Huffman Movement DCT. Encoding H.261 Detection. video Raw video Interframe coding data. Inverse Inverse Memory

Size: px
Start display at page:

Download "Huffman Movement DCT. Encoding H.261 Detection. video Raw video Interframe coding data. Inverse Inverse Memory"

Transcription

1 CopyrightIEEE/TransactionsonNetworking,June1996 VideoconferencingintheInternet ThierryTurlettiandChristianHuitema Abstract ThispaperdescribestheINRIAVideoconferencingSystem(ivs),alowbandwidthtool forreal-timevideobetweenworkstationsonthe InternetusingUDPdatagramsandtheIPmulticastextension.Thevideocoder-decoder(codec) isasoftwareimplementationoftheuit-trecommendationh.261originallydevelopedforthe IntegratedServicesDigitalNetwork(ISDN).Our focusinthispaperisonadaptingthiscodecfor theinternetenvironment.weproposeapacketizationscheme,anerrorcontrolschemeandan outputratecontrolschemethatadaptstheimage codingprocessbasedonnetworkconditions.this workshowsthatitispossibletomaintainvideoconferenceswithreasonablequalityacrosspacketswitchednetworkswithoutrequiringspecialsupportfromthenetworksuchasresourcereservationoradmissioncontrol. 1Introduction Asthebandwidthavailableonnetworksandthe speedofcomputersincreases,real-timetransmissionofvideobetweengeneralpurposeworkstationsbecomesamoreandmorerealisticapplication.however,evenwithahighspeednetwork, videohastobecompressedbeforetransmission. Forexample,sendinguncompressedNTSCvideo requiresabout60mb/s.fortunately,thereisso muchredundancyinmostvideosequencesthat evenarelativelysimplecompressionschemecan signicantlydecreasetherateofvideoows.videocompressionisgenerallyperformedbysome formofdierentialcoding,i.e.bysendingonly thedierencesbetweentwoconsecutiveimages. Thisleadstohighlyvariabletransmissionrates becausetheamountofinformationtocodebetweentwoimagesgreatlyvaries,rangingfrom verylowforstillscenestoveryhighforsequences withmanyscenechanges.packetswitchednetworkssuchastheinternetareverywellsuited fortransmittingsuchvariablebitratetrac[8]. T.TurlettiandC.HuitemaarewithINRIA,SophiaAntipolis,France. However,videoconferencingrequiresaminimum levelofqualityandtheinternetdoesnotprovidesuchqualityofservice(qos)guarantees yet.nevertheless,weshowthatitispossible toobtaingoodqualityusingcontrolcongestion mechanismstopreventclobberingoftheshared resources. Onecanndmanyvideocompressionalgorithmsintheliterature.Someofthemhavebeen standardizedsuchasjpeg[2]forstillimages, ormpeg[18]andh.261[25],[19]formoving images.mpeg-1codingissuitedforhighdenitionvideostorageandretrieval[20].mpeg-2 extendsmpeg-1tohighdenitiontelevision Coding(HDTV)applications[21]. TheH.261standarddescribesacomplexvideo compressionalgorithmwhichallowstoachievea veryhighcompressionrate1.thisstandardwas designedforuseovertheintegratedservicesdigitalnetwork(isdn),i.e.foranetworkwithxed ratechannels(p64kb=s,p2[1;32]).wehave implementedasoftwareversionofanh.261codec foruseovertheinternet.thisimplementationis thecoreoftheinriavideoconferencingsystem (ivs)[31].byadoptingastandardizedalgorithm, ivscaneasilyinteroperate2withalargenumber ofh.261-basedcommercialvideocodecs[14]. However,thisstandardisnotdesignedfora packetswitchednetworkssuchastheinternet. SincetheInternetdoesnotprovidethesameQuality-of-Service(QoS)asISDN,weproposeaset ofschemestoadapttheh.261videocompression algorithmtothisenvironment.inthispaper,we describeapacketizationscheme,anerrorcontrol schemeandanoutputratecontrolschemewhich adaptstheimagecodingprocessaccordingtothe networkconditions. 1H.261videocompressionratecanbeeasilyadjusted,see section5.3. 2Seealsotheon-linehtmldocument< 1

2 Thesethreeschemesarerespectivelydeveloped insections3,4and5.section6evaluatestheperformancesofivs.section7concludesthepaper. 2RelativeWork WithouttheIPmulticasttechnology[10],theset ofvideoconferencingtoolsrecentlydevelopedin thenetworkresearchcommunitycouldneverbe widelyadopted.ipmulticasttechnologyextends thetraditionaliproutingmodelbyprovidingan ecientmulti-partypacketdelivery.theincrementaldeploymentofipmulticasthasbeenrealizedthroughthemulticastbackbone(mbone),a virtualmulticastnetworkbuiltontopthecurrent Internet[6],[26]. ivsisnottheonlyvideoconferencingapplicationusedbythembonecommunity.atthesame timewhenwedevelopedivs,ronfrederickfrom XeroxParcwasdevelopingtheNetworkVideo tool(nv).morerecently,stevemccanneatucb- /LBLdevelopedthevicvideoconferencingtool. nvusesacustomcodingschemetailoredforthe Internetandtargetedforecientsoftwareimplementation[11].Itscompressionalgorithmis basedonahaartransform,alowcomputational complexitytransformcomparedtothediscrete CosineTransformusedinH.261.Inspiteofa lowercompressionrateperformance,nvcoding ispreferedbythembonecommunitymainlybecauseofitsbetterrun-timeperformances. vichasbeenbuiltuponthelessonslearned frombothivsandnv[27].itisaexibleapplicationwhichsupportsmultiplenetworkabstractionsandseveralvideocompressionalgorithms. viccaninteroperatewithbothivsandnv.vic's H.261encoderusesonlyINTRA3encodingmode whichgreatlysimpliesthealgorithmandimprovestherun-timeperformances(inspiteofa lowercompressionrateachievedasshowninfigure17). Allthesevideoconferencingtoolsareregularly improvedandupgradedversionsareavailablein thepublicdomain.currently,ivsistheonly videoconferencingtoolwhichimplementsacontrolcongestionalgorithmbyadaptingitsoutput ratetothenetworkconditions. 3Seedenitioninsection3.1. 3TheH.261packetization scheme WerstgiveabriefoverviewoftheH.261video compressionstandardinordertobetterunderstandthefollowingsections. 3.1OverviewoftheITU-TrecommendationH.261 TheH.261recommendationdescribesacodec schemetouseforaudiovisualservicesatp64 kb/s(p=1;2;:::;30).anh.261coderanalyses thesuccessiveimagesofthevideostreamassets ofblocksof88pixels.thealgorithmcanbedecomposedinseveralsteps:movementdetection, DiscreteCosineTransform(DCT),Quantization andhumanencoding. Afterperformingmovementdetection,thecodercaneitherdecidetoencodethedierencebetweentheblockanditspreviousencoded/decoded occurrence,or,ifthereisnotenoughcorrelation, tosimplyencodethenewvalue.thisisrespectivelyreferredasinter-framesandintra-framescoding.intra-codedcodesrelyonlyon theredundancywithinasinglevideoframewhen inter-codedcodealsousesthetemporalredundancyofvideotoperformcompression.infact, H.261doesnottransmitdirectlythepixelvalues orthedierences,butratherthecoecientsof theirdiscretecosinetransform(dct)[22].once transformed,thesecoecientsarethenquantized andhumanencodedbeforeactualtransmission. ThecoderschemeisshowninFigure1. TheH.261layers TheH.261codingisorganizedasahierarchyof groupings.thevideostreamiscomposedofa sequenceofimages(orpictures)whicharethemselvesorganizedasasetofgroupsofblocks (GOB)(seeFigure2).NotethatH.261\pictures"arereferredas\frames"inthisdocument. EachGOBholdsasetof3linesof11macro blocks(mb).eachmbcarriesinformationona groupof16x16pixels:luminanceinformationis speciedfor4blocksof8x8pixels,whilechrominanceinformationisgivenbytwo\red"and \blue"colordierencecomponentsataresolutionofonly8x8pixels.thesecomponentsand thecodesrepresentingtheirsampledvaluesareas 2

