EECE 276 Embedded Systems
|
|
|
- Gwenda Barker
- 10 years ago
- Views:
Transcription
1 EECE 276 Embedded Systems Embedded SW Architectures Round-robin Function-queue scheduling EECE 276 Embedded Systems Embedded Software Architectures 1
2 Software Architecture How to do things how to arrange code for an embedded system application. Four variants: 1. Round-robin 2. Round-robin with interrupts 3. Function-queue-scheduling 4. Real-time Operating System EECE 276 Embedded Systems Embedded Software Architectures 2
3 Round-robin: Poll and Serve void main() { while(true) { if(// I/O Device #1 needs service) { // Service I/O #1 if(// I/O Device #2 needs service) { // Service I/O #2 if(// I/O Device #n needs service) { // Service I/O #n EECE 276 Embedded Systems Embedded Software Architectures 3
4 Round-robin: Poll and Serve Pro: Very simple, straightforward, no interrupts Cons: 1. If a device needs faster service than the cycletime, it may not work. 2. If there is a lengthy processing, the system may not react fast enough. 3. Very fragile hard to extend, reprogram, change. 4. No interrupts! EECE 276 Embedded Systems Embedded Software Architectures 4
5 Round-robin with interrupts (1) bool fdev1 = FALSE, fdev2 = FALSE, fdevn = FALSE; void interrupt vhandledev1() { // Handle Dev 1 fdev1 = TRUE; void interrupt vhandledevn() { // Handle Dev n fdevn = TRUE; For every device: ISR handles I/O termination and sets flag. EECE 276 Embedded Systems Embedded Software Architectures 5
6 Round-robin with interrupts (2) void main() { while (TRUE) { if(fdev1) { fdev1 = FALSE; // Handle data from Dev 1 if(fdevn) { fdevn = FALSE; // Handle data from Dev n For every device: if device needs attention, main handles data and clears flag. EECE 276 Embedded Systems Embedded Software Architectures 6
7 Round-robin with interrupts ISRs: handlers for I/O, main(): task code ISR-s ensure fast initial reactions to devices Priorities: vhandledev1 > vhandledev2 > vhandledevn (per IT priority) Problem: All tasks (non-isr codes) are handled with the same priority Solution: Move task code into ISR May slow down system (longer ISR!) Change the order of flag-polling in main() Priority through polling order WCRT: total exec time for all task codes + all ISR-s EECE 276 Embedded Systems Embedded Software Architectures 7
8 Function-Queue-Scheduling Queue data structure: Queue of elements Queue enqueue(queue,elem); Elem dequeue(queue); First-in-first-out (FIFO) order Variant: Priority Queue List of queues ordered according to priority EECE 276 Embedded Systems Embedded Software Architectures 8
9 Function-Queue-Scheduling (1) void interrupt vhandledev1() { // Handle Dev 1 enqueue(q,fp1); void interrupt vhandledevn() { // Handle Dev n enqueue(q,fpn); ISR: Take care of device and enqueue corresponding function pointer. EECE 276 Embedded Systems Embedded Software Architectures 9
10 Function-Queue-Scheduling (2) void fp1() { Task functions for each task. // Task code for Dev 1 void fp2() { // Task code for Dev Q: A shared Queue void main() { while(true) { while(//queue of function pointers is not empty) { fp = dequeue(q); // call fp Dequeue next function pointer and call function. EECE 276 Embedded Systems Embedded Software Architectures 10
11 Function-Queue-Scheduling WCRT if priority queue is used: Longest task code + exec time of ISRs Tradeoff: Response time for low-priority task code may get worse! Starvation because of higher-priority interrupts EECE 276 Embedded Systems Embedded Software Architectures 11
12 Real-Time OS (1) void interrupt vhandledev1() { // Handle Dev 1 // Send signal #1 void interrupt vhandledevn() { // Handle Dev n // Send signal #n ISR: Take care of device and send a unique signal. EECE 276 Embedded Systems Embedded Software Architectures 12
13 Real-time OS (2) void task1() { // Wait for signal #1 // Task code for Dev 1 void taskn() { // Wait for signal #n // Task code for Dev void main() { // Start task1 // Start taskn Task: A concurrent activity, with its own thread of control/stack ( context ) EECE 276 Embedded Systems Embedded Software Architectures 13
14 Real-Time OS Architecture RTOS provides:» Task creation and processor scheduling services» Processor is time-sliced across tasks» Signaling services (send() and wait()) ISR1 TASK3 TASK2 TASK1 Arrows indicate context (task) switching points Time EECE 276 Embedded Systems Embedded Software Architectures 14
