business Analytics. Applications for the Vehicle Routing Problem. Jelmer Blok Research Paper Business Analytics Applications for the Vehicle Routing Problem Jelmer Blok Applications for the Vehicle Routing Problem Jelmer Blok Research Paper Vrije Universiteit Amsterdam Faculteit

More information

BMOA: Binary Magnetic Optimization Algorithm

BMOA: Binary Magnetic Optimization Algorithm International Journal of Machine Learning and Computing Vol. 2 No. 3 June 22 BMOA: Binary Magnetic Optimization Algorithm SeyedAli Mirjalili and Siti Zaiton Mohd Hashim Abstract Recently the behavior of

More information

A New Quantitative Behavioral Model for Financial Prediction

A New Quantitative Behavioral Model for Financial Prediction 2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A New Quantitative Behavioral Model for Financial Prediction Thimmaraya Ramesh

More information

Fifty Years of Vehicle Routing

Fifty Years of Vehicle Routing Fifty Years of Vehicle Routing by Gilbert Laporte Canada Research Chair in Distribution Management HEC Montréal Vehicle Routing Problem Depot m (or at most m) identical vehicles based at the depot n customers

More information

An ACO Approach to Solve a Variant of TSP

An ACO Approach to Solve a Variant of TSP An ACO Approach to Solve a Variant of TSP Bharat V. Chawda, Nitesh M. Sureja Abstract This study is an investigation on the application of Ant Colony Optimization to a variant of TSP. This paper presents

More information

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem Campos,V., Corberán, A., Mota, E. Dep. Estadística i Investigació Operativa. Universitat de València. Spain Corresponding author:

More information

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik Decision Making in Manufacturing and Services Vol. 4 2010 No. 1 2 pp. 37 46 A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution Bartosz Sawik Abstract.

More information

A Set-Partitioning-Based Model for the Stochastic Vehicle Routing Problem

A Set-Partitioning-Based Model for the Stochastic Vehicle Routing Problem A Set-Partitioning-Based Model for the Stochastic Vehicle Routing Problem Clara Novoa Department of Engineering and Technology Texas State University 601 University Drive San Marcos, TX 78666 cn17@txstate.edu

More information

The period vehicle routing problem with service choice

The period vehicle routing problem with service choice The period vehicle routing problem with service choice Peter Francis, Karen Smilowitz, and Michal Tzur October 11, 2005 To appear in Transportation Science Abstract The period vehicle routing problem (PVRP)

More information

International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Journal of Software and Web Sciences (IJSWS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

More information

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering

More information

STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1

STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 somanprajakta@gmail.com,

More information

Vehicle routing in a Spanish distribution company: Saving using a savings-based heuristic

Vehicle routing in a Spanish distribution company: Saving using a savings-based heuristic Original Article Vehicle routing in a Spanish distribution company: Saving using a savings-based heuristic Alex Grasas a, *, Jose Caceres-Cruz b, Helena R. Lourenc o a, Angel A. Juan b and Mercè Roca c

More information

Mobile Workforce Scheduling Problem With Multitask-Processes

Mobile Workforce Scheduling Problem With Multitask-Processes Mobile Workforce Scheduling Problem With Multitask-Processes Asvin Goel 1,2, Volker Gruhn 1, and Thomas Richter 1 1 Chair of Applied Telematics / e-business, University of Leipzig Klostergasse 3, 04109

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Intermodal freight transportation describes the movement of goods in standardized loading units (e.g., containers) by at least two transportation modes (rail, maritime, and road)

More information

New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem

New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem Gizem Ozbaygin, Oya Karasan and Hande Yaman Department of Industrial Engineering, Bilkent University, Ankara, Turkey ozbaygin,

More information

Web Service Selection using Particle Swarm Optimization and Genetic Algorithms

Web Service Selection using Particle Swarm Optimization and Genetic Algorithms Web Service Selection using Particle Swarm Optimization and Genetic Algorithms Simone A. Ludwig Department of Computer Science North Dakota State University Fargo, ND, USA simone.ludwig@ndsu.edu Thomas

More information

Metaheuristics in Vehicle Routing

Metaheuristics in Vehicle Routing Metaheuristics in Vehicle Routing Michel Gendreau CIRRELT and MAGI École Polytechnique de Montréal Vilamoura, Portugal, 4-6 February 2012 Presentation outline 1) Vehicle Routing Problems 2) Metaheuristics