3 Figure1:BasicH.261codingloop Intraframe coding DCT AttheGOBlevel,onespeciestheGOB Quantization Huffman Movement Encoding numberandthedefaultquantierthatwill H.261 Detection video Raw video Interframe coding data Picture Inverse Inverse Memory DCT Quantization Picture Picture GOB data... Layer Header GOB data GOB andquartercif(qcif).thereare12gobs denedintheitu-rrecommendation601[7]. Twomainsizesofimagesaredened:CIF4 Figure2:H.261layers 3.2Considerationsforpacketization AttheMBlevel,onespecieswhichblocks optionallyaquantizerandmotionvectors. arepresentandwhichhavenotchanged,and beusedforthembs. MB data... Layer MB data Header foracifpictureand3foraqcifpictureas showninfigure3. circuitsproduceabitstreamcomposedofseverallevelsofencodingspeciedbyh.261and overtheinternet H.261codecsdesignedforoperationoverISDN companionrecommendations.thebitsresulting MB MB B data... Layer B data Header B Transform coefficients EOB Layer anaudiostreamandtransmittedoverp64kb/s code.the512-bitframesaretheninterlacedwith 492bitsofdataand18bitsoferrorcorrecting fromthehumanencodingarearrangedin512- bitframes,containing2bitsofsynchronization, circuitsaccordingtospecicationh.221[24]. Figure3:GOBsarrangementinCIFandQCIF requiresadierentapproach.forinstance,an application-levelerrorcontrolschemeismoreef- TransmittingavideoowacrosstheInternet 352 pixels Thisgroupingisusedtospecifyinformationat pixels eachlevelofthehierarchy: pixels Attheframelevel,onespeciesinformation pixels suchasthedelayversusthepreviousframe, theimageformat,andvariousindicators UIT;itisaninterchangeformatforvideoimageswith288 4CIFistheCommonInterchangeFormatdenedbythe ure4. overisdnandh.261overipisdepictedinfig- (seesection3.3).acomparisonbetweenh.261 beprovidedbytherealtimeprotocol(rtp) cientthanthe512-bitframing(seesection4). mostofmultimediaapplicationrequirementscan Similarly,insteadofusingtheH.221framing, DirectlytransmittingtheresultoftheHuman lineswith352pixelsperlineofluminanceand144lineswith 176pixelsperlineofchrominanceinformation. presentinthegobheadertodecodethembs. todecodethegobs,aswellastheinformation tureofh.261bitstreamisthatoneneedstore- ceivetheinformationpresentintheframeheader gramswouldhaveverypoorerrorresistancechar- encodingoveranunreliablestreamofudpdataacteristics.theresultofthehierarchicalstruc- 3

4 H.261 H.261 RTP UDP IP H.221 ISDN H.261 Figure4:H.261overISDNvsH.261overIP However,avideoimage(orevenaGOB)can sometimesbebiggerthanthemaximaltransmissionunit(mtu)5.theh.261recommendation speciesthatthemaximalsizeofacifimage is32kbytes(whichmeans3kbytesforagob, 90bytesforaMBand15bytesforablock).In practice,weobservethattheh.261imagesizeis highlyvariableaccordingtothequantityofmovementsanddetailsintheencodedscene:itvaries fromafewbytestoabouttwentykbytes.first versionsoftheh.261packetizationschemeused agobunitoffragmentation.toachievebetterperformancesonlossyenvironment,thelatest versionofthepacketizationschemetakesthemb asunitoffragmentation.inthescheme,packetsmuststartandendonanmbboundary,i.e. anmbcannotbesplitacrossmultiplepackets. MultipleMBscanbecarriedinasinglepacket whentheytwithinthemaximalpacketsizeallowed.thispracticeisrecommendedtoreduce thepacketsendrateandpacketoverhead. InthespiritoftheApplicationLevelFraming (ALF)model[9],theH.261packetizationscheme allowseachpacketreceivedatthedecodertobe processedindependently.toprovideanecient resynchronizationinthepresenceofpacketloss, alltheinformationrequiredtodecodeanmb independentlyissentinaspecicrtp-h.261 headerconjoinedtotheh.261data.thisheader includesthegobnumberineectatthestart ofthepacket,areferencetothepreviousmbencodedinthisgob,thequantizervalueineect priortothestartofthispacketandthereference MotionVectorData(MVD)forcomputingthe truemvdscontainedwithinthispacket. Moreover,sincethecompressedMBmaynot llanintegernumberofoctets,theh.261header containstwothree-bitintegers,sbitandebit, 5TheMTUsizedependsonthenetwork:e.g.itis1536 bytesforanethernetnetworkanditcanbeaslowas576 bytesfortheinternet. toindicatethenumberofunusedbitsintherst andlastoctetsoftheh.261data,respectively. 3.3OverviewofRTP TheRealTimeProtocol(RTP)aimstosatisfy theneedsofmulti-partymultimediaapplications: source-identier,content-identier,timestamp, demultiplexing,etc[29].moreover,rtpallows interoperabilitybetweentheexistingmbone tools. TheRTPspecicationdescribesaverythin transportprotocolwhichisthemostoftenintegratedintotheapplicationprocessingratherthan beingimplementedasaseparatelayer.thisisin accordancewiththeapplicationlayerframing (ALF)spirit[9].IntheIPprotocolstack,RTP issituatedontopofudp(seefigure4).asa matteroffact,thertpspecicationdescribes twoprotocols:thedatatransferprotocol(rtp) andthecontrolprotocol(rtcp). EachRTPdatapacketiscomposedofanRTP headerfollowedbythertppayload(i.e.the data).thertpheadercontainsasequencenumber,amedia-specictimestampandasynchronizationsourcepacketidentier(ssrc).receiversdemultiplexpacketsusingthessrcwhich isgloballyuniquewithinanrtpsession. TheRTPcontrolprotocol(RTCP)manages controlinformationprovidingmechanismsfordatadistributionmonitoring,cross-mediasynchronizationandsenderidentication.rtcppackets aretransmittedperiodicallytoallparticipantsin thesessionandtheperiodisadjustedaccording tothesizeofthesession.inthisway,thertcp bandwidthislimitedinordertoavoidthenack explosionproblem. 3.4Specicationofthepacketizationscheme TheH.261informationiscarriedaspayloaddata withinthertpprotocol.thefollowingeldsof thertpheaderarespecied: ThepayloadtypeshouldspecifyH.261payloadformat(seethecompanionRTPprole documentrfc1890). TheRTPtimestampencodesthesampling instantoftherstvideoimagecontained inthertpdatapacket.ifavideoimage 4

5 occupiesmorethanonepacket,thetimestampwillbethesameonallofthosepackets. Packetsfromdierentvideoimagesmusthave dierenttimestampssothatframesmaybe distinguishedbythetimestamp.forh.261 videostreams,thertptimestampisbased ona90khzclock:thisclockrateisamultipleofthenaturalh.261framerate(i.e /1001,orapproximatively29.97Hz). Thatway,theclockissimplyincremented bythemultipleforeachframetime. ThemarkerbitoftheRTPheaderissetto oneinthelastpacketofavideoframe,and otherwise,mustbezero.thus,itisnotnecessarytowaitforafollowingpacket(which containsthestartcodethatterminatesthe currentframe)todetectthatanewframe shouldbedisplayed. TheRTP-H.261headerwillfollowtheRTPheader andprecedestheh.261dataasshowningure 5:TheeldsintheRTP-H.261headerhavethe followingmeanings: Startbitposition(SBIT) Numberofbitsthatshouldbeignoredinthe rstdataoctet. Endbitposition(EBIT) Numberofbitsthatshouldbeignoredinthe lastdataoctet. INTRA-frameencodeddata(I) Setto1ifthisstreamcontainsonlyINTRAframecodedblocks.Setto0ifthisstream mayormaynotcontainintra-framecoded blocks. Motionvectorag(V) Setto0ifmotionvectorsarenotusedin thisstream.setto1ifmotionvectorsmay ormaynotbeusedinthisstream. GOBnumber(GOBN) EncodestheGOBnumberineectatthe startofthepacket.setto0ifthepacket beginswithagobheader. Macroblockaddresspredictor(MBAP) Encodesthemacro-blockaddresspredictor (i.e.thelastmbaencodedintheprevious packet). Quantizer(QUANT) Quantizervalueineectpriortothestart ofthispacket.setto0ifthepacketbegins withagobheader. Horizontalmotionvectordata(HMVD) Referencehorizontalmotionvectordata (MVD).Setto0ifVagis0orifthepacket beginswithagobheader,orwhenthemtype ofthelastmbencodedinthepreviouspacket wasnotmotioncompensated.hmvdisencodedasatwo'scomplementnumber. Verticalmotionvectordata(VMVD) Referenceverticalmotionvectordata (MVD).Setto0ifVagis0orifthepacket beginswithagobheader,orwhenthemtype ofthelastmbencodedinthepreviouspacket wasnotmotioncompensated.vmvdisencodedasatwo'scomplementnumber. Recommendationsforhardwarecodecs PacketizersforhardwarecodecscantriviallygureoutGOBboundariesusingtheGOB-start patternincludedintheh.261data.thecheapest packetizationimplementationconsiststosplitthe videoowatthegoblevelbysendinganentire numberofgobsinapacket.butwhenagob istoolarge,thepacketizerhastoparseitinordertoperformmbfragmentation.notethatthis requiresrelativelylittleprocessingsinceitisnot necessarytofullydecompresstheh.261stream tollintheh.261specicheader.however,we recommendtousemblevelfragmentationwhen feasibleinordertoreducetheoutputpacketrate andthereforedecreasetheoverhead. Atthereceiver,thedatastreamcanbedepacketizedanddirectedtoahardwarecodec'sinput. Ifthehardwaredecoderoperatesataxedbit rate,synchronizationmaybemaintainedbyinsertingthestungpatternbetweenmbs(i.e., betweenpackets)whenthepacketarrivalrateis slowerthanthebitrate. ThepacketizationschemedescribedinthissectioniscurrentlyproposedasstandardtotheAudio-VideoTransportWorkingGroup(AVT-WG) attheinternetengineeringtaskforce(ietf) [32]. 4Theerrorcontrolscheme Errorsinavideostreamrequireadierentform ofcorrectionthanerrorsinanormaldatastream. Teststransmittingvideostreamoverastandard TCPconnectionallowedustotransmitdataover 5