15 Comparison Priorities WCRT Stability at code changes Complexity Round-robin None Sum of all task code Poor Very simple Round-robin with interrupts ISR in priority order, tasks same priority Total of all task code + all ISRs Poor if task code is changed Shared data problem (ISRs and task code) Function Queue Scheduling ISRs and task code in priority order Execution time for the longest task code + ISRs Queue mgmt is critical Shared data problem and function queue code RTOS ISRs and task code in priority order 0 + ISR execution times Very good High (needs kernel) EECE 276 Embedded Systems Embedded Software Architectures 15
Survey of software architectures: function-queue-scheduling architecture and real time OS
Survey of software architectures: function-queue-scheduling architecture and real time OS Reference: Simon chapter 5 Last class: round robin with interrupts and without interrupts Function-Queue-Scheduling
SYSTEM ecos Embedded Configurable Operating System
BELONGS TO THE CYGNUS SOLUTIONS founded about 1989 initiative connected with an idea of free software ( commercial support for the free software ). Recently merged with RedHat. CYGNUS was also the original
Data Structures and Algorithms Stacks and Queues
Data Structures and Algorithms Stacks and Queues Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/23 6-0: Stacks and
Linux Process Scheduling Policy
Lecture Overview Introduction to Linux process scheduling Policy versus algorithm Linux overall process scheduling objectives Timesharing Dynamic priority Favor I/O-bound process Linux scheduling algorithm
QUEUES. Primitive Queue operations. enqueue (q, x): inserts item x at the rear of the queue q
QUEUES A queue is simply a waiting line that grows by adding elements to its end and shrinks by removing elements from the. Compared to stack, it reflects the more commonly used maxim in real-world, namely,
I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1
General Computer Architecture I/O Management COMP755 Advanced Operating Systems Goals for I/O Users should access all devices in a uniform manner. Devices should be named in a uniform manner. The OS, without
Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d
Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling
PROGRAMMING CONCEPTS AND EMBEDDED PROGRAMMING IN C, C++ and JAVA: Lesson-4: Data Structures: Stacks
PROGRAMMING CONCEPTS AND EMBEDDED PROGRAMMING IN C, C++ and JAVA: Lesson-4: Data Structures: Stacks 1 STACK A structure with a series of data elements with last sent element waiting for a delete operation.
Processor Scheduling. Queues Recall OS maintains various queues
Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time
Comparison between scheduling algorithms in RTLinux and VxWorks
Comparison between scheduling algorithms in RTLinux and VxWorks Linköpings Universitet Linköping 2006-11-19 Daniel Forsberg ([email protected]) Magnus Nilsson ([email protected]) Abstract The
CS414 SP 2007 Assignment 1
CS414 SP 2007 Assignment 1 Due Feb. 07 at 11:59pm Submit your assignment using CMS 1. Which of the following should NOT be allowed in user mode? Briefly explain. a) Disable all interrupts. b) Read the
2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput
Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?
CPU Scheduling. CPU Scheduling
CPU Scheduling Electrical and Computer Engineering Stephen Kim ([email protected]) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling
Operating Systems Lecture #6: Process Management
Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013
Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run
SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run
Performance Comparison of RTOS
Performance Comparison of RTOS Shahmil Merchant, Kalpen Dedhia Dept Of Computer Science. Columbia University Abstract: Embedded systems are becoming an integral part of commercial products today. Mobile
POSIX. RTOSes Part I. POSIX Versions. POSIX Versions (2)
RTOSes Part I Christopher Kenna September 24, 2010 POSIX Portable Operating System for UnIX Application portability at source-code level POSIX Family formally known as IEEE 1003 Originally 17 separate
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS
CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann [email protected] Universität Paderborn PC² Agenda Multiprocessor and
CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads.