More information

MODELING RICH AND DYNAMIC VEHICLE ROUTING PROBLEMS IN HEURISTICLAB

MODELING RICH AND DYNAMIC VEHICLE ROUTING PROBLEMS IN HEURISTICLAB MODELING RICH AND DYNAMIC VEHICLE ROUTING PROBLEMS IN HEURISTICLAB Stefan Vonolfen (a), Michael Affenzeller (b), Stefan Wagner (c) (a) (b) (c) Upper Austria University of Applied Sciences, Campus Hagenberg

More information

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0 212 International Conference on System Engineering and Modeling (ICSEM 212) IPCSIT vol. 34 (212) (212) IACSIT Press, Singapore A Binary Model on the Basis of Imperialist Competitive Algorithm in Order

More information

Revenue Management for Transportation Problems

Revenue Management for Transportation Problems Revenue Management for Transportation Problems Francesca Guerriero Giovanna Miglionico Filomena Olivito Department of Electronic Informatics and Systems, University of Calabria Via P. Bucci, 87036 Rende

More information

An Improved ACO Algorithm for Multicast Routing

An Improved ACO Algorithm for Multicast Routing An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China wzqagent@xinhuanet.com

More information

The Multi-Item Capacitated Lot-Sizing Problem With Safety Stocks In Closed-Loop Supply Chain

The Multi-Item Capacitated Lot-Sizing Problem With Safety Stocks In Closed-Loop Supply Chain International Journal of Mining Metallurgy & Mechanical Engineering (IJMMME) Volume 1 Issue 5 (2013) ISSN 2320-4052; EISSN 2320-4060 The Multi-Item Capacated Lot-Sizing Problem Wh Safety Stocks In Closed-Loop

More information

Minimization of Transportation Cost in Courier Service Industry

Minimization of Transportation Cost in Courier Service Industry ISS (Online) : 2319-8753 ISS (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows

A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows European Journal of Operational Research 176 (2007) 1478 1507 Discrete Optimization A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows

More information

A tabu search heuristic for the vehicle routing problem with time windows and split deliveries

A tabu search heuristic for the vehicle routing problem with time windows and split deliveries A tabu search heuristic for the vehicle routing problem with time windows and split deliveries Sin C. Ho Dag Haugland Abstract The routing of a fleet of vehicles to service a set of customers is important

More information

The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem

The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem Angel A. Juan 1,, Javier Faulin 2, Rubén Ruiz 3, Barry Barrios 2, Santi Caballé 1 1 Dep. of Computer Sciences and Telecommunication,

More information

A Weighted-Sum Mixed Integer Program for Bi-Objective Dynamic Portfolio Optimization

A Weighted-Sum Mixed Integer Program for Bi-Objective Dynamic Portfolio Optimization AUTOMATYKA 2009 Tom 3 Zeszyt 2 Bartosz Sawik* A Weighted-Sum Mixed Integer Program for Bi-Objective Dynamic Portfolio Optimization. Introduction The optimal security selection is a classical portfolio

More information

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,

More information

On the Impact of Real-Time Information on. Field Service Scheduling. Ioannis Petrakis, Christian Hass, Martin Bichler 1

On the Impact of Real-Time Information on. Field Service Scheduling. Ioannis Petrakis, Christian Hass, Martin Bichler 1 On the Impact of Real-Time Information on Field Service Scheduling Ioannis Petrakis, Christian Hass, Martin Bichler 1 Department of Informatics, TU München, Germany Mobile phone operators need to plan

More information

Routing a Heterogeneous Fleet of Vehicles

Routing a Heterogeneous Fleet of Vehicles Technical Report DEIS OR.INGCE 2007/1 Routing a Heterogeneous Fleet of Vehicles Roberto Baldacci, Maria Battarra and Daniele Vigo DEIS, University Bologna via Venezia 52, 47023 Cesena, Italy January 2007

More information

Strategic Planning and Vehicle Routing Algorithm for Newspaper Delivery Problem: Case study of Morning Newspaper, Bangkok, Thailand

Strategic Planning and Vehicle Routing Algorithm for Newspaper Delivery Problem: Case study of Morning Newspaper, Bangkok, Thailand Strategic Planning and Vehicle Routing Algorithm for Newspaper Delivery Problem: Case study of Morning Newspaper, Bangkok, Thailand Arunya Boonkleaw, Nanthi Sutharnnarunai, PhD., Rawinkhan Srinon, PhD.

