Materials and Methods. Ribonuclease.--Removal of ribonucleic acid from meristematic onion cells did not show any qualitative differences

Size: px
Start display at page:

Download "Materials and Methods. Ribonuclease.--Removal of ribonucleic acid from meristematic onion cells did not show any qualitative differences"

Transcription

1 B~U~ Noz~s 129 Alterations in Nuclear Ribonucleic Acid Metabolism Induced by l~inetin.* BY RUTH GUNMAN. From the Department of Genetics, University of California, Be, kezey.~ Kinetin, a substance recently isolated from deoxyribonucleic acid preparations (7), has been found to stimulate cell division in a number of plant tissues (7, 4). In meristematic cells of onion roots, low concentrations of kinetin--in addition to increasing the number of cells entering mitosis--also affected the relative durations of prophase and telophase, apparently shortening the former and increasing the durations of the latter. These phenomena were interpreted to be associated with an effect of the substance on the coiling cycle of the chromosomes during mitosis. The statistical and cytological evidence from the above study, as well as the findings of Serra (9), Kaufmann, McDonald, and Gay (6), Jacobson and Webb (5), Ris and Kleinfeld (8), Brachet (1), and especially of Firket, Ch~vremont- Comha~re, and Ch~vremont (2), led us to suspect that low concentrations of kinetin induced an accumulation of ribonucleic acid (RNA) in dividing nuclei of onion roots. The present study presents an attempt to test this hypothesis with the aid of cytochemical tests, in particular by means of enzymatic digestion of nucleic acids in onion roots grown in kinetin solutions. Materials and Methods Growing roots of onion were treated in 1 p.p.m, and 5 p.p.m, solutions of kinetin 1 for periods of 6, 24, 48, and 72 hours. Control * Aided by a special grant from the American Cancer Society, Inc., California Division. Receined for ~blication, August 6, Kindiy supplied by F. Skoog. J. BIolmyszc. AND Bxocm~. Crroz., 1957, Vok 3, No. 1 roots were immersed in distilled water for parallel periods. Immediately after treatment, the roots were fixed in 1:3 acetic alcohol, dehydrated, embedded, and sectioned longitudinally at 8 ~ thickness. Series of compound slides were prepared, each slide consisting of one ribbon of distilled water controls and one or more ribbons of kinetintreated material. Each ribbon, whether experimental or control, contained sections of two different roots. The slides of each series were divided into two groups: one was placed for I hour in an aqueous solution of ribonuclease (Worthington, 0.I per cent at 40 C. ph 6.8) and then stained with azure B bromide by a method similar to that of Flax and Himes (3). The second group was stained in the same manner after enzymatic removal of DNA: 1 mg./cc. Worthington deoxyribonuclease in aqueous gelatin Mg ++ solvent buffered at ph 6.9 and applied at 30 C. for 1 hour. For each enzyme treatment, parallel runs were made in water adjusted to the equivalent ph. The action of the deoxyribonuclease was tested by following one set of DNase-treated slides by Feulgen staining. The nuclei remained completely unstained. Azure B bromide stains DNA greenish blue, RNA purple. Extraction of all nucleic acids in TCA (5 per cent at 90 C. for 12 minutes), and subsequent azure staining also resulted in colorless slides. Because of the striking results obtained with deoxyribonuclease this part of the experiment was repeated, using a new series of kinetin treatments and new preparations of DNase solution and azure dye. The results of the second trial are entirely in agreement with the first. RESULTS AND DISCUSSION Ribonuclease.--Removal of ribonucleic acid from meristematic onion cells did not show any qualitative differences