6 RTP Header SBIT EBIT I V GOBN MBAP QUANT HMVD VMVD } RTP H.261 arenotacceptableforreal-timeapplicationssuch Figure5:TheH.261headerformat Header asvideoconferencing.itismoreconvenienttouse theinternetwithoutconcernoflostorout-ofsequencepacketsbecauseoftcpreliability[15]. UDPandconstructapplicationspecicreliability However,retransmissionintroducesdelayswhich Video Stream services. arenotintraencoded.thereareseveralways tocongestionratherthantransmissionerrors[3], [28].Alternatively,packetscanbedelayedorreceivedoutoforder.Thiscouldhappenasarework.Duetoreal-timerequirements,delayesultoftheroutingandowcontrolinthenet- videopacketsareconsideredaslostpacketsif OntheInternet,mostpacketlossesaredue nishment7.intracodingismuchlessecient tomitigatepacketloss: RemovingtheINTERcodingwillresultinsignificantlydecreaseofthecompressionratio8frameencodingandMBlevelconditionalreple- thanintercodingbecausealargeamountof ThesafestwayconsiststouseonlyINTRA- delayexceedsamaximumdelayvalue6.using knowifapackethasbeensuccessfullyreceived. UDP,nomechanismisavailableatthesenderto INTRAmode,onlytheMBsconcernedbythe temporalredundancyexistsinimagesequences. Amoreecientwayconsiststoreplenish,in sequencenumbereldandtimestamparestored. Thesequencenumberisincrementedbyonefor outoforderpackets. coder)tohandlepacketlossandre-sequencingof Itisuptotheapplication(i.e.coderandde- eachpacketsentwhereasthetimestampreects thetimewhentheframewasgrabbed.packet lossescanbedetectedusingthertpsequence number. EachRTPpacketincludesaheaderinwhicha \NegativeAcknowledgement"(NACK)packetis loss.asallgobbelongingtoagivenvideo moreecientthanrequestingacompleterefresh- imagecarrythesametimestamp,thereceiver mentoftheimagethrougha\fullintrare- quest"(fir)packet.figure6showsthenack ferentpackets.whenthedecodernoticesthatit didn'treceivepacketb,itsendsanackpacket tothecoder.thenackinformationmeansthat \GOB3,imagenislost."Theencoderwillput allthembencodedinthelostpacketbinto packete,usingintramode.actually,this receivedforthattimestampandthusidentifyinitializationofthesemissingblocksthrougha candeterminealistofgobswhichwerereally emissionafterapacketloss.inthisexample,the ingthemissingblocks.requestingaspecicre- calledmissamerica.theimageontheleftshows isthatdierentialcoding(orintercoding)is dancyofvideotoperformcompression.thepoint cal\headandshoulders"videosequenceusually theeectofpacketlossoneimageaftertheloss sensitivetopacketloss.figure7showsaclassi- TheH.261algorithmusesthetemporalredun- coderusesqcifandallgobsaresentindif- headwasmovingtotheright.wenotethata tually,thepartofimageaectedbythelosswill remainblurredaslongasallcorrespondingmbs lotofblocksaroundthefacearecorrupted.ac- occured.inthisexperiment,themissamerica's isaforcedreplenishmentandnotaretransmissionprocedurebecauseencodingoccursforanew frameandnotforthepreviouslostframe.the replenishmentprocedure9.however,thenackbasedmethodcanleadtothefeedbackexplosion leftimageonfigure7showstheimageafterthe ivs. 6Themaximumdelayvalueisempiricallysetto100msin experiment). ingtool. pressionrationbyabout30%,seefigure17. tertheblurredimage(i.e.300msafterforthis10f/s 8WeestimatethattheINTERmodeincreasesthecom- 9Inthiscase,thereplenishmenthappened3imagesaf- 7Thismethodiscurrentlyusedbythevicvideoconferenc- 6

7 Figure7:INTRArefreshmentafterNACKreceipt sizeofthesession:weempiricallysetthethresholdto10participants.whentherearelessthan lossrateinformation10. INTRArefreshmentrateisadaptedtothenetworkcongestionstate.Letusexaminewhatit ivsimplementsthesecondandthethirdmeth- 10receivers,NACKspacketsareused.Else,the meansintermofbandwidth.thetwoextreme ods,andthemethodisselectedaccordingtothe Decoder participantsgeneratenackspacketseachtime problemwhenreceiversaretoonumerous.ifall apacketislost,networkcongestionproblemswill Figure6:DataandNACKpackets andthe\chain"networktopologies,seefigure8. Inthefollowinganalysis,pistheaveragepacket casesformulticastingdistributionarethestar error,theh.261recommendationrequirestoin- ofaccumulationofinversetransformmismatch theimageinintraencodingmode.forcontrol codecsarenotdesignedtoacceptnackpackets. appearverysoon.also,regularhardwareh timesitistransmitted.Inordertospeed TRAencodingofeachMBatleastonceevery therecoveryprocedure,thecodercanadaptthe Athirdwayconsiststoperiodicallyrefresh lossobservedbyreceivers,risthenumberofreceiversinthesessionandnisthenumberofdata Figure8:StarandChainnetworktopologies starnetwork,duringthetintervaloftime,(rn) packetssentduringthetintervaloftime.inthe INTRArefreshmentrateaccordingtothepacket are(n)and(prn)forachainnetwork,respectively.then,theproportionofnackpacketsto packetsaresentbythereceivers.thenumbers packetsaresentbythesenderand(prn)nack 7thepacketlossratetheyobserve[5]. 10Receiverscanperiodicallysendbacktothevideocoder Image n Image n+1 Coder Packet A (GOB 1) Packet B (GOB 3) Packet C (GOB 5) Packet D (GOB 1) Packet E (GOB 3) Packet F (GOB 5) NACK (Image n, GOB 3) R 1 R 2 R R S R 3 S R R R R R

8 datapacketsiswithintheinterval[p;pr].the correspondingbandwidthproportionmusttake intoaccountthelengthofthedataandfeedback packets.withanaverageof500-bytesperdata packetand12bytespernackpacketsent,the proportionofbandwidthusedbythefeedback channeliswithintheinterval[12 500p;12 500pR].In ivs,themaximalrvalueis10.forexample,if thesessionhastenparticipantsandiftheaveragepacketlossrateis20%,thecorresponding feedbacktracremainsbelow5%ofthedata trac(between0.48and4.8%dependingonthe networktopology). 5Thecongestioncontrol scheme VideoconferenceontheInternetcouldwellbea \killerapplication";thenetworkadministrators nightmaresareprobablyalreadypopulatedby thousandsofhostsallsendingmegabitsofvideos overthenetandswampingthet3basedbackbones.thetextbooksolutionforcontrolling videooverthenetworkiscalled\resourcereservation,"generallycombinedwith\admissioncontrol."toputitshortly,whoeverwantstostart avideotransmissionissupposedtoaskforpermissionrst,requestingacertainamountofresources.itisassumedthatthecharacteristicsof thedataowisknownbeforestartingthesessionandthatthenetworkhasenoughknowledge todecideifsuchaowshouldbeadmittedornot. Thereisoneadvantagetothismodel:onceaccepted,onehasaguaranteedQoS.Butthereare alsomanydrawbacks,liketheneedtocoupleadmissionwithaccounting,theneedtoenforcecomplexreservationschemes,and,lastbutnotleast, theneedtointroduceavirtualcircuitphilosophy inanotherwisepurelydatagramnetwork.intensiveworkiscurrentlyinprogressintheietfto provideinternetapplicationstheqosrequired fortheirdataows(seethereservationsetup Protocol(RSVP)[34]).However,sincesuchresourcereservationarenotyetcurrentlydeployed, weinvestigatedanothersolution,tryingtovalidate,forvideo,the\endtoend"controlmodel thathadbeensosuccessfulforclassicdataexchange. Endtoendcontrolneedstwocomponents:a networksensorandathroughputcontroller.feedbackmechanismsforvideosourceshavebeenproposedfornetworkswithvariablecapacitychannelssuchastheinternet.there,thegoalistoadjusttheparameters(andhencetheoutputrate) ofvideocodersbasedonfeedbackinformation aboutchangingnetworkconditions,i.e.changing capacityinthenetwork.gilgeandal.propose tousefeedbackcontrol,buttheydonotdescribe speciccontrolmechanisms[12].wakemanat UCLdescribesaspecicscheme[33].However, thisschemerequiresthatthesourceofaconnectionknowstheservicerateofthebottleneck onthisconnection.thisserviceratecanbeestimatedinnetworkswheretheswitchesusea so-calledfairqueueingorequivalentdiscipline, forexampleusingthepacketpairmechanismdescribedin[17].however,itisnotavailablein networkswithfcfsswitchessuchastheinternet.otherwork[16]describesafeedbackcontrol schemewhichrequiresthatswitchessendtheir bueroccupanciesandserviceratesbacktothe source.nextwedescribethenetworksensorand thethroughputcontrollerimplementedinivs Thenetworksensor TheInternetinfrastructuredoesnotprovidesourcesoftracwithexplicitfeedbackinformation aboutthestateofthenetwork(e.g.queueoccupanciesattheswitches).theonlyeasilyavailableinformationisimplicitinformationsuchas measuresoflossesand/orround-tripdelays.in ivs,weuseafeedbackinformationwhichisbased onmeasuredpacketlosses. Inordertomonitorhowmanyvideopackets arriveattheirdestinationsviamulticasting,a sourceshouldobtaininformationfromeachreceiverindicatingpacketlossonthepathfromthe sourcetothatreceiver.onepossibleapproachis toleteachreceiversendanackpacketwheneveritdetectsaloss.however,thiscanleadto thewell-knownnackexplosionwhenthenetworkiscongested.anotherapproachconsiststo periodicallysendaqualityofservice(qos)measurewhichisthepacketlossrateobservedby receiversduringatimeintervaloflengtht.we refertotastheaveraginginterval.inivs,we takettobethetimerequiredatareceiver12to get100packets.assuggestedinthertpdraft 11Amoredetaileddescriptioncanbefoundin[4]. 12Observethatintervalslengthsmightbeslightlydierent fordierentreceivers. 8