CPU Scheduling CPU Scheduling 101 The CPU scheduler makes a sequence of moves that determines the interleaving of threads. Programs use synchronization to prevent bad moves. but otherwise scheduling choices
Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/
Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille [email protected] Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching
Embedded Systems. 6. Real-Time Operating Systems
Embedded Systems 6. Real-Time Operating Systems Lothar Thiele 6-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic
Chapter 2: OS Overview
Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:
REDUCING TIME: SCHEDULING JOB. Nisha Yadav, Nikita Chhillar, Neha jaiswal
Journal Of Harmonized Research (JOHR) Journal Of Harmonized Research in Engineering 1(2), 2013, 45-53 ISSN 2347 7393 Original Research Article REDUCING TIME: SCHEDULING JOB Nisha Yadav, Nikita Chhillar,
Embedded Software Architecture
Embedded Software Architecture EECS 461, Fall 2008 J. A. Cook J. S. Freudenberg 1 Introduction Embedded systems encompass aspects of control (or more broadly, signal processing), computing and communications.
REAL TIME OPERATING SYSTEMS. Lesson-10:
REAL TIME OPERATING SYSTEMS Lesson-10: Real Time Operating System 1 1. Real Time Operating System Definition 2 Real Time A real time is the time which continuously increments at regular intervals after
Predictable response times in event-driven real-time systems
Predictable response times in event-driven real-time systems Automotive 2006 - Security and Reliability in Automotive Systems Stuttgart, October 2006. Presented by: Michael González Harbour [email protected]
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms
Introduction. Scheduling. Types of scheduling. The basics
Introduction In multiprogramming systems, when there is more than one runable (i.e., ready), the operating system must decide which one to activate. The decision is made by the part of the operating system
Module 8. Industrial Embedded and Communication Systems. Version 2 EE IIT, Kharagpur 1
Module 8 Industrial Embedded and Communication Systems Version 2 EE IIT, Kharagpur 1 Lesson 37 Real-Time Operating Systems: Introduction and Process Management Version 2 EE IIT, Kharagpur 2 Instructional
CPU Scheduling. Core Definitions
CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases
Chapter 5 Process Scheduling
Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling
Operating System: Scheduling
Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting
Scheduling 0 : Levels. High level scheduling: Medium level scheduling: Low level scheduling
Scheduling 0 : Levels High level scheduling: Deciding whether another process can run is process table full? user process limit reached? load to swap space or memory? Medium level scheduling: Balancing
Chapter 19: Real-Time Systems. Overview of Real-Time Systems. Objectives. System Characteristics. Features of Real-Time Systems
Chapter 19: Real-Time Systems System Characteristics Features of Real-Time Systems Chapter 19: Real-Time Systems Implementing Real-Time Operating Systems Real-Time CPU Scheduling VxWorks 5.x 19.2 Silberschatz,
Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings
Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,
Operating Systems Concepts: Chapter 7: Scheduling Strategies
Operating Systems Concepts: Chapter 7: Scheduling Strategies Olav Beckmann Huxley 449 http://www.doc.ic.ac.uk/~ob3 Acknowledgements: There are lots. See end of Chapter 1. Home Page for the course: http://www.doc.ic.ac.uk/~ob3/teaching/operatingsystemsconcepts/
EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun
EECS 750: Advanced Operating Systems 01/28 /2015 Heechul Yun 1 Recap: Completely Fair Scheduler(CFS) Each task maintains its virtual time V i = E i 1 w i, where E is executed time, w is a weight Pick the