2 130 BRIEF NOTES in DNA between treated roots and their controls. Both interphasic and mitotic nuclei were greenish blue while cytoplasm and nucleoli remained unstained. Deoxyribonuclease.--Fig. 1 shows a distilled water control stained with azure B after removal of deoxyribonucleic acid. The chromatin is almost colorless while cytoplasm and nucleoli are stained densely in varying shades of purple. Fig. 2 is a section of a root tip, from the same slide, which had been treated with 1 p.p.m, kinetin for 24 hours. Again cytoplasm and nucleoli are purple; however, in this root a striking amount of dye has also been bound by the nucleus apart from the nucleolus, indicating the presence of fairly high concentrations of ribonucleic acid in the chromatin after treatment with kinetin. Evidence for strongly stainable ribonucleic acid may be seen in interphasic as well as in mitotic nuclei (note prophase, metaphase, and telophase figures in Fig. 2), which are stained purple. Such increased quantities of nuclear RNA were observed in every root grown in 1 p.p.m, kinetin solution, as early as 6 hours after treatment and persisting through 72 hours. The higher concentration (5 p.p.m.) gave less consistent results, some roots showing evidence of increased nudear RNA while others did not differ markedly from the controls. This deviation is in agreement with a previous experiment (4), in which high concentrations of kinetin had caused variable amounts and expressions of toxicity. In that study, the 1 p.p.m, concentration was found to be the most effective in changing rates of cell division without producing observable cytological abnormalities. It appears that--as with growth hormones--the specific action of kinetin is effective only over a narrow range of concentrations. In the present study the lack of uniformity of response to the 5 p.p.m, solution also indicates that it is not kinetin taken up by the nuclei which is stained, but rather a compound resulting from the treatment. The results of the present experiment are in agreement with our assumption that kinetin does not interfere with synthesis of DNA before initiation of division or with DNA metabolism throughout mitosis. They provide evidence for the presence of greatly increased amounts of nuclear RNA following treatment with kinetin, though quantitative and/or biochemical data are still needed to prove conclusively such increases. The origin and role of this ribonucleic acid and its specific influence on the mitotic cycle are not clear at present and require further study. SUMMARY Removal of deoxyribonucleic acid from meristematic onion root ceils grown in solutions of kinetin, followed by metachromatic staining in azure B bromide, indicated the presence of appreciable amounts of ribonucleic acid in nuclei exposed to the cell division factor. The author is very much indebted to Dr. Max Alfert for help and advice offered throughout the course of the investigation and to Mrs. Norma O. Goldstein for expert assistance in the cytochemical procedures. BIBLIOGRAPHY 1. Brachet, J., Effects of ribonuclease on the metabolism of living root tip ceils, Nature, 1954, 174, Firket, H., Ch~vremont-Comhaire, S., and Ch~vremont, M., Action of ribonuclease on living cells in vitro and synthesis of DNA, Nature, 1955, 178, Flax, M. H., and Rimes, M. H., Microspectrophotometric analysis of recta-

3 BRIEF NOTES 131 chromatic staining of nucleic acids, Physiol. Zool., 1952, 25, Guttman, R., Effects of kinetin on cell division, with special reference to initiation and duration of mitosis, Chromosoma, 1956, 8, Jacobson, W., and Webb, M., The two types of nucieoprote'ms during mitosis, Exp. Cell Research, 1952, 3, Kaufmann, B. P., McDonald, M. R., and Gay, H., The ribonucle~c acid content of chromosomes, Genetics, 1948, 33, Miller, C. O., Skoog, F., yon Saltza, M. H., and Strong, F. M., Kinetin, a cell division factor from deoxyribonucleic acid, J. Am. Chem. Sot., 1955, 77, Ris, H., and Kleinfeld, R. K., Cytochemical studies on the chromatin elimination in Sdenobia (Lepidoptera), Chromosoma, 1952, 5, Serra, J. A., Composition of chromonemata and matrix and the role of nucleoproteins in mitosis and meiosis, Cold SFfing Harbor Syrup. Quant. Biol., 1947, 12, 192.

4 132 BRIEF NOTES EXPLANATION OF PLATE 22 Onion root meristem cells after removal of DNA with deoxyribonuclease, stained with azure B bromide. FxG. 1. Section of control root. X 900. FIG. 2. Same slide, section of root treated with 1 p.p.m, kinetin for 24 hours. X 900. (P -- prophase, M = metaphase, T == telophase.)