9 minutes. sendsfeedbackinformationatleastonceevery2 document,wealsomakesurethateachreceiver sagebyarandomamountoftimedrawnfrom network,eachreceiverdelaysitsfeedbackmes- decreasetheimpactoffeedbacktraconthe mostalwaysthecaseontheinternet.tofurther packetlossrateishigherthan1%,whichisal- cientthanthenackapproachassoonasthe ItisclearthattheQoSapproachismoreeftothesourceusingRTP13.Thenthesourceconbackatthesametimewhichcouldcreateperiodic topreventreceiversfromsendingbacktheirfeed- congestiononthenetwork. therange[0:::t].thistechniqueisemployed vertsthedierentmeasuresofqosintoa\global" thereceivers.ourapproachistousethemedian measurecharacterizinghowwellpacketsarriveat lossrate. Eachreceiversendsitsmeasuredlossrateback 5.2Thethroughputcontroller backinformationiscomputedatthereceivers. matelyequaltotheintervaloverwhichthefeed- cretepointsintime,specicallywheneverase- quenceof100packetshasbeenencodedandsent. intervalbetweensuccessivecontrolsisapproxi- Ofcourse,thenumber100ischosensothatthe Controlactionsaretakenbythecoderatdis- adjuststhemaximumoutputrateofthecoder maxratesothatthemedianlossratestaysbelowatolerablelossrate.themedianlossrateis denotedbymedloss,andthetolerablelossrate Duringacontrolaction,thecontrolalgorithm bytolloss.specically,maxrateisdecreased byafactoroftwoifthemedianlossrateislarger thantolloss.otherwise,itisincreasedbyaxed fractionofitscurrentvalue.wealsomakesure thattheoutputrateisalwayslargerthansome minimumratetoguaranteeaminimumquality expectedtoeitherobtainmoreresourcethrough somereservationmechanism,orleavetheconference. whoseconnectionshaveaninsucientqualityare ofthevideoconferenceatthereceivers.receivers information[29]. 13TheRTPspecicationprovidesaframeworktosendQoS Thus,thecontrolalgorithmisasfollows: if(medloss>tolloss) 9 valueofmaxrateto100kb/s.intheseexperiments,thevideosourceisanivssourceatinriaceiverssendqospacketsperiodicallybacktothe source.weanalyzetheconnectionbetweenthe mentisa\largemulticast"environment,i.e.re- INRIAisamulticastconnection,i.e.thepackceiveratUniversityCollegeLondon(UCL).Note ivssourceatinriasophiaantipolisandare- howeverthattheconnectionbetweenucland etssentovertheconnectionarecarriedoverthe MBone.Atthistime14,themulticastpathfrom FrancetoGreatBritaingoesthroughCERNin Inivs,wesetminrate=10kb/s,gain=1:5, andtolloss=10%.wealsosetthemaximum else maxrate=gainmaxrate; maxrate=max(maxrate=2;minrate); Thenumberofreceiversissuchthattheenviron- onthex-axisistheframenumber,theaverage ceiver(dashedline)during20minutes.theunit andtheaveragepacketlosscomputedatthere- GenevaandAmsterdamintheNetherlands. frameratewasabout4imagespersecond. outputratemaxrateatthesource(plainline) Figure9showstheevolutionofthemaximum 100 "ratemax_pq_tole5" "loss_pq_tole5" 80 Figure9:Evolutionsofmaxrate(inkb/s)and detectedatthereceiver.whenthepacketloss thelossrateatthereceiver(in%). 0 decreasedbyhalf.then,theivsvideosourceis rateishigherthan10%,themaxratevalueis maxrateatthesourcedecreasesaslossesare Asexpected,weobservethatthevalueof ThisexperimenthasbeenmadeinOctober1993.

10 abletoadaptitsoutputratetothenetworkconditionsobserved. ratecanbeadjustedinh.261codecsandtheway information.next,wedescribehowtheoutput ofthecoderisadjustedbasedonthefeedback usedinivs,i.e.howthemaximumoutputrate itisimplementedinivs. Wehavedescribedabovethecontrolalgorithm SeveralparametersofaH.261codercanbeadjustedtochangetheoutputrateofthecoder. codec 5.3OutputratecontrolforH.261 isonlyappropriatewhentherefreshmentrateis Theeasiestmethodconsistsofmodifyingtheframerateoftheapplication.However,thissolutiorienceshowsthattherenditionofmovementis oftenaveryimportantrequirement. notakeyparameteroftheapplication:expe- istoadjustthevalueofthequantizer.byusing onereducestheprecisionoftheimage{thisis alooserquantizationfactorforthecoecients, approximatelyequivalenttoreducingthenumberofbitsperpixel.theresultingcoecients arelessvariablethantheoriginalvalues,andre- Asecondwaytocontroltheoutputofthecoder sultinfewerencodingbitsafterimagecompres- sion.however,whenthequantizervalueisset toohigh,theimagebecomesblurredduringthese changes. coderasafunctionofthequantizer.theseresultshavebeenobtainedforthewellknown\misure5.3). quantizerdecreases,theoutputrateofthecoder increasesandsodoestheimagequality(seefig- America"test-sequence.Whenthevalueofthe Figure12showsthattheoutputrateofthe foreachimage.thiscanbedonebyraisingthe reducethenumberofblockswhichareencoded controlsthenumberoftheblockswhichare\suf- thethresholdvalueincreases,thenthenumber cientlydierent"fromthepreviousframe.if movementdetectionthreshold.thisthreshold Athirdwaytoreducethedatarateistosimply toencodeeachimagedecreases.increasingthe thresholddecreasesthesensitivityofthecoderto movementandhenceyieldsalowerqualityimage. codingtimeandthenumberofbytesrequired ofblockstoprocessdecreasesandhencetheen- 10 rate (kb/s) quantizer = 3 quantizer = 7 quantizer = samevideosequenceusingdierentquantizers Figure12:Outputrate(kb/s)vsframefora ratestaysbelowmaxrate.15 temodes.themodecharacterizeswhatparame- tersareadjustedinthecodersothattheoutput Withinivs,theusercanselecttwodierent modes:privilegequalityandprivilegeframera PrivilegeQuality(PQ)modeisconvenientfor thresholdareconstantandmatchthemaximal applicationswhichrequirehighprecisioninthe slidesorstillimages).inthismode,thevaluesofthequantizerandthemovementdetection renditionofindividualimages(e.g.totransmit nientwhentheperceptionofmovementisaim- visualquality.thenthecoderwaitsforasuportantfactorofquality.theoutputrateiscontrolledusingdierentquantizerandmovement couplethequantizerwiththemovementdetec- PrivilegeFrameRate(PFR)modeisconvecientamountoftimebeforeencodingthefollowingimagesothattheoutputratestaysbelowthe detectionthresholdvalues.wehavedecidedto maxratevalue. tionthresholdusingempiricalset-ups. variablessincewhenthequantizerincreases,the creases.thestateofthecodec,inpfrmode,is precisionoftherenditiondecreases,andthelikelinessofalargedierencebetweentwoframesin- characterizedbythetargetdataratemaxrate Actually,itislegitimatetocouplethesetwo trolcongestionalgorithm. 15Themaxratevalueisadjustableontheybythecon-

11 Figure10:CIFimageencodedwithquantizervalues3(left)and7(right) severalpairs(quantizer,threshold)havebeenpreselectedinordertohavealinearvariationofthe andacoupleofquantizeranddetectorvalues: outputrate.thisselectionhasbeenobtained Figure11:CIFimageencodedwithaquantizervalueof11 tween3and13,andthethresholdbetween10 and35. byexperimentationrestrictingthequantizerbeteresisof30%ofthemaximumbandwidthdamps downtheoutputrate.iftheinstantaneousrate ratemeasuredisincludedinthisband,thecouplingispreserved.experimentsshowthathysteresisisrequiredtopreventundesirableoscillationsinthecontrolloop.iftheinstantaneous Sincetheoutputrateisrapidlyvarying,hysneousrateandthemaximumbandwidthallowed. accordingtothedierencebetweentheinstanta- isoutsidethisband,thenanewcoupleischosen sequence. sequenceismoreanimatedthantherestofthe uesofthebandwidth.therstquarterofthe ingapre-digitizedsequenceof200frames,with QCIFencodingformatandthreedierentval- Thefollowingdiagramshavebeenobtainedus- 11Figures13,14and15showtheinstantaneous