More information

The VRP with Time Windows

The VRP with Time Windows The VRP with Time Windows J.-F. Cordeau École des Hautes Études Commerciales, Montréal cordeau@crt.umontreal.ca Guy Desaulniers Département de mathématiques et génie industriel École Polytechnique de Montréal,

More information

Heuristic and exact algorithms for vehicle routing problems. Stefan Ropke

Heuristic and exact algorithms for vehicle routing problems. Stefan Ropke Heuristic and exact algorithms for vehicle routing problems Stefan Ropke December 2005 Preface This Ph.D. thesis has been prepared at the Department of Computer Science at the University of Copenhagen

More information

Scheduling and Routing Milk from Farm to Processors by a Cooperative

Scheduling and Routing Milk from Farm to Processors by a Cooperative Journal of Agribusiness 22,2(Fall 2004):93S106 2004 Agricultural Economics Association of Georgia Scheduling and Routing Milk from Farm to Processors by a Cooperative Peerapon Prasertsri and Richard L.

More information

Optimising Patient Transportation in Hospitals

Optimising Patient Transportation in Hospitals Optimising Patient Transportation in Hospitals Thomas Hanne 1 Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, hanne@itwm.fhg.de 1 Introduction

More information

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington subodha@u.washington.edu Varghese S. Jacob University of Texas at Dallas vjacob@utdallas.edu

More information

SOLVING INVENTORY ROUTING PROBLEMS USING LOCATION BASED HEURISTICS

SOLVING INVENTORY ROUTING PROBLEMS USING LOCATION BASED HEURISTICS OPERATIONS RESEARCH AND DECISIONS No. 2 2014 DOI: 10.5277/ord140204 Paweł HANCZAR 1 SOLVING INVENTORY ROTING PROBLEMS SING LOCATION BASED HERISTICS Inventory routing problems (IRPs) occur where vendor

More information

Dynamic Generation of Test Cases with Metaheuristics

Dynamic Generation of Test Cases with Metaheuristics Dynamic Generation of Test Cases with Metaheuristics Laura Lanzarini, Juan Pablo La Battaglia III-LIDI (Institute of Research in Computer Science LIDI) Faculty of Computer Sciences. National University

More information

On the Improvement of Blood Sample Collection at a Clinical Laboratory

On the Improvement of Blood Sample Collection at a Clinical Laboratory On the Improvement of Blood Sample Collection at a Clinical Laboratory Running head: On the Improvement of Blood Sample Collection List of authors: Helena R. Lourenço: Associate Professor. Department of

More information

Master s degree thesis

Master s degree thesis Master s degree thesis LOG950 Logistics Title: Collecting, dewatering and depositing sewage - logistics challenges Author(s): Lin keyong Number of pages including this page: 32 Molde, Date: 24.05.2012

More information

Stochastic Ship Fleet Routing with Inventory Limits YU YU

Stochastic Ship Fleet Routing with Inventory Limits YU YU Stochastic Ship Fleet Routing with Inventory Limits YU YU Doctor of Philosophy University of Edinburgh 2009 Declaration I declare that this thesis was composed by myself and that the work contained therein

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms MIGUEL CAMELO, YEZID DONOSO, HAROLD CASTRO Systems and Computer Engineering Department Universidad de los

More information

An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups

An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 19 An ant colony optimization for single-machine weighted tardiness

More information

The Multi-Depot Vehicle Routing Problem with Inter-Depot Routes

The Multi-Depot Vehicle Routing Problem with Inter-Depot Routes The Multi-Depot Vehicle Routing Problem with Inter-Depot Routes Benoit Crevier, Jean-François Cordeau and Gilbert Laporte Canada Research Chair in Distribution Management HEC Montréal 3000 chemin de la

More information

Research on the Performance Optimization of Hadoop in Big Data Environment

Research on the Performance Optimization of Hadoop in Big Data Environment Vol.8, No.5 (015), pp.93-304 http://dx.doi.org/10.1457/idta.015.8.5.6 Research on the Performance Optimization of Hadoop in Big Data Environment Jia Min-Zheng Department of Information Engineering, Beiing