5 THE JOURNAL OF BIOPHYSICAL AND BIOCHEMICAL CYTOLOGY PLATE 22 VOL. 3 (Guttman: Alterations in RNA metabolism induced by kinetin)

Biology 3A Laboratory MITOSIS Asexual Reproduction

Biology 3A Laboratory MITOSIS Asexual Reproduction Biology 3A Laboratory MITOSIS Asexual Reproduction OBJECTIVE To study the cell cycle and understand how, when and why cells divide. To study and identify the major stages of cell division. To relate the

More information

The Huntington Library, Art Collections, and Botanical Gardens

The Huntington Library, Art Collections, and Botanical Gardens The Huntington Library, Art Collections, and Botanical Gardens Rooting for Mitosis Overview Students will fix, stain, and make slides of onion root tips. These slides will be examined for the presence

More information

LABORATORY 2 THE CELL CYCLE AND THE STAGES OF MITOSIS LEARNING OBJECTIVES AFTER COMPLETING THIS LABORATORY, YOU SHOULD BE ABLE TO:

LABORATORY 2 THE CELL CYCLE AND THE STAGES OF MITOSIS LEARNING OBJECTIVES AFTER COMPLETING THIS LABORATORY, YOU SHOULD BE ABLE TO: LABORATORY 2 THE CELL CYCLE AND THE STAGES OF MITOSIS LEARNING OBJECTIVES AFTER COMPLETING THIS LABORATORY, YOU SHOULD BE ABLE TO: 1. Describe the cell cycle. 2. Identify stages of mitosis from prepared

More information

(From the Kerckhoff Laboratories of Biology, California Institute of Technology, Pasadena, and Sacramento State College, Sacramento)

(From the Kerckhoff Laboratories of Biology, California Institute of Technology, Pasadena, and Sacramento State College, Sacramento) THE CYTOCHEMICAL LOCALIZATION OF ASCORBIC ACID IN ROOT TIP CELLS BY WILLIAM A. JENSEN,* PH.D., AND LEROY G. KAVALJ-IAN,$ PH.D. (From the Kerckhoff Laboratories of Biology, California Institute of Technology,

More information

Time For Mitosis. Materials. Procedure. Name

Time For Mitosis. Materials. Procedure. Name Time For Mitosis Name Do all phases of mitosis require the same amount of time for completion? This question can be answered by counting the number of onion root tip cells in the four phases of mitosis

More information

LAB 09 Cell Division

LAB 09 Cell Division LAB 09 Cell Division Introduction: One of the characteristics of living things is the ability to replicate and pass on genetic information to the next generation. Cell division in individual bacteria and

More information

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3. Chapter 3 Cell Division Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.3: Mock Meiosis Goals Following this exercise students should be able to Recognize

More information

CHAPTER 9 CELLULAR REPRODUCTION P. 243-257

CHAPTER 9 CELLULAR REPRODUCTION P. 243-257 CHAPTER 9 CELLULAR REPRODUCTION P. 243-257 SECTION 9-1 CELLULAR GROWTH Page 244 ESSENTIAL QUESTION Why is it beneficial for cells to remain small? MAIN IDEA Cells grow until they reach their size limit,

More information

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells Cell Growth and Reproduction 1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells A. is half of that of the parent cell. B. remains the same as in the

More information

1. Identify each phase of mitosis on the onion root tip and the whitefish blastula. 3. Explain differences in mitosis between plant and animal cells.

1. Identify each phase of mitosis on the onion root tip and the whitefish blastula. 3. Explain differences in mitosis between plant and animal cells. Mitosis Objectives Having completed the lab on mitosis, you should be able to: 1. Identify each phase of mitosis on the onion root tip and the whitefish blastula. 2. Describe the events during each phase

More information

Mitosis in Onion Root Tip Cells

Mitosis in Onion Root Tip Cells Mitosis in Onion Root Tip Cells A quick overview of cell division The genetic information of plants, animals and other eukaryotic organisms resides in several (or many) individual DNA molecules, or chromosomes.

More information

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis Cell Division CELL DIVISION Anatomy and Physiology Text and Laboratory Workbook, Stephen G. Davenport, Copyright 2006, All Rights Reserved, no part of this publication can be used for any commercial purpose.

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Los Angeles Mission College Biology 3 Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial

More information

Lab 3: Testing Hypotheses about Mitosis

Lab 3: Testing Hypotheses about Mitosis Lab 3: Testing Hypotheses about Mitosis Why do cells divide? Lab today focuses on cellular division, also known as cellular reproduction. To become more familiar with why cells divide, the types of cell

More information

Cellular Reproduction

Cellular Reproduction 9 Cellular Reproduction section 1 Cellular Growth Before You Read Think about the life cycle of a human. On the lines below, write some of the stages that occur in the life cycle of a human. In this section,

More information

Laboratory Observing the Cell Cycle of Onion Root Tip Cells

Laboratory Observing the Cell Cycle of Onion Root Tip Cells Laboratory Observing the Cell Cycle of Onion Root Tip Cells Background: Because of their rapid growth, the cells of the root tips of plants undergo rapid cell division. Ornamental onion root tips cells

More information

Look for these related items from Learning Resources :

Look for these related items from Learning Resources : Look for these related items from Learning Resources : LER 1901 Cross Section Plant Cell LER 1902 Cross Section Heart Model LER 1903 Cross Section Brain Model LER 2437 Cross Section Earth Model For a dealer

More information

The illustrations below reflect other scientists results in identifying and counting the stages of the onion root tip and the whitefish blastula.

The illustrations below reflect other scientists results in identifying and counting the stages of the onion root tip and the whitefish blastula. Abstract: The purpose of this laboratory experiment was to identify in what stage of mitosis viewed cells were in. The stages of mitosis include prophase, metaphase, anaphase and telophase. Although the

More information

Cell Division Mitosis and the Cell Cycle

Cell Division Mitosis and the Cell Cycle Cell Division Mitosis and the Cell Cycle A Chromosome and Sister Chromatids Key Points About Chromosome Structure A chromosome consists of DNA that is wrapped around proteins (histones) and condensed Each

More information

Cell Cycle in Onion Root Tip Cells (IB)

Cell Cycle in Onion Root Tip Cells (IB) Cell Cycle in Onion Root Tip Cells (IB) A quick overview of cell division The genetic information of plants, animals and other eukaryotic organisms resides in several (or many) individual DNA molecules,

More information

Cell Growth and Reproduction Module B, Anchor 1

Cell Growth and Reproduction Module B, Anchor 1 Cell Growth and Reproduction Module B, Anchor 1 Key Concepts: - The larger a cell becomes, the more demands the cell places on its DNA. In addition, a larger cell is less efficient in moving nutrients

More information

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact structures called chromosomes. These are rod-shaped structures made

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Reproduction Growth and development Tissue removal Example

More information

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY Adapted from Foundations of Biology I; Lab 6 Introduction to Microscopy Dr. John Robertson, Westminster College Biology Department,

More information

If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle.

If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle. Cancer cells have escaped from cell cycle controls Cancer cells divide excessively and invade other tissues because they are free of the body s control mechanisms. Cancer cells do not stop dividing when

More information

Meiosis is a special form of cell division.

Meiosis is a special form of cell division. Page 1 of 6 KEY CONCEPT Meiosis is a special form of cell division. BEFORE, you learned Mitosis produces two genetically identical cells In sexual reproduction, offspring inherit traits from both parents

More information

Appendix C DNA Replication & Mitosis

Appendix C DNA Replication & Mitosis K.Muma Bio 6 Appendix C DNA Replication & Mitosis Study Objectives: Appendix C: DNA replication and Mitosis 1. Describe the structure of DNA and where it is found. 2. Explain complimentary base pairing:

More information

Addition by Division TEACHER NOTES SCIENCE NSPIRED

Addition by Division TEACHER NOTES SCIENCE NSPIRED Science Objectives Students will identify the changes that occur in cells during each phase of the cell cycle. Students will correlate these changes to the duration of time cells spend in each phase. While

More information

The cell cycle, mitosis and meiosis

The cell cycle, mitosis and meiosis The cell cycle, mitosis and meiosis Learning objective This learning material is about the life cycle of a cell and the series of stages by which genetic materials are duplicated and partitioned to produce

More information

The Somatic Cell Cycle

The Somatic Cell Cycle The Somatic Cell Cycle Maternal chromosome Diploid Zygote Diploid Zygote Paternal chromosome MITOSIS MITOSIS Maternal chromosome Diploid organism Diploid organism Paternal chromosome Int terpha ase The

More information

CHAPTER 10 CELL CYCLE AND CELL DIVISION

CHAPTER 10 CELL CYCLE AND CELL DIVISION CHAPTER 10 CELL CYCLE AND CELL DIVISION Cell division is an inherent property of living organisms. It is a process in which cells reproduce their own kind. The growth, differentiation, reproduction and

More information

EXTRACTION OF DNA FROM CALF THYMUS CELLS Revised 2/1/96 Introduction

EXTRACTION OF DNA FROM CALF THYMUS CELLS Revised 2/1/96 Introduction Revised 2/1/96 Introduction Cells may be classified into two primary types depending on whether they have a discrete nucleus (eukaryotic) or do not (prokaryotic). Prokaryotes include bacteria, such as

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

From DNA to Protein

From DNA to Protein Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins

More information

Lecture 2: Mitosis and meiosis

Lecture 2: Mitosis and meiosis Lecture 2: Mitosis and meiosis 1. Chromosomes 2. Diploid life cycle 3. Cell cycle 4. Mitosis 5. Meiosis 6. Parallel behavior of genes and chromosomes Basic morphology of chromosomes telomere short arm

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

List, describe, diagram, and identify the stages of meiosis.

List, describe, diagram, and identify the stages of meiosis. Meiosis and Sexual Life Cycles In this topic we will examine a second type of cell division used by eukaryotic cells: meiosis. In addition, we will see how the 2 types of eukaryotic cell division, mitosis

More information

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns

More information

Lecture 7 Mitosis & Meiosis

Lecture 7 Mitosis & Meiosis Lecture 7 Mitosis & Meiosis Cell Division Essential for body growth and tissue repair Interphase G 1 phase Primary cell growth phase S phase DNA replication G 2 phase Microtubule synthesis Mitosis Nuclear

More information

Carbon Hydrogen Oxygen Nitrogen

Carbon Hydrogen Oxygen Nitrogen Concept 1 - Thinking Practice 1. If the following molecules were to undergo a dehydration synthesis reaction, what molecules would result? Circle the parts of each amino acid that will interact and draw

More information

How Well Do You Know Your Cells?

How Well Do You Know Your Cells? How Well Do You Know Your Cells? Complete each sentence below with words from the box. One word will not be used. cells cell membrane cell walls chloroplasts cytoplasm Hooke Leeuwenhoek mitochondria nucleus

More information

Lecture 11 The Cell Cycle and Mitosis

Lecture 11 The Cell Cycle and Mitosis Lecture 11 The Cell Cycle and Mitosis In this lecture Cell division Chromosomes The cell cycle Mitosis PPMAT Apoptosis What is cell division? Cells divide in order to reproduce themselves The cell cycle

More information

Guided Notes: Chapter 9 Cellular Reproduction

Guided Notes: Chapter 9 Cellular Reproduction Guided Notes: Cellular Reproduction When do cells divide? Cells grow and function normally until they become too. Cell size is because increases faster than This means that there is not enough area on

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Example 2. What is meant by the cell cycle? Concept 12.1

More information

PREPARED FOR: U.S. Army Medical Research and Materiel CommandFort Detrick, Maryland 21702 5012

PREPARED FOR: U.S. Army Medical Research and Materiel CommandFort Detrick, Maryland 21702 5012 AD Award Number: W81XWH 07 1 0542 TITLE: Is Nuclear Structure Altered in Breast Cancer Cells? PRINCIPAL INVESTIGATOR: Han Htun, Ph.D. CONTRACTING ORGANIZATION: University of California Los Angeles, CA

More information

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells).

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells). SG Biology Summary notes Investigating cells Sub-topic a: Investigating living cells Cells are the basic units of living things (this means that all living things are made up of one or more cells). Cells

More information

Introduction to the Cell: Plant and Animal Cells

Introduction to the Cell: Plant and Animal Cells Introduction to the Cell: Plant and Animal Cells Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems All organisms

More information

The Cell Cycle: A series of modeling activities

The Cell Cycle: A series of modeling activities The Cell Cycle: A series of modeling activities Cancer Education Project University of Rochester Premise: Students learn best when exposed to a variety of activities Overview 1. Information Gathering:

More information

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis Introduction - Fields of Genetics To answer the following question, review the three traditional subdivisions of

More information

Carbon-organic Compounds

Carbon-organic Compounds Elements in Cells The living substance of cells is made up of cytoplasm and the structures within it. About 96% of cytoplasm and its included structures are composed of the elements carbon, hydrogen, oxygen,

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES Sexual Reproduction Sexual Reproduction We know all about asexual reproduction 1. Only one parent required. 2. Offspring are identical to parents. 3. The cells that produce the offspring are not usually

More information

Cell Division and Mitosis DNA. Sexual Reproduction and Meiosis. 2. Meiosis occurs in the reproductive organs, producing four haploid sex cells.

Cell Division and Mitosis DNA. Sexual Reproduction and Meiosis. 2. Meiosis occurs in the reproductive organs, producing four haploid sex cells. ell Division and Mitosis 1. he life cycle of a cell has two parts growth and development, and cell division. 2. In mitosis, the nucleus divides to form two identical nuclei. Mitosis occurs in four continuous

More information

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts.

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts. THE CELL model: Activity 4.1 Science / Biology Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. - Your models should clearly demonstrate the following

More information

CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL IDENTIFICATION OF DNA DNA AND HEREDITY DNA CAN GENETICALLY TRANSFORM CELLS

CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL IDENTIFICATION OF DNA DNA AND HEREDITY DNA CAN GENETICALLY TRANSFORM CELLS CHAPTER 6 GRIFFITH/HERSHEY/CHASE: DNA IS THE GENETIC MATERIAL In 1928, Frederick Griffith was able to transform harmless bacteria into virulent pathogens with an extract that Oswald Avery proved, in 1944,

More information

02-SciProbe9-Chap02 2/8/07 12:12 PM Page 32 32 NEL

02-SciProbe9-Chap02 2/8/07 12:12 PM Page 32 32 NEL 32 UNIT A REPRODUCTION Chapter 2 Cell Growth and Reproduction Chapter 3 Sexual Reproduction Chapter 4 Human Reproduction Unit Preview Your body is made of many trillions of cells that came from a single

More information

Test Two Study Guide

Test Two Study Guide Test Two Study Guide 1. Describe what is happening inside a cell during the following phases (pictures may help but try to use words): Interphase: : Consists of G1 / S / G2. Growing stage, cell doubles

More information

Preparation of Blood Films

Preparation of Blood Films Preparation of Blood Films Principle: Blood film enables us to evaluate WBC, RBC, and PLT morphology, also, allows us to perform differential WBC count, furthermore estimation of WBC and platelets counts

More information

CELL DIVISION. STAGES OF MITOTIC DIVISION (Diag. C1)

CELL DIVISION. STAGES OF MITOTIC DIVISION (Diag. C1) 1 CELL DIVISION Cell division is the process by which cells replicate in order to replace cell loss, repair tissue damage and reproduce the organism. Two types of cell division are encountered in the Eukaryotic

More information

Use of the Microscope and Cytology

Use of the Microscope and Cytology Use of the Microscope and Cytology Introduction: A true study of anatomy not only considers the large, visible structures of an organism, but also the small structures that provide the organism its form

More information

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis 4.2 Meiosis Assessment statements State that meiosis is a reduction division of a diploid nucleus to form haploid nuclei. Define homologous chromosomes. Outline the process of meiosis, including pairing

More information

THE DISTRIBUTION OF THE WATER-SOLUBLE INORGANIC ORTHOPHOSPHATE IONS WITHIN THE CELL : ACCUMULATION IN THE NUCLEUS. Electron Probe Microanalysis

THE DISTRIBUTION OF THE WATER-SOLUBLE INORGANIC ORTHOPHOSPHATE IONS WITHIN THE CELL : ACCUMULATION IN THE NUCLEUS. Electron Probe Microanalysis THE DISTRIBUTION OF THE WATER-SOLUBLE INORGANIC ORTHOPHOSPHATE IONS WITHIN THE CELL : ACCUMULATION IN THE NUCLEUS Electron Probe Microanalysis CESAR M. LIBANATI and CARLOS J. TANDLER From the Coinision

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells a. Explain that cells take in nutrients in order to grow, divide and to make needed materials. S7L2a b. Relate cell structures (cell membrane, nucleus, cytoplasm, chloroplasts, and

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

the plant & animal cell

the plant & animal cell 6.1 Basic unit of life Biology Biology Structure & functions of 06 the plant & animal cell In 1665, Robert Hooke observed a section of a cork using a microscope prepared by him. He discovered a structure

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Chapter 18 Regulation of Gene Expression

Chapter 18 Regulation of Gene Expression Chapter 18 Regulation of Gene Expression 18.1. Gene Regulation Is Necessary By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection

More information

Control of Gene Expression

Control of Gene Expression Home Gene Regulation Is Necessary? Control of Gene Expression By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

How To Understand The Human Body

How To Understand The Human Body Introduction to Biology and Chemistry Outline I. Introduction to biology A. Definition of biology - Biology is the study of life. B. Characteristics of Life 1. Form and size are characteristic. e.g. A

More information

Basic Scientific Principles that All Students Should Know Upon Entering Medical and Dental School at McGill

Basic Scientific Principles that All Students Should Know Upon Entering Medical and Dental School at McGill Fundamentals of Medicine and Dentistry Basic Scientific Principles that All Students Should Know Upon Entering Medical and Dental School at McGill Students entering medical and dental training come from

More information

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as 1. True or false? The chi square statistical test is used to determine how well the observed genetic data agree with the expectations derived from a hypothesis. True 2. True or false? Chromosomes in prokaryotic

More information

Genetic material of all living organisms. Biology - 100

Genetic material of all living organisms. Biology - 100 Genetic material of all living organisms. Biology - 100 This antibiotic is made from a fungus that was first discovered growing on an orange and it became the first antibiotic to treat infection. Biology

More information

Where is Mitosis Most Common in the Onion Root?

Where is Mitosis Most Common in the Onion Root? Where is Mitosis Most Common in the Onion Root? Faith Loyd Biology Miss Carpenter February 20, 2013 Problem, Hypothesis, and Prediction The problem in this lab is: To analyze data to see whether mitosis

More information

Touch DNA and DNA Recovery. H. Miller Coyle

Touch DNA and DNA Recovery. H. Miller Coyle Touch DNA and DNA Recovery 1 2 What is the link between cell biology & forensic science? Cells are the trace substances left behind that can identify an individual. Cells contain DNA. There are two forms

More information

Cell Division Simulation: Bacteria Activity One

Cell Division Simulation: Bacteria Activity One Cell Division Simulation: Bacteria Activity One Introduction All living things are made of cells. Some living things, like plants and animals, are made of millions of cells. But some living things are

More information

Complex multicellular organisms are produced by cells that switch genes on and off during development.

Complex multicellular organisms are produced by cells that switch genes on and off during development. Home Control of Gene Expression Gene Regulation Is Necessary? By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

The Cell. Grade 8 Activity Plan

The Cell. Grade 8 Activity Plan The Cell Grade 8 Activity Plan Plant Cell Project Objectives: 1. To identify cell organelles and their functions. 2. To demonstrate the difference between plant and animal cells. Keywords/concepts: cells,

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information

Activity 4 Long-Term Effects of Drug Addiction

Activity 4 Long-Term Effects of Drug Addiction Activity 4 Long-Term Effects of Drug Addiction Core Concept: Addictive drugs may lead to long-term changes in brain function. Class time required: Approximately 60-80 minutes Teacher Provides: Copy of

More information

Summary.-Miniature-3 gamma gene is unstable in somatic cells.

Summary.-Miniature-3 gamma gene is unstable in somatic cells. 434 4GENETICS: C. R. BURNHAM be influenced by several genetic factors.6 'The higher rate in the males might be accounted for by the assumption that the male sex stimulates the instability. Experiments

More information

(From the Department of Anatomy, Harvard Medical School, Boston)

(From the Department of Anatomy, Harvard Medical School, Boston) THE FINE STRUCTURE OF THE ELECTRIC ORGAN OF THE ELECTRIC EEL AND TORPEDO RAY* PRELIMINARY COMMUNICATION BY JOHN H. LUFT, M.D. (From the Department of Anatomy, Harvard Medical School, Boston) PLATE 76 Electric

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression (Learning Objectives) Explain the role of gene expression is differentiation of function of cells which leads to the emergence of different tissues, organs, and organ systems

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

the dipeptide coefficients can be found and, finally, t -+ oo, A 2M, G -+ 3M. Hence the accuracy of

the dipeptide coefficients can be found and, finally, t -+ oo, A 2M, G -+ 3M. Hence the accuracy of 482 F. LUCAS, J. T. B. SHAW, S. G. SMITH AND C. MACK I957 of the equations (4) to (17) can now be given. They are SGAG = M[eqx+2z)t - e4+sz) t], (22) SGA = M[ex+z)t - ex+2z) t], (23) SG = M[e-xt - e+z)

More information

Biology Chapter 7 Practice Test

Biology Chapter 7 Practice Test Biology Chapter 7 Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. The work of Schleiden and Schwann can be summarized by

More information

Fighting the Battles: Conducting a Clinical Assay

Fighting the Battles: Conducting a Clinical Assay Fighting the Battles: Conducting a Clinical Assay 6 Vocabulary: In Vitro: studies in biology that are conducted using components of an organism that have been isolated from their usual biological surroundings

More information

Teacher s Guide. Mitosis. Grades 5-9 MTTV

Teacher s Guide. Mitosis. Grades 5-9 MTTV Teacher s Guide Mitosis Grades 5-9 MTTV CREDITS Program Production Sunburst Visual Media Teacher s Guide Terry Gates Print Material Design Cecile Foshee 2004 Sunburst Visual Media, a division of Global

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

(From The Children's Hospital of Philadelphia (Department of Pediatrics, School:of Medicine, University of Pennsylvania), Philaddphia)

(From The Children's Hospital of Philadelphia (Department of Pediatrics, School:of Medicine, University of Pennsylvania), Philaddphia) HISTOCHEMICAL CHANGES IN LYMPHOCYTES DURING THE PRODUCTION OF ANTIBODIES IN LYMPH NODES OF RABBITS* B~ T. N. HARRIS, M.D., AND SUSANNA HARRIS, P~.D. (From The Children's Hospital of Philadelphia (Department

More information

Unit 1 Higher Human Biology Summary Notes

Unit 1 Higher Human Biology Summary Notes Unit 1 Higher Human Biology Summary Notes a. Cells tissues organs body systems Division of labour occurs in multicellular organisms (rather than each cell carrying out every function) Most cells become

More information

ORGANIZATION OF MICROTUBULES AND ENDOPLASMIC RETICULUM DURING MITOSIS AND CYTOKINESIS IN WHEAT MERISTEMS

ORGANIZATION OF MICROTUBULES AND ENDOPLASMIC RETICULUM DURING MITOSIS AND CYTOKINESIS IN WHEAT MERISTEMS J. Cell Sci. i, 109-120 (1966) IO9 Printed in Great Britain ORGANIZATION OF MICROTUBULES AND ENDOPLASMIC RETICULUM DURING MITOSIS AND CYTOKINESIS IN WHEAT MERISTEMS J. D. PICKETT-HEAPS AND D. H. NORTHCOTE

More information

1.1 Introduction. 1.2 Cells CHAPTER. 1.2.1 Prokaryotic Cells. 1.2.2 Eukaryotic Cells

1.1 Introduction. 1.2 Cells CHAPTER. 1.2.1 Prokaryotic Cells. 1.2.2 Eukaryotic Cells C HAPTER 1CELLS AND CELL DIVISION CHAPTER 1.1 Introduction In genetics, we view cells as vessels for the genetic material. Our main interest is in the chromosomes and their environment. This being said,

More information

Long-Term Effects of Drug Addiction

Long-Term Effects of Drug Addiction Long-Term Effects of Drug Addiction Part 1: Addiction is a chronic disease Drug addiction is considered a chronic brain disease because drugs cause long-lasting changes in brain structure and function.

More information

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes Page 1 of 22 Introduction Indiana students enrolled in Biology I participated in the ISTEP+: Biology I Graduation Examination

More information

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA. Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary

More information

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu. Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.au What is Gene Expression & Gene Regulation? 1. Gene Expression

More information

Cells. Introduction WSBCTC 1

Cells. Introduction WSBCTC 1 Cells Cells are the fundamental unit of life. All living things are composed of cells. While there are several characteristics that are common to all cells, such as the presence of a cell membrane, cytoplasm,

More information

Comparing Plant And Animal Cells

Comparing Plant And Animal Cells Comparing Plant And Animal Cells http://khanacademy.org/video?v=hmwvj9x4gny Plant Cells shape - most plant cells are squarish or rectangular in shape. amyloplast (starch storage organelle)- an organelle

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information