12 Instantaneousrate(kb/s) Quantizervalue Figure13:Outputrateandquantizervaluevsframenumberformaxrate=10kb/s "Rate.qcif.10" Figure14:Outputrateandquantizervaluevsframenumberformaxrate=30kb/s 30kb/sand50kb/s,respectively.Figure16shows thesignal-to-noiseratio(snr)obtainedforthesethreeexperiments. rateandthequantizerwithmaxrate=10kb/s, Figure15:Outputrateandquantizervaluevsframenumberformaxrate=50kb/s pressedindbasshowninequations(1). SNR=?10log(MSE),with: TheSNRisamean-squareerrormeasureex- valueofthispixelafterencoding/decodingand ofthepixel(j;k),^g(j;k)denotestheluminance MSE=1 whereg(j;k)denotestheoriginalluminancevalue JKPJj=1PKk=1[G(j;k)?^G(j;k)]2 A2 (1) proportionaltotheoutputrateandthatthequalityoftheimage(snr)isinverselyproportional tothequantizerselected.notealsothatthe teroftheexperimentbecausethevideosequence ismoreanimated,requiringmoreinformationto quantizerselectedislargerduringtherstquar- Notethatthequantizerselectedisinversely encode. AdenotesthemaximumvalueofG(j;k). 126Performance TheoutputdataowgeneratedbytheH.261 coderisnon-stationaryandrapidlyvarying.it "Rate.qcif.30" "Rate.qcif.50" "Quantizer.qcif.10" "Quantizer.qcif.30" "Quantizer.qcif.50"

13 40 38 "SNR.qcif.10" "SNR.qcif.30" "SNR.qcif.50" dependsonthequalityofthevideocameraand threeexperiments10,30and50kb/s Figure16:SNR(dB)vsframenumberforthe thetypeoftheimagesbeingencoded,ascharacterizedbythenumberofscenechanges,thescene structure,thescenelighting,etc.italsodepends machine. SPARCIPXworkstation,withcodinganddecodingprocessesrunningonthesamephysical Thefollowingexperimentshavebeenmadeona eration:thecomputationpowerofourcodecs. Wealsohavetotakeanotherelementinconsid- onthedenitionoftheimages:ciforqcif. Format Expt Expt.24.0 Unit(f/s)(kb/s)(f/s)(kb/s) QCIF CIF thereisnomovement,onlygrabbingandmovementdetectionhavetobeprocessed.so,the Therstexperimentiswithastillimage.When Expt speedlimitationismainlyduetotheunderlyinghardware,inourcasethevideopixboard 25 solutelynomovement,weonlyencodeforeach framethepictureandgobheaders. attachedtothesparcstation.whenthereisab- rateishighlydependentontheimagesize,while classicvideoconferencingimage,i.e.headand shouldersmoving.wecanobservethattheframe theoutputrateremainsalmostconstant:this Thesecondexperimentischaracteristicofa 13 ischaracteristicofacpuboundapplication.in fact,themostdemandingpartofthecodecisthe computationofthedctcoecients;thepower ingvideoscene.insuchacase,fullintra mittedandthenumberofbitssentonthelines. ofthecpudirectlylimitsthenumberofblocks thatcanbecomputedpersecond,hencelimiting cumulationoferrorsfromintermodeencod- ing.intramodeencodingusageincreasesthe byblocks.imageratedecreasesbecauseallthe outputratebecausemorecoecientsareencoded Thethirdexperimentisforarapidlychang- modeencodingischoseninordertosuppressac- thenumberofcoecientsthathavetobetranscessingisnecessary;thedatarateincreasesbecausethecoecientsaremuchmoredispersed blockshavetobeencodedandmorecpupro- frameratedependsonboththevideograbbing remoteteachingapplications.wefoundthatthe mightnotbesuitableforhighqualityvideoor Humancompressionlessecient. thanwithdierentialcoding,whichmakesthe boardandthecpuspeed.therefore,wewould expectmuchbetterperformancewithhigherperformancemachines.toillustratethispoint,we TheframerateshowninTable6islowand measuredtheperformanceofivsonasparcstation20/501(bi-processor275mhz)withthe forivs,nvandviconass10/20(41mips)platformwiththesunvideo17board.thevideoinputsequenceisveryanimated(i.e.allthembs areencodedineachframe)andqcifcolorvideo encodingisselectedwithoutvideodecodingneitherlocaldisplayfunctions.weusedversion2.6 Figure17showstheperformanceobtainedboth VigraPix16board.Onthisplatform,version3.5 ofivsisabletoencode/decodebetween25and30 fpsinqcifandbetween12and30fpsincif. whenthevideosequenceisveryanimated.this thatneitherivsnorviccanreachthisframerate QCIFframespersecondonthisplatform.Note ofvictoencodebothnvandvic-h.261modes isduetothehighcpupowerrequiredforthe andversion3.5ofivs18. H.261compressionalgorithm.Ontheotherhand, TheSunvideoboardallowsgrabbingupto20 nounce.html>. ducts-n-solutions/hw/wstns/sunvideo.html>. ratecontroldisabled. 18Inthisexperiment,ivsisusedwiththeautomaticoutput 17SeeURL< 16SeeURL<

14 Frame rate (f/s) Output rate (kb/s) "nv" "ivs-q3" "vic-q3" "vic-q13" Figure17:Framerate(f/s)vsoutputrate(kb/s) nvallowsobtainingahigherframerate(inspite ofalowercompressionrate)becauseitusesa lowcomputationalcomplexityalgorithm.note thattheivs-h.261compressionrateisabout30% higherthanvic-h.261compressionratewiththe same(q=3)quantizer.thisisbecauseivsuses theinterencodingmodeontopoftheintra encodingmode.however,theivs-h.261coderis moregreedyofcputhanthevic-h.261[only8.5 framescanbeencodedpersecondinsteadof13 forthesamequantizer(q=3)].finally,wenote thata(q=13)quantizergivesacompressionrate about4timeshigherthana(q=3)quantizer. 7Conclusion Inthispaper,wedescribedavideoconferencing softwareapplicationfortheinternet.thisapplication,availableinthepublicdomain19isused overtheinternettoholdvideoconferences,multicastconferences(e.g.the4thjointeuropean NetworkingconferenceheldinTrondheim,Norway,inMay1993),andweeklyMICE20seminars [14]. Itsmainassetsarethelowbandwidthrequired, thecompatibilitywithhardwarecodecs,andthe newdimensionitbringstoclassicworkstations withouthighcost,sinceminimalhardwareisnec- 19ivssourcesandbinariesareavailableby <ftp://zenon.inria.fr/rodeo/ivs/lastversion>.seealsourl < 20MICEstandsforMultimediaInternationalConferencing foreuropeanresearchers.miceisaneuropeanproject, whichaimsatprovidingappropriatemultimedia,multipartyconferencingtoresearchersineurope.seealsourl < essary.thelowbandwidthrequirementisvery attractive:forinstance,low-qualityvideocanbe sentona9600b/slink.moreover,thefeedback mechanismwedescribedinthispaperallowsivs tobehaveasa\goodnetworkcitizen." Furtherworkisongoingtoimprovethecongestioncontrolalgorithmforaheterogeneousmulticastenvironment.WithintheInternet,thebandwidthavailablebetweenseveralsender-receiver pathscanbeslightlydierent.videogateways canbeusedtoprovidedierentlevelsofvideo quality:anapplication-levelgatewayfortranscodinghardwaremotion-jpeg21toh.261videoow hasbeenrecentlyimplemented[1].however,a smartersolutiontotheproblemofmulticastvideo transmissionoverheterogeneousnetworksconsistsofusingahierarchicalvideocodingscheme. Insuchascheme,thevideoissplitinseveral ows:thebaseowincludesthelowresolution information,whereastheenhancementinformationissentinadditionalows.theideaisto transmitthebaseowtoallthereceiversinthe sessionbuttotransmittheadditionalowsonly touncongestedreceivers.thismethodwillbe ecientontheinternetwhenweareable22to associateahigherprioritytotheessentialbase ow[30].wearecurrentlyworkingonawaveletbasedvideocodingschemewhichweexpectto includeinivs. Acknowledgments WearegratefultoSteveMcCanne,SteveCasnerandMarkHandleyforprovidinghelpfulcommentsontheH.261packetizationscheme.Jean Bolotcontributedtoimprovethecongestioncontrolschemedescribedinthispaper.Wethank themiceresearchteamandthembonecommunitywhohavekindlytestedtheivsimplementation,reportedbugsandprovidedsupportfornew platforms.finally,wewouldliketothankhenry Houhandtheanonymousreviewersfortheirconstructivefeedback. 21Motion-JPEGstandsforJPEGcodingappliedtomovingimages.ItisbasedonINTRAcodingwithoutmovement detection. 22NextIPgeneration(IPng)speciesaprioritymechanism associatedtothepacketssentfromasamesourceusingthe TCLASSeld[23]. 14

15 References [1]Amir,E.,McCanne,S.,andZhang,H.\An Application-levelVideoGateway",ACM Multimedia'95,SanFrancisco,Nov [2]AravindR.etal.\Imageandvideocoding standards",at&ttech.journal,pp.67-89, Jan/Feb [3]Bolot,J.C.\End-to-endpacketdelayand lossbehaviorintheinternet",proc.acm Sigcomm'93,pp ,SanFransisco, CA,Sept [4]Bolot,J.C.andTurletti,T.\AratecontrolmechanismforpacketvideointheInternet",Proc.IEEEInfocom'94,pp ,Toronto,Canada. [5]Bolot,J.C.andTurletti,T.\Scalablefeedbackcontrolformulticastvideodistribution intheinternet",.proc.acmsigcomm'94, Vol.24,No4,pp.58-67,Oct [6]Casner,S.andDeering,S.\FirstIETFInternetaudiocast",ACMCCR,Vol.22,No 3,July1992. [7]\CCIRrecommendation601-2:Encodingparametersofdigitaltelevisionfor studios",internationaltelecommunication Union,1990. [8]Clark,D.\TheDesignPhilosophyofthe DarpaInternetProtocols",Sigcomm'88 Symposium,pp ,Stanford,CA, Aug.16-19,1988. [9]Clark,D.andTennenhouse,D.L.\Architecturalconsiderationsforanewgeneration ofprotocols",proc.acmsigcomm'90,pp ,Sept.1990,Philadelphia. [10]Deering,S.\Multicastroutinginadatagraminternetwork",Phddissertation,StanfordUniversity,California,Dec [11]Frederick,R.\Experienceswithreal-time softwarevideocompression",sixthinterna- tionalworkshopofpacketvideo,pp.f ,portland,or,sept [12]Gilge,M.andGusella,R.\Motionvideo codingforpacket-switchingnetworks-an integratedapproach",proc.spieconferenceonvisualcommunicationsandimage Processing,Boston,MA,Nov [13]GuichardJ.,Eude,G.andTexier,N.\State oftheartinpicturecodingforlowbitrate applications",proc.icc'90,pp [14]Handley,M.,Kirstein,P.T.andSasse,M.A. \MultimediaintegratedconferencingforEuropeanresearchers(MICE):pilotingactivitiesandtheconferencemanagementand multiplexingcentre",computernetworks andisdnsystems,pp ,vol.26,no 3,Nov.93. [15]Huitema,C.andTurletti,T.\Software codecsandworkstationvideoconferences", ProceedingsofINET'92,pp ,Kobe, Japan. [16]Kanakia,H.,Mishra,P.andReibman,A. \Anadaptivecongestioncontrolschemefor real-timepacketvideotransport",proc. ACMSigcomm'93,pp.20-31,SanFransisco,CA,Sept [17]Keshav,S.\Acontrol-theoreticapproachto owcontrol",proc.acmsigcomm'91,pp. 1-11,Zurich,Switzerland,Aug [18]LeGall,D.J.\MPEG:Avideocompressionstandardformultimediaapplications", CommunicationoftheACM,No4,Apr [19]Liou,M.\Overviewofthep64kb/s videocodingstandard",communicationof theacm,no4,apr [20]\Codingofmovingpicturesandassociated audio(mpeg)",iso/iecjtc1sc29. [21]\MPEG2Videostandard",ISO/IEC [22]Rao,K.R.andYip,P.\DiscreteCosine Transform:Algorithms,Advantages,Applications",AcademicPressInc,1990. [23]Bradner,S.andMankin,A.\TherecommendationfortheIPNextGenerationprotocol",RFC1752,Jan [24]\p64Channelframestructureforaudio/videoconferencing",ITU-TRecommendationH.221,1993. [25]\Videocodecforaudiovisualservicesatp 64kb/s",ITU-TRecommendationH.261, [26]Macedonia,M.R.andBrutzman,D.P. \MBoneprovidesaudioandvideoacrossthe Internet",IEEEComputerMagazine,pp ,Apr [27]McCanne,S.andJacobson,V.\vic:aexibleframeworkforpacketvideo",ACMMultimedia,pp ,SanFrancisco,CA, Nov [28]Sanghi,D.,Agrawala,A.K.andJain,B. \Experimentalassessmentofend-to-endbehavioronInternet",Proc.IEEEInfocom '93,pp ,SanFransisco,CA,Mar. 15

16 [29]Schulzrinne,H.,Casner,S.Frederick,R. colforreal-timeapplications",rfc1889, andjacobson,v.\rtp:atransportproto [31]Turletti,T.\TheINRIAVideoconferencing [30]Turletti,T.andBolot,J-C.\Issueswith F ,Portland,Oregon,26-27Sept.94. Nov tionalworkshoponpacketvideo,pp. multicastvideodistributioninheterogeneouspacketnetworks",proc.6thinterna- [33]Wakeman,I.\Packetizedvideo-Optionsfor [32]Turletti,T.andHuitema,C.\RTPPayload interactionbetweentheuser,thenetwork System(IVS)",ConnexionsMagazine,pp. andthecodec",thecomputerjournal,vol. formatforh.261videostreams",rfctbd, 20-24,Oct [34]Zhang,L.,DeeringS.,Estrin,D.,Shenker, Sept reservationprotocol",proc.ieeenetwork, S.andZappala,D.\RSVP:anewresource 36,No1,

FacultyofComputingandInformationTechnology DepartmentofRoboticsandDigitalTechnology TechnicalReport93-11

FacultyofComputingandInformationTechnology DepartmentofRoboticsandDigitalTechnology TechnicalReport93-11 FacultyofComputingandInformationTechnology DepartmentofRoboticsandDigitalTechnology TechnicalReport93-11 TheTheoryofCCITTRecommendationH.261, p64kbit/s"andreviewofsuchacodec \VideoCodecforAudiovisualServicesat

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Version ECE IIT, Kharagpur Lesson H. andh.3 Standards Version ECE IIT, Kharagpur Lesson Objectives At the end of this lesson the students should be able to :. State the

More information

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected]

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Video Coding Basics Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected] Outline Motivation for video coding Basic ideas in video coding Block diagram of a typical video codec Different

More information

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary:

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary: Video Compression : 6 Multimedia Systems (Module Lesson ) Summary: 6 Coding Compress color motion video into a low-rate bit stream at following resolutions: QCIF (76 x ) CIF ( x 88) Inter and Intra Frame

More information

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac)

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Project Proposal Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Sumedha Phatak-1000731131- [email protected] Objective: A study, implementation and comparison of

More information

Transform-domain Wyner-Ziv Codec for Video

Transform-domain Wyner-Ziv Codec for Video Transform-domain Wyner-Ziv Codec for Video Anne Aaron, Shantanu Rane, Eric Setton, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University 350 Serra Mall,

More information

We are presenting a wavelet based video conferencing system. Openphone. Dirac Wavelet based video codec

We are presenting a wavelet based video conferencing system. Openphone. Dirac Wavelet based video codec Investigating Wavelet Based Video Conferencing System Team Members: o AhtshamAli Ali o Adnan Ahmed (in Newzealand for grad studies) o Adil Nazir (starting MS at LUMS now) o Waseem Khan o Farah Parvaiz

More information

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden)

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Quality Estimation for Scalable Video Codec Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Purpose of scalable video coding Multiple video streams are needed for heterogeneous

More information

Introduction to image coding

Introduction to image coding Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by

More information

Study and Implementation of Video Compression standards (H.264/AVC, Dirac)

Study and Implementation of Video Compression standards (H.264/AVC, Dirac) Study and Implementation of Video Compression standards (H.264/AVC, Dirac) EE 5359-Multimedia Processing- Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) Objective A study, implementation and comparison

More information

Video Coding Standards. Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected]

Video Coding Standards. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Video Coding Standards Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected] Yao Wang, 2003 EE4414: Video Coding Standards 2 Outline Overview of Standards and Their Applications ITU-T

More information

Application Note. Introduction. Video Basics. Contents. IP Video Encoding Explained Series Understanding IP Video Performance.

Application Note. Introduction. Video Basics. Contents. IP Video Encoding Explained Series Understanding IP Video Performance. Title Overview IP Video Encoding Explained Series Understanding IP Video Performance Date September 2012 (orig. May 2008) IP networks are increasingly used to deliver video services for entertainment,

More information

Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder

Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder Performance Analysis and Comparison of 15.1 and H.264 Encoder and Decoder K.V.Suchethan Swaroop and K.R.Rao, IEEE Fellow Department of Electrical Engineering, University of Texas at Arlington Arlington,

More information

Digital Video Coding Standards and Their Role in Video Communications

Digital Video Coding Standards and Their Role in Video Communications Digital Video Coding Standards and Their Role in Video Communications RALF SCHAFER AND THOMAS SIKORA, MEMBER, IEEE Invited Paper The eficient digital representation of image and video signals has been

More information

Video-Conferencing System

Video-Conferencing System Video-Conferencing System Evan Broder and C. Christoher Post Introductory Digital Systems Laboratory November 2, 2007 Abstract The goal of this project is to create a video/audio conferencing system. Video

More information

Classes of multimedia Applications

Classes of multimedia Applications Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content

More information

Overview: Video Coding Standards

Overview: Video Coding Standards Overview: Video Coding Standards Video coding standards: applications and common structure Relevant standards organizations ITU-T Rec. H.261 ITU-T Rec. H.263 ISO/IEC MPEG-1 ISO/IEC MPEG-2 ISO/IEC MPEG-4

More information

Comparison of Video Compression Standards

Comparison of Video Compression Standards Comparison of Video Compression Standards S. Ponlatha and R. S. Sabeenian Abstract In order to ensure compatibility among video codecs from different manufacturers and applications and to simplify the

More information

920-803 - technology standards and protocol for ip telephony solutions

920-803 - technology standards and protocol for ip telephony solutions 920-803 - technology standards and protocol for ip telephony solutions 1. Which CODEC delivers the greatest compression? A. B. 711 C. D. 723.1 E. F. 726 G. H. 729 I. J. 729A Answer: C 2. To achieve the

More information

Multidimensional Transcoding for Adaptive Video Streaming

Multidimensional Transcoding for Adaptive Video Streaming Multidimensional Transcoding for Adaptive Video Streaming Jens Brandt, Lars Wolf Institut für Betriebssystem und Rechnerverbund Technische Universität Braunschweig Germany NOSSDAV 2007, June 4-5 Jens Brandt,

More information

Bandwidth Control in Multiple Video Windows Conferencing System Lee Hooi Sien, Dr.Sureswaran

Bandwidth Control in Multiple Video Windows Conferencing System Lee Hooi Sien, Dr.Sureswaran Bandwidth Control in Multiple Video Windows Conferencing System Lee Hooi Sien, Dr.Sureswaran Network Research Group, School of Computer Sciences Universiti Sains Malaysia11800 Penang, Malaysia Abstract

More information

Android Multi-Hop Video Streaming using. wireless networks.

Android Multi-Hop Video Streaming using. wireless networks. Android Multi-Hop Video Streaming using Wireless Network Shylaja.B.R [email protected] Abstract Modern world has deep penetration of smartphones Which provides an greater range of multimedia content

More information

The H.264/MPEG-4 Advanced Video Coding (AVC) Standard

The H.264/MPEG-4 Advanced Video Coding (AVC) Standard International Telecommunication Union The H.264/MPEG-4 Advanced Video Coding (AVC) Standard Gary J. Sullivan, Ph.D. ITU-T T VCEG Rapporteur Chair ISO/IEC MPEG Video Rapporteur Co-Chair Chair ITU/ISO/IEC

More information

Chapter 3 ATM and Multimedia Traffic

Chapter 3 ATM and Multimedia Traffic In the middle of the 1980, the telecommunications world started the design of a network technology that could act as a great unifier to support all digital services, including low-speed telephony and very

More information

Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet

Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet K. Ramkishor James. P. Mammen

More information

VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN

VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN Fernando Pereira Instituto Superior Técnico Digital Video Video versus Images Still Image Services No strong temporal requirements; no realtime notion. Video

More information

Internet Video Streaming and Cloud-based Multimedia Applications. Outline

Internet Video Streaming and Cloud-based Multimedia Applications. Outline Internet Video Streaming and Cloud-based Multimedia Applications Yifeng He, [email protected] Ling Guan, [email protected] 1 Outline Internet video streaming Overview Video coding Approaches for video

More information

An Introduction to VoIP Protocols

An Introduction to VoIP Protocols An Introduction to VoIP Protocols www.netqos.com Voice over IP (VoIP) offers the vision of a converged network carrying multiple types of traffic (voice, video, and data, to name a few). To carry out this

More information

SteganographyinaVideoConferencingSystem? AndreasWestfeld1andGrittaWolf2 2InstituteforOperatingSystems,DatabasesandComputerNetworks 1InstituteforTheoreticalComputerScience DresdenUniversityofTechnology

More information

Traffic Prioritization of H.264/SVC Video over 802.11e Ad Hoc Wireless Networks

Traffic Prioritization of H.264/SVC Video over 802.11e Ad Hoc Wireless Networks Traffic Prioritization of H.264/SVC Video over 802.11e Ad Hoc Wireless Networks Attilio Fiandrotti, Dario Gallucci, Enrico Masala and Enrico Magli 1 Dipartimento di Automatica e Informatica / 1 Dipartimento

More information

Introduction VOIP in an 802.11 Network VOIP 3

Introduction VOIP in an 802.11 Network VOIP 3 Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11

More information

Mike Perkins, Ph.D. [email protected]

Mike Perkins, Ph.D. perk@cardinalpeak.com Mike Perkins, Ph.D. [email protected] Summary More than 28 years of experience in research, algorithm development, system design, engineering management, executive management, and Board of Directors

More information

A Tool for Multimedia Quality Assessment in NS3: QoE Monitor

A Tool for Multimedia Quality Assessment in NS3: QoE Monitor A Tool for Multimedia Quality Assessment in NS3: QoE Monitor D. Saladino, A. Paganelli, M. Casoni Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia via Vignolese 95, 41125

More information

Standard encoding protocols for image and video coding

Standard encoding protocols for image and video coding International Telecommunication Union Standard encoding protocols for image and video coding Dave Lindbergh Polycom Inc. Rapporteur, ITU-T Q.E/16 (Media Coding) Workshop on Standardization in E-health

More information

ROYAL REHAB COLLEGE AND THE ENTOURAGE EDUCATION GROUP. UPDATED SCHEDULE OF VET UNITS OF STUDY AND VET TUITION FEES Course Aug 1/2015

ROYAL REHAB COLLEGE AND THE ENTOURAGE EDUCATION GROUP. UPDATED SCHEDULE OF VET UNITS OF STUDY AND VET TUITION FEES Course Aug 1/2015 UPDATED SCHEDULE OF UNITS OF STUDY AND TUITION FEES Course Aug 1/2015 Course Name: Delivery Mode: BSB50215 Diploma of Business Online DBTEU01 01/08/2015 19/08/2015 31/10/2015 0.25 $4245 $3265 DBTEU02 01/11/2015

More information

VoIP Bandwidth Calculation

VoIP Bandwidth Calculation VoIP Bandwidth Calculation AI0106A VoIP Bandwidth Calculation Executive Summary Calculating how much bandwidth a Voice over IP call occupies can feel a bit like trying to answer the question; How elastic

More information

Autonomous Car - Monitoring Remote Sensors

Autonomous Car - Monitoring Remote Sensors Autonomous Car - Monitoring Remote Sensors Author: Baeta Arribas, Francesc Tutor: Herm, Ota Index pag. 0 Introduction...3 0. - Application and Multimedia...4 - Monitoring Video Camera Streaming...6. -

More information

REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV

REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV L15, 16 D-68131 Mannheim Efficient Video Transport

More information

Transfer and Control Protocols H.261. Standards of ITU

Transfer and Control Protocols H.261. Standards of ITU Transfer and Control Protocols Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality

More information

Video Conferencing Standards

Video Conferencing Standards Video Conferencing Standards TANDBERG Application Notes D10740, Rev 2.3 This document is not to be reproduced in whole or in part without the permission in writing from TANDBERG ITU DEFINED STANDARDS...3

More information

3.2: Transfer and Control Protocols Multimedia Operating Systems. The H.x Protocols Chapter 4: Multimedia Systems

3.2: Transfer and Control Protocols Multimedia Operating Systems. The H.x Protocols Chapter 4: Multimedia Systems Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of Service and Resource Management

More information

Easy H.264 video streaming with Freescale's i.mx27 and Linux

Easy H.264 video streaming with Freescale's i.mx27 and Linux Libre Software Meeting 2009 Easy H.264 video streaming with Freescale's i.mx27 and Linux July 8th 2009 LSM, Nantes: Easy H.264 video streaming with i.mx27 and Linux 1 Presentation plan 1) i.mx27 & H.264

More information

QualiVision. RADVISION s improved packet loss video compensation technology. A RADVISION White Paper

QualiVision. RADVISION s improved packet loss video compensation technology. A RADVISION White Paper QualiVision RADVISION s improved packet loss video compensation technology A RADVISION White Paper March 2005 Table of Contents 1. Introduction...3 Videoconferencing the technology of the 21st century...

More information

VIDEOCONFERENCING SYSTEMS AND APPLICATIONS

VIDEOCONFERENCING SYSTEMS AND APPLICATIONS Chapter 19 VIDEOCONFERENCING SYSTEMS AND APPLICATIONS Sandra Brey and Borko Furht Abstract In this chapter we present an overview of videoconferencing technologies, systems, standards, applications, and

More information

Real-Time DMB Video Encryption in Recording on PMP

Real-Time DMB Video Encryption in Recording on PMP Real-Time DMB Video Encryption in Recording on PMP Seong-Yeon Lee and Jong-Nam Kim Dept. of Electronic Computer Telecommunication Engineering, PuKyong Nat'l Univ. [email protected], [email protected]

More information

Signaling Protocols for Internet Telephony. Architectures based on H.323 and SIP

Signaling Protocols for Internet Telephony. Architectures based on H.323 and SIP ipana Signaling Protocols for Internet Telephony Architectures based on H.323 and SIP Helsinki University of Technology Laboratory of Telecommunications Technology Otakaari 5 A, 02150 ESPOO [email protected]

More information

Unit 23. RTP, VoIP. Shyam Parekh

Unit 23. RTP, VoIP. Shyam Parekh Unit 23 RTP, VoIP Shyam Parekh Contents: Real-time Transport Protocol (RTP) Purpose Protocol Stack RTP Header Real-time Transport Control Protocol (RTCP) Voice over IP (VoIP) Motivation H.323 SIP VoIP

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

Curso de Telefonía IP para el MTC. Sesión 2 Requerimientos principales. Mg. Antonio Ocampo Zúñiga

Curso de Telefonía IP para el MTC. Sesión 2 Requerimientos principales. Mg. Antonio Ocampo Zúñiga Curso de Telefonía IP para el MTC Sesión 2 Requerimientos principales Mg. Antonio Ocampo Zúñiga Factors Affecting Audio Clarity Fidelity: Audio accuracy or quality Echo: Usually due to impedance mismatch

More information

Introduction to Packet Voice Technologies and VoIP

Introduction to Packet Voice Technologies and VoIP Introduction to Packet Voice Technologies and VoIP Cisco Networking Academy Program Halmstad University Olga Torstensson 035-167575 [email protected] IP Telephony 1 Traditional Telephony 2 Basic

More information

Video codecs in multimedia communication

Video codecs in multimedia communication Video codecs in multimedia communication University of Plymouth Department of Communication and Electronic Engineering Short Course in Multimedia Communications over IP Networks T J Dennis Department of

More information

Application Note. IPTV Services. Contents. TVQM Video Quality Metrics Understanding IP Video Performance. Series. Overview. Overview...