More information

A Task Based Approach for A Real-World Commodity Routing Problem

A Task Based Approach for A Real-World Commodity Routing Problem A Tas Based Approach for A Real-World Commodity Routing Problem Jianjun Chen, Ruibin Bai, Rong Qu and Graham Kendall Division of Computer Science, University of Nottingham Ningbo, China Email: jianjun.chen@nottingham.edu.cn

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)

More information

Ant colony optimization techniques for the vehicle routing problem

Ant colony optimization techniques for the vehicle routing problem Advanced Engineering Informatics 18 (2004) 41 48 www.elsevier.com/locate/aei Ant colony optimization techniques for the vehicle routing problem John E. Bell a, *, Patrick R. McMullen b a Department of

More information

Production Scheduling for Dispatching Ready Mixed Concrete Trucks Using Bee Colony Optimization

Production Scheduling for Dispatching Ready Mixed Concrete Trucks Using Bee Colony Optimization American J. of Engineering and Applied Sciences 3 (1): 7-14, 2010 ISSN 1941-7020 2010 Science Publications Production Scheduling for Dispatching Ready Mixed Concrete Trucks Using Bee Colony Optimization

More information

Vehicle Routing and Scheduling. Martin Savelsbergh The Logistics Institute Georgia Institute of Technology

Vehicle Routing and Scheduling. Martin Savelsbergh The Logistics Institute Georgia Institute of Technology Vehicle Routing and Scheduling Martin Savelsbergh The Logistics Institute Georgia Institute of Technology Vehicle Routing and Scheduling Part I: Basic Models and Algorithms Introduction Freight routing

More information

Solving Capacitated Vehicle Routing Problem by Using Heuristic Approaches: A Case Study

Solving Capacitated Vehicle Routing Problem by Using Heuristic Approaches: A Case Study Journal of Modern Science and Technology Vol. 3. No. 1. March 2015 Issue. Pp.135-146 Solving Capacitated Vehicle Routing Problem by Using Heuristic Approaches: A Case Study * Mohibul Islam, **Sajal Ghosh

More information

Online vehicle routing and scheduling with continuous vehicle tracking

Online vehicle routing and scheduling with continuous vehicle tracking Online vehicle routing and scheduling with continuous vehicle tracking Jean Respen, Nicolas Zufferey, Jean-Yves Potvin To cite this version: Jean Respen, Nicolas Zufferey, Jean-Yves Potvin. Online vehicle

More information

Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine

Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine V.Hymavathi, B.Abdul Rahim, Fahimuddin.Shaik P.G Scholar, (M.Tech), Department of Electronics and Communication Engineering,

More information

Nature of Real-World Multi-objective Vehicle Routing with Evolutionary Algorithms

Nature of Real-World Multi-objective Vehicle Routing with Evolutionary Algorithms Nature of Real-World Multi-objective Vehicle Routing with Evolutionary Algorithms Juan Castro-Gutierrez, Dario Landa-Silva ASAP Research Group, School of Computer Science University of Nottingham, UK jpc@cs.nott.ac.uk,

More information

A genetic algorithm for resource allocation in construction projects

A genetic algorithm for resource allocation in construction projects Creative Construction Conference 2015 A genetic algorithm for resource allocation in construction projects Sofia Kaiafa, Athanasios P. Chassiakos* Sofia Kaiafa, Dept. of Civil Engineering, University of

More information

SELECTED ASPECTS OF TRANSPORTATION SYSTEM MODELLING

SELECTED ASPECTS OF TRANSPORTATION SYSTEM MODELLING TOTAL LOGISTIC MANAGEMENT No. 1 2008 PP. 15 24 Tomasz AMBROZIAK, Dariusz PYZA SELECTED ASPECTS OF TRANSPORTATION SYSTEM MODELLING Abstract: The paper presents selected aspects of the transport services

More information

Solving the Vehicle Routing Problem with Genetic Algorithms

Solving the Vehicle Routing Problem with Genetic Algorithms Solving the Vehicle Routing Problem with Genetic Algorithms Áslaug Sóley Bjarnadóttir April 2004 Informatics and Mathematical Modelling, IMM Technical University of Denmark, DTU Printed by IMM, DTU 3 Preface