Chapter 11 I/O Management and Disk Scheduling
Operatin g Systems: Internals and Design Principle s Chapter 11 I/O Management and Disk Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles An artifact can
Chapter 13 Embedded Operating Systems
Operating Systems: Internals and Design Principles Chapter 13 Embedded Operating Systems Eighth Edition By William Stallings Embedded System Refers to the use of electronics and software within a product
Lecture 6: Interrupts. CSC 469H1F Fall 2006 Angela Demke Brown
Lecture 6: Interrupts CSC 469H1F Fall 2006 Angela Demke Brown Topics What is an interrupt? How do operating systems handle interrupts? FreeBSD example Linux in tutorial Interrupts Defn: an event external
Linux scheduler history. We will be talking about the O(1) scheduler
CPU Scheduling Linux scheduler history We will be talking about the O(1) scheduler SMP Support in 2.4 and 2.6 versions 2.4 Kernel 2.6 Kernel CPU1 CPU2 CPU3 CPU1 CPU2 CPU3 Linux Scheduling 3 scheduling
Designing a Home Alarm using the UML. And implementing it using C++ and VxWorks
Designing a Home Alarm using the UML And implementing it using C++ and VxWorks M.W.Richardson I-Logix UK Ltd. [email protected] This article describes how a simple home alarm can be designed using the UML
Process Description and Control. 2004-2008 william stallings, maurizio pizzonia - sistemi operativi
Process Description and Control 1 Process A program in execution (running) on a computer The entity that can be assigned to and executed on a processor A unit of activity characterized by a at least one
DATA STRUCTURE - QUEUE
DATA STRUCTURE - QUEUE http://www.tutorialspoint.com/data_structures_algorithms/dsa_queue.htm Copyright tutorialspoint.com Queue is an abstract data structure, somewhat similar to stack. In contrast to
Multiprogramming. IT 3123 Hardware and Software Concepts. Program Dispatching. Multiprogramming. Program Dispatching. Program Dispatching
IT 3123 Hardware and Software Concepts Operating Systems II October 26 Multiprogramming Two or more application programs in memory. Consider one CPU and more than one program. This can be generalized to
Threads Scheduling on Linux Operating Systems
Threads Scheduling on Linux Operating Systems Igli Tafa 1, Stavri Thomollari 2, Julian Fejzaj 3 Polytechnic University of Tirana, Faculty of Information Technology 1,2 University of Tirana, Faculty of
Real-time Operating Systems. VO Embedded Systems Engineering Armin Wasicek 11.12.2012
Real-time Operating Systems VO Embedded Systems Engineering Armin Wasicek 11.12.2012 Overview Introduction OS and RTOS RTOS taxonomy and architecture Application areas Mixed-criticality systems Examples:
Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses
Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline
Chapter 11 I/O Management and Disk Scheduling
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization
the high-performance embedded kernel User Guide Version 5.0 Express Logic, Inc. 858.613.6640 Toll Free 888.THREADX FAX 858.521.
the high-performance embedded kernel Version 5.0 Express Logic, Inc. 858.613.6640 Toll Free 888.THREADX FAX 858.521.4259 http://www.expresslogic.com 1997-2006 by Express Logic, Inc. All rights reserved.
RTAI. Antonio Barbalace [email protected]. (modified by M.Moro 2011) RTAI
Antonio Barbalace [email protected] (modified by M.Moro 2011) Real Time Application Interface by Dipartimento di Ingegneria Aereospaziale dell Università di Milano (DIAPM) It is not a complete
OPERATING SYSTEMS SCHEDULING
OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform
A Comparative Study on Vega-HTTP & Popular Open-source Web-servers
A Comparative Study on Vega-HTTP & Popular Open-source Web-servers Happiest People. Happiest Customers Contents Abstract... 3 Introduction... 3 Performance Comparison... 4 Architecture... 5 Diagram...