Application Note. IPTV Services. Contents. TVQM Video Quality Metrics Understanding IP Video Performance. Series. Overview. Overview... Title Series TVQM Video Quality Metrics Understanding IP Video Performance Date September 2012 (orig. Feb 2008) Overview IPTV, Internet TV, and Video on Demand provide exciting new revenue opportunities

More information

Kodo - Cross-platform Network Coding Software Library. Morten V. Pedersen - Aalborg University / Steinwurf ApS [email protected]

Kodo - Cross-platform Network Coding Software Library. Morten V. Pedersen - Aalborg University / Steinwurf ApS mvp@es.aau.dk Kodo - Cross-platform Network Coding Software Library Morten V. Pedersen - Aalborg University / Steinwurf ApS [email protected] Background Academia Network coding key enabler for efficient user cooperation

More information

Application Note. IPTV Services. Contents. Title Managing IPTV Performance Series IP Video Performance Management. Overview... 1. IPTV Services...

Application Note. IPTV Services. Contents. Title Managing IPTV Performance Series IP Video Performance Management. Overview... 1. IPTV Services... Title Managing IPTV Performance Series IP Video Performance Management Date September 2012 (orig. February 2008) Contents Overview... 1 IPTV Services... 1 Factors that Affect the Performance of IPTV...2

More information

Video Conferencing Unit. by Murat Tasan

Video Conferencing Unit. by Murat Tasan Video Conferencing Unit by Murat Tasan Video Conferencing Standards H.320 (ISDN) Popular in small business sector H.323 (Internet) More common with advancing cable modem and broadband access to homes H.324

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: [email protected]

More information

Video Coding Technologies and Standards: Now and Beyond

Video Coding Technologies and Standards: Now and Beyond Hitachi Review Vol. 55 (Mar. 2006) 11 Video Coding Technologies and Standards: Now and Beyond Tomokazu Murakami Hiroaki Ito Muneaki Yamaguchi Yuichiro Nakaya, Ph.D. OVERVIEW: Video coding technology compresses

More information

VIDEOCONFERENCING. Video class

VIDEOCONFERENCING. Video class VIDEOCONFERENCING Video class Introduction What is videoconferencing? Real time voice and video communications among multiple participants The past Channelized, Expensive H.320 suite and earlier schemes

More information

Advanced Networking Voice over IP: RTP/RTCP The transport layer

Advanced Networking Voice over IP: RTP/RTCP The transport layer Advanced Networking Voice over IP: RTP/RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with

More information

Speaker: Nader F. Mir

Speaker: Nader F. Mir Speaker: Nader F. Mir Professor of Electrical Engineering, San Jose State University, California Director, Wireless/Optical Sensor Networks, MSE Program, Lockheed Martin Space, Sunnyvale, California Editor,

More information

Indepth Voice over IP and SIP Networking Course

Indepth Voice over IP and SIP Networking Course Introduction SIP is fast becoming the Voice over IP protocol of choice. During this 3-day course delegates will examine SIP technology and architecture and learn how a functioning VoIP service can be established.

More information

Protocols for Application and Desktop Sharing

Protocols for Application and Desktop Sharing Protocols for Application and Desktop Sharing draft-lennox-avt-app-sharing-00 IETF AVT Working Group Wednesday, March 9, 2005 Jonathan Lennox/Henning Schulzrinne/Jason Nieh/Ricardo Baratto Columbia University

More information

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator.

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator. CARDIFF UNIVERSITY EXAMINATION PAPER Academic Year: 2008/2009 Examination Period: Examination Paper Number: Examination Paper Title: SOLUTIONS Duration: Autumn CM0340 SOLNS Multimedia 2 hours Do not turn

More information

Video compression: Performance of available codec software

Video compression: Performance of available codec software Video compression: Performance of available codec software Introduction. Digital Video A digital video is a collection of images presented sequentially to produce the effect of continuous motion. It takes

More information

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment Voice over IP Demonstration 1: VoIP Protocols Network Environment We use two Windows workstations from the production network, both with OpenPhone application (figure 1). The OpenH.323 project has developed

More information

MPEG-1 and MPEG-2 Digital Video Coding Standards

MPEG-1 and MPEG-2 Digital Video Coding Standards Please note that the page has been produced based on text and image material from a book in [sik] and may be subject to copyright restrictions from McGraw Hill Publishing Company. MPEG-1 and MPEG-2 Digital

More information

Voice Over IP Per Call Bandwidth Consumption

Voice Over IP Per Call Bandwidth Consumption Over IP Per Call Bandwidth Consumption Interactive: This document offers customized voice bandwidth calculations with the TAC Bandwidth Calculator ( registered customers only) tool. Introduction Before

More information

Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm

Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm Nandakishore Ramaswamy Qualcomm Inc 5775 Morehouse Dr, Sam Diego, CA 92122. USA [email protected] K.

More information

MULTI-STREAM VOICE OVER IP USING PACKET PATH DIVERSITY

MULTI-STREAM VOICE OVER IP USING PACKET PATH DIVERSITY MULTI-STREAM VOICE OVER IP USING PACKET PATH DIVERSITY Yi J. Liang, Eckehard G. Steinbach, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University, Stanford,

More information

Outline. 15-441 15-441 Computer Networking 15-641. Lecture 25: Last Mile Technologies Peter Steenkiste. Fall 2014 www.cs.cmu.edu/~prs/15-441-f14

Outline. 15-441 15-441 Computer Networking 15-641. Lecture 25: Last Mile Technologies Peter Steenkiste. Fall 2014 www.cs.cmu.edu/~prs/15-441-f14 Outline 15-441 15-441 Computer ing 15-641 Lecture 25: Last Mile Technologies Peter Steenkiste Fall 2014 www.cs.cmu.edu/~prs/15-441-f14 Classic view: different types of wires Copper: telephone, modem, xdsl

More information

Figure 1: Relation between codec, data containers and compression algorithms.

Figure 1: Relation between codec, data containers and compression algorithms. Video Compression Djordje Mitrovic University of Edinburgh This document deals with the issues of video compression. The algorithm, which is used by the MPEG standards, will be elucidated upon in order

More information

H.264/AVC for Wireless Applications

H.264/AVC for Wireless Applications Thomas STOCKHAMMER (1), and Thomas WIEGAND (8) (1) Institute for Communications Engineering (LNT), Munich University of Technology (TUM), D-80290 Munich, Germany, E- mail: [email protected] (2) Image

More information

How To Improve Performance Of The H264 Video Codec On A Video Card With A Motion Estimation Algorithm

How To Improve Performance Of The H264 Video Codec On A Video Card With A Motion Estimation Algorithm Implementation of H.264 Video Codec for Block Matching Algorithms Vivek Sinha 1, Dr. K. S. Geetha 2 1 Student of Master of Technology, Communication Systems, Department of ECE, R.V. College of Engineering,

More information

The Picture must be Clear. IPTV Quality of Experience

The Picture must be Clear. IPTV Quality of Experience The Picture must be Clear IPTV Quality of Experience 1 Video-over-IP vs IPTV? Video-over-IP A technology for moving video from A to B How about: Video-over-wire? Video-over-UHF? Video-over-Satellite? Can

More information

point to point and point to multi point calls over IP

point to point and point to multi point calls over IP Helsinki University of Technology Department of Electrical and Communications Engineering Jarkko Kneckt point to point and point to multi point calls over IP Helsinki 27.11.2001 Supervisor: Instructor:

More information

Narrow Bandwidth Streaming Video Codec

Narrow Bandwidth Streaming Video Codec Software Requirements Specification for Narrow Bandwidth Streaming Video Codec Version 1.0 approved Internal Supervisors Dr. Shantha Frenando Dr. Chathura de Silva External Supervisors Mr. Harsha Samarawicrama

More information

ThinkTel ITSP with Registration Setup Quick Start Guide

ThinkTel ITSP with Registration Setup Quick Start Guide January 13 ThinkTel ITSP with Registration Setup Quick Start Guide Author: Zultys Technical Support This configuration guide was created to assist knowledgeable vendors with configuring the Zultys MX Phone

More information

Voice over IP (VoIP) Part 1

Voice over IP (VoIP) Part 1 Kommunikationssysteme (KSy) - Block 5 Voice over IP (VoIP) Part 1 Dr. Andreas Steffen 1999-2001 A. Steffen, 9.12.2001, KSy_VoIP_1.ppt 1 VoIP Scenarios Classical telecommunications networks Present: separate

More information

Compression techniques

Compression techniques Compression techniques David Bařina February 22, 2013 David Bařina Compression techniques February 22, 2013 1 / 37 Contents 1 Terminology 2 Simple techniques 3 Entropy coding 4 Dictionary methods 5 Conclusion

More information

Real-Time Transport Protocol (RTP)

Real-Time Transport Protocol (RTP) Real-Time Transport Protocol (RTP) 1 Real-time Transport Protocol (1) RTP Functionality (RFC 3550) framing for audio/video information streams preserve intra- and inter-stream timing mechanisms for awareness

More information

Video Conference System

Video Conference System CSEE 4840: Embedded Systems Spring 2009 Video Conference System Manish Sinha Srikanth Vemula Project Overview Top frame of screen will contain the local video Bottom frame will contain the network video

More information

Image Compression through DCT and Huffman Coding Technique

Image Compression through DCT and Huffman Coding Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul

More information

http://www.springer.com/0-387-23402-0

http://www.springer.com/0-387-23402-0 http://www.springer.com/0-387-23402-0 Chapter 2 VISUAL DATA FORMATS 1. Image and Video Data Digital visual data is usually organised in rectangular arrays denoted as frames, the elements of these arrays

More information