More information

Projects - Neural and Evolutionary Computing

Projects - Neural and Evolutionary Computing Projects - Neural and Evolutionary Computing 2014-2015 I. Application oriented topics 1. Task scheduling in distributed systems. The aim is to assign a set of (independent or correlated) tasks to some

More information

Branch-and-Price for the Truck and Trailer Routing Problem with Time Windows

Branch-and-Price for the Truck and Trailer Routing Problem with Time Windows Branch-and-Price for the Truck and Trailer Routing Problem with Time Windows Sophie N. Parragh Jean-François Cordeau October 2015 Branch-and-Price for the Truck and Trailer Routing Problem with Time Windows

More information

A MIXED INTEGER PROGRAMMING FOR A VEHICLE ROUTING PROBLEM WITH TIME WINDOWS: A CASE STUDY OF A THAI SEASONING COMPANY. Abstract

A MIXED INTEGER PROGRAMMING FOR A VEHICLE ROUTING PROBLEM WITH TIME WINDOWS: A CASE STUDY OF A THAI SEASONING COMPANY. Abstract A MIXED INTEGER PROGRAMMING FOR A VEHICLE ROUTING PROBLEM WITH TIME WINDOWS: A CASE STUDY OF A THAI SEASONING COMPANY Supanat Suwansusamran 1 and Pornthipa Ongunaru 2 Department of Agro-Industrial Technology,

More information

Intelligent Taxi Dispatch System for Advance Reservations

Intelligent Taxi Dispatch System for Advance Reservations Intelligent Taxi Dispatch System for Advance Reservations Hao Wang, Ningbo Institute of Technology, Zhejiang University Ruey Long Cheu, The University of Texas at El Paso Der-Horng Lee, The National University

More information

Computational Intelligence Algorithms for Optimized Vehicle Routing Applications in Geographic Information Systems

Computational Intelligence Algorithms for Optimized Vehicle Routing Applications in Geographic Information Systems 1 Computational Intelligence Algorithms for Optimized Vehicle Routing Applications in Geographic Information Systems Michael Rice Thesis Proposal Abstract This project seeks to explore the application

More information

A Brief Study of the Nurse Scheduling Problem (NSP)

A Brief Study of the Nurse Scheduling Problem (NSP) A Brief Study of the Nurse Scheduling Problem (NSP) Lizzy Augustine, Morgan Faer, Andreas Kavountzis, Reema Patel Submitted Tuesday December 15, 2009 0. Introduction and Background Our interest in the

More information

Management of Software Projects with GAs

Management of Software Projects with GAs MIC05: The Sixth Metaheuristics International Conference 1152-1 Management of Software Projects with GAs Enrique Alba J. Francisco Chicano Departamento de Lenguajes y Ciencias de la Computación, Universidad

More information

ACO Based Dynamic Resource Scheduling for Improving Cloud Performance

ACO Based Dynamic Resource Scheduling for Improving Cloud Performance ACO Based Dynamic Resource Scheduling for Improving Cloud Performance Priyanka Mod 1, Prof. Mayank Bhatt 2 Computer Science Engineering Rishiraj Institute of Technology 1 Computer Science Engineering Rishiraj

More information

Load balancing in a heterogeneous computer system by self-organizing Kohonen network

Load balancing in a heterogeneous computer system by self-organizing Kohonen network Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.

More information

Optimization of PID parameters with an improved simplex PSO

Optimization of PID parameters with an improved simplex PSO Li et al. Journal of Inequalities and Applications (2015) 2015:325 DOI 10.1186/s13660-015-0785-2 R E S E A R C H Open Access Optimization of PID parameters with an improved simplex PSO Ji-min Li 1, Yeong-Cheng

More information

A savings-based randomized heuristic for the heterogeneous fixed fleet vehicle routing problem with multi-trips

A savings-based randomized heuristic for the heterogeneous fixed fleet vehicle routing problem with multi-trips Journal of Applied Operational Research (2014) 6(2), 69 81 Tadbir Operational Research Group Ltd. All rights reserved. www.tadbir.ca ISSN 1735-8523 (Print), ISSN 1927-0089 (Online) A savings-based randomized