3. Scheduling issues. Common approaches /1. Common approaches /2. Common approaches /3. 2012/13 UniPD / T. Vardanega 23/01/2013. Real-Time Systems 1
Common approaches /1 3. Scheduling issues Clock-driven (time-driven) scheduling Scheduling decisions are made beforehand (off line) and carried out at predefined time instants The time instants normally
Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note:
Chapter 7 OBJECTIVES Operating Systems Define the purpose and functions of an operating system. Understand the components of an operating system. Understand the concept of virtual memory. Understand the
How to design and implement firmware for embedded systems
How to design and implement firmware for embedded systems Last changes: 17.06.2010 Author: Rico Möckel The very beginning: What should I avoid when implementing firmware for embedded systems? Writing code
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 26 Real - Time POSIX. (Contd.) Ok Good morning, so let us get
Real- Time Scheduling
Real- Time Scheduling Chenyang Lu CSE 467S Embedded Compu5ng Systems Readings Ø Single-Processor Scheduling: Hard Real-Time Computing Systems, by G. Buttazzo. q Chapter 4 Periodic Task Scheduling q Chapter
Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems
Lecture Outline Operating Systems Objectives Describe the functions and layers of an operating system List the resources allocated by the operating system and describe the allocation process Explain how
Introduction to Operating Systems. Perspective of the Computer. System Software. Indiana University Chen Yu
Introduction to Operating Systems Indiana University Chen Yu Perspective of the Computer System Software A general piece of software with common functionalities that support many applications. Example:
Intel DPDK Boosts Server Appliance Performance White Paper
Intel DPDK Boosts Server Appliance Performance Intel DPDK Boosts Server Appliance Performance Introduction As network speeds increase to 40G and above, both in the enterprise and data center, the bottlenecks
Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor
Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, Theo Ungerer University of Augsburg 12th International Workshop
What is an RTOS? Introduction to Real-Time Operating Systems. So what is an RTOS?(contd)
Introduction to Real-Time Operating Systems Mahesh Balasubramaniam What is an RTOS? An RTOS is a class of operating systems that are intended for real time-applications What is a real time application?
Introduction. Application Performance in the QLinux Multimedia Operating System. Solution: QLinux. Introduction. Outline. QLinux Design Principles
Application Performance in the QLinux Multimedia Operating System Sundaram, A. Chandra, P. Goyal, P. Shenoy, J. Sahni and H. Vin Umass Amherst, U of Texas Austin ACM Multimedia, 2000 Introduction General
OS OBJECTIVE QUESTIONS
OS OBJECTIVE QUESTIONS Which one of the following is Little s formula Where n is the average queue length, W is the time that a process waits 1)n=Lambda*W 2)n=Lambda/W 3)n=Lambda^W 4)n=Lambda*(W-n) Answer:1
Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5
77 16 CPU Scheduling Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5 Until now you have heard about processes and memory. From now on you ll hear about resources, the things operated upon
Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction
Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know
CPU Scheduling. Multitasking operating systems come in two flavours: cooperative multitasking and preemptive multitasking.
CPU Scheduling The scheduler is the component of the kernel that selects which process to run next. The scheduler (or process scheduler, as it is sometimes called) can be viewed as the code that divides
Queues and Stacks. Atul Prakash Downey: Chapter 15 and 16
Queues and Stacks Atul Prakash Downey: Chapter 15 and 16 Queues Queues occur in real life a lot. Queues at checkout Queues in banks In software systems: Queue of requests at a web servers Properties of
Devices and Device Controllers
I/O 1 Devices and Device Controllers network interface graphics adapter secondary storage (disks, tape) and storage controllers serial (e.g., mouse, keyboard) sound co-processors... I/O 2 Bus Architecture
Task Scheduling for Multicore Embedded Devices
Embedded Linux Conference 2013 Task Scheduling for Multicore Embedded Devices 2013. 02. 22. Gap-Joo Na ([email protected]) Contents 2 What is multicore?? 1. Multicore trends 2. New Architectures 3. Software