More information

Optimal PID Controller Design for AVR System

Optimal PID Controller Design for AVR System Tamkang Journal of Science and Engineering, Vol. 2, No. 3, pp. 259 270 (2009) 259 Optimal PID Controller Design for AVR System Ching-Chang Wong*, Shih-An Li and Hou-Yi Wang Department of Electrical Engineering,

More information

Population-based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems

Population-based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems Population-based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems Flavia Zamfirache, Marc Frîncu, Daniela Zaharie Department of Computer Science, West University of Timişoara, Romania

More information

Real-Time Multi-Vehicle Truckload Pick-Up and Delivery Problems

Real-Time Multi-Vehicle Truckload Pick-Up and Delivery Problems Real-Time Multi-Vehicle Truckload Pick-Up and Delivery Problems Jian Yang Patrick Jaillet Hani Mahmassani Department of Industrial and Manufacturing Engineering New Jersey Institute of Technology, Newark,

More information

Solving a Real Vehicle Routing Problem in the Furniture and Electronics Industries

Solving a Real Vehicle Routing Problem in the Furniture and Electronics Industries Solving a Real Vehicle Routing Problem in the Furniture and Electronics Industries Jean-Philippe Gagliardi Jacques Renaud Angel Ruiz June 2013 CIRRELT-2013-35 Document de travail également publié par la

More information

A Maximal Covering Model for Helicopter Emergency Medical Systems

A Maximal Covering Model for Helicopter Emergency Medical Systems The Ninth International Symposium on Operations Research and Its Applications (ISORA 10) Chengdu-Jiuzhaigou, China, August 19 23, 2010 Copyright 2010 ORSC & APORC, pp. 324 331 A Maximal Covering Model

More information

Offline sorting buffers on Line

Offline sorting buffers on Line Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: rkhandekar@gmail.com 2 IBM India Research Lab, New Delhi. email: pvinayak@in.ibm.com

More information

A New Approach for Routing Courier Delivery Services with Urgent Demand

A New Approach for Routing Courier Delivery Services with Urgent Demand A New Approach for Routing Courier Delivery Services with Urgent Demand Final Report METRANS Project July, 2012 Principal Investigator: Fernando Ordonez Maged M. Dessouky, Ph.D.Graduate Student: Chen Wang

More information

Dynamic Task Scheduling with Load Balancing using Hybrid Particle Swarm Optimization

Dynamic Task Scheduling with Load Balancing using Hybrid Particle Swarm Optimization Int. J. Open Problems Compt. Math., Vol. 2, No. 3, September 2009 ISSN 1998-6262; Copyright ICSRS Publication, 2009 www.i-csrs.org Dynamic Task Scheduling with Load Balancing using Hybrid Particle Swarm

More information

Real-Life Vehicle Routing with Non-Standard Constraints

Real-Life Vehicle Routing with Non-Standard Constraints , July 3-5, 203, London, U.K. Real-Life Vehicle Routing with n-standard Constraints W. L. Lee Abstract Real-life vehicle routing problems comprise of a number of complexities that are not considered by

More information

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem American Journal of Industrial and Business Management, 2016, 6, 774-789 Published Online June 2016 in SciRes. http://www.scirp.org/journal/ajibm http://dx.doi.org/10.4236/ajibm.2016.66071 A Study of Crossover

More information

Regrets Only! Online Stochastic Optimization under Time Constraints

Regrets Only! Online Stochastic Optimization under Time Constraints Regrets Only! Online Stochastic Optimization under Time Constraints Russell Bent and Pascal Van Hentenryck Brown University, Providence, RI 02912 {rbent,pvh}@cs.brown.edu Abstract This paper considers

More information

Influences of Communication Disruptions on Decentralized Routing in Transport Logistics

Influences of Communication Disruptions on Decentralized Routing in Transport Logistics Influences of Communication Disruptions on Decentralized Routing in Transport Logistics Bernd Scholz-Reiter, Christian Zabel BIBA Bremer Institut für Produktion und Logistik GmbH University of Bremen Hochschulring

More information

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya

More information

The Trip Scheduling Problem

The Trip Scheduling Problem The Trip Scheduling Problem Claudia Archetti Department of Quantitative Methods, University of Brescia Contrada Santa Chiara 50, 25122 Brescia, Italy Martin Savelsbergh School of Industrial and Systems

More information