Threads & Tasks: Executor Framework
Threads & Tasks: Executor Framework Introduction & Motivation WebServer Executor Framework Callable and Future 12 April 2012 1 Threads & Tasks Motivations for using threads Actor-based Goal: Create an
First-class User Level Threads
First-class User Level Threads based on paper: First-Class User Level Threads by Marsh, Scott, LeBlanc, and Markatos research paper, not merely an implementation report User-level Threads Threads managed
CPU Scheduling. CSC 256/456 - Operating Systems Fall 2014. TA: Mohammad Hedayati
CPU Scheduling CSC 256/456 - Operating Systems Fall 2014 TA: Mohammad Hedayati Agenda Scheduling Policy Criteria Scheduling Policy Options (on Uniprocessor) Multiprocessor scheduling considerations CPU
From Control Loops to Software
CNRS-VERIMAG Grenoble, France October 2006 Executive Summary Embedded systems realization of control systems by computers Computers are the major medium for realizing controllers There is a gap between
Chapter 1 Computer System Overview
Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides
Real-Time Component Software. slide credits: H. Kopetz, P. Puschner
Real-Time Component Software slide credits: H. Kopetz, P. Puschner Overview OS services Task Structure Task Interaction Input/Output Error Detection 2 Operating System and Middleware Applica3on So5ware
Processes and Non-Preemptive Scheduling. Otto J. Anshus
Processes and Non-Preemptive Scheduling Otto J. Anshus 1 Concurrency and Process Challenge: Physical reality is Concurrent Smart to do concurrent software instead of sequential? At least we want to have
ò Scheduling overview, key trade-offs, etc. ò O(1) scheduler older Linux scheduler ò Today: Completely Fair Scheduler (CFS) new hotness
Last time Scheduling overview, key trade-offs, etc. O(1) scheduler older Linux scheduler Scheduling, part 2 Don Porter CSE 506 Today: Completely Fair Scheduler (CFS) new hotness Other advanced scheduling
Hard Real-Time Linux
Hard Real-Time Linux (or: How to Get RT Performances Using Linux) Andrea Bastoni University of Rome Tor Vergata System Programming Research Group [email protected] Linux Kernel Hacking Free Course
Networking Operating Systems (CO32010)
Networking Operating Systems (CO32010) 2. Processes and scheduling 1. Operating Systems 1.1 NOS definition and units 1.2 Computer 7. Encryption Systems 1.3 Multitasking and Threading 1.4 Exercises 6. Routers
Java Environment for Parallel Realtime Development Platform Independent Software Development for Multicore Systems
Java Environment for Parallel Realtime Development Platform Independent Software Development for Multicore Systems Ingo Prötel, aicas GmbH Computing Frontiers 6 th of May 2008, Ischia, Italy Jeopard-Project:
Enhancing the Monitoring of Real-Time Performance in Linux
Master of Science Thesis Enhancing the Monitoring of Real-Time Performance in Linux Author: Nima Asadi [email protected] Supervisor: Mehrdad Saadatmand [email protected] Examiner: Mikael
Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP
Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP Éric Piel, Philippe Marquet, Julien Soula, and Jean-Luc Dekeyser {Eric.Piel,Philippe.Marquet,Julien.Soula,Jean-Luc.Dekeyser}@lifl.fr
Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts
Objectives Chapter 5: CPU Scheduling Introduce CPU scheduling, which is the basis for multiprogrammed operating systems Describe various CPU-scheduling algorithms Discuss evaluation criteria for selecting
ICS 143 - Principles of Operating Systems
ICS 143 - Principles of Operating Systems Lecture 5 - CPU Scheduling Prof. Nalini Venkatasubramanian [email protected] Note that some slides are adapted from course text slides 2008 Silberschatz. Some
Enhancing Hypervisor and Cloud Solutions Using Embedded Linux Iisko Lappalainen MontaVista
Enhancing Hypervisor and Cloud Solutions Using Embedded Linux Iisko Lappalainen MontaVista Setting the Stage This presentation will discuss the usage of Linux as a base component of hypervisor components
Linux Scheduler. Linux Scheduler
or or Affinity Basic Interactive es 1 / 40 Reality... or or Affinity Basic Interactive es The Linux scheduler tries to be very efficient To do that, it uses some complex data structures Some of what it
Chapter 6 Concurrent Programming
Chapter 6 Concurrent Programming Outline 6.1 Introduction 6.2 Monitors 6.2.1 Condition Variables 6.2.2 Simple Resource Allocation with Monitors 6.2.3 Monitor Example: Circular Buffer 6.2.4 Monitor Example:
