A Comparison of Photometric Normalisation Algorithms for Face Verification

Size: px
Start display at page:

Download "A Comparison of Photometric Normalisation Algorithms for Face Verification"

Transcription

1 A Comparison of Photometric Normalisation Algorithms for Face Verification James Short, Josef Kittler and Kieron Messer Centre for Vision, Speech and Signal Processing University of Surrey Guildford, Surrey, GU2 7XH, UK Abstract The variation of illumination conditions of an object can produce large changes in the image plane, significantly impairing the performance of face verification algorithms. We present a comparison of five photometric normalisation algorithms for use in pre-processing face images for the purpose of verification. The algorithms are tested on various configurations of three contrasting databases, namely the Yale B database, the XM2VTS database and the BANCA database. 1. Introduction In general the variation between images of different faces is smaller than that of the same face taken in a variety of environments. External factors such as pose and illumination can cause significant changes in the image plane. It has been shown that illumination causes larger variation in face images than pose [2]. The importance of illumination is further illustrated by examination of the eigenface method [19]. Belhumeur improved the accuracy of a recognition system based on eigenfaces, by removing the first three principal components [4]. Several methods have been proposed to compensate for illumination changes. Kee used shape from shading methods to generate a map of surface normals and reflectances for each subject. These were then used to synthesize an image under the same illumination conditions as the probe image. The two images were then compared directly [13]. Belhumeur analytically investigated the subspace generated by varying the illumination of an object, showing that it formed a convex cone [5]. This method requires a large amount of training data, but Lee showed that the subspace could be generated using only nine images captured under a particular set of illumination conditions [15]. Recognition is carried out by finding the distance of the probe image to the illumination cone. These algorithms work well, but are computationally expensive. In this paper we compare five algorithms for photometric normalisation. A method based on principal component analysis, multiscale retinex [18], homomorphic filtering [10], a method using isotropic smoothing to estimate the luminance function and a method using anisotropic smoothing [11]. Three contrasting databases are used in the experiment. The Yale B database has only ten subjects but contains a large range of illumination conditions [9]. The images in the XM2VTS database were all captured under a controlled environment in which illumination variation is minimised [16]. The BANCA database contains much more realistic illumination conditions [3]. The methods were tested extensively on the three databases using numerous protocols. We show that the homomorphic filter and the anisotropic method yield the most consistent results across all three databases. In the next section, we outline each of the normalization algorithms. Section 3 details the experimental procedures used to compare the methods. The results of the experiment are presented in Section 4 and we conclude in Section Methods In this section we describe five methods of photometrically normalising images. Histogram equalization was used with each method Principal Component Analysis Method Principal component analysis is a popular method of reducing the dimensionality of a set of data. This is carried out using eigen analysis of the data covariance matrix to find an ordered set of orthogonal basis vectors that best define the directions of greatest variance. When applied to the task of face verification, these vectors are known as eigenfaces [19].

2 A face image Á µ can be represented as a set of coefficients ¾ µ where each coefficient corresponds to an eigenface ¾ µ so that the face image is equal to the weighted sum of the eigenfaces. Á µ Ô µ (1) Bischof and Leonardis [6] take advantage of the linearity of Equation 1 and convolve both sides with a kernel Ã. Ô Ã Á µµ à µ (2) where denotes convolution with a kernel Ã. This equation holds true, irrespective of the convolution kernel. As the nature of illumination variation is of low frequency, we can choose a kernel designed to remove low frequency information. The input image of a face verification system can be filtered and the resulting image decomposed into a set of coefficients corresponding to a similarly filtered set of eigenfaces. These coefficients can then be used with the original set of eigenfaces to reconstruct the image Multiscale Retinex Method An image acquired by a camera is the product of two components, reflectance Ê µ and illumination Ä µ [12] Á µ Ä µê µ (3) Illumination is the amount of light falling on the object due to the light source. Reflectance is the amount of light reflected from the surface of the object. Land [14] decomposed the image into reflectance and illumination, by estimating the illumination as a low pass version of the original image, thus finding the reflectance by dividing the image by the illuminance function. Rahman [18] improved upon Lands work by estimating illumination as a combination of images generated by low pass filtering the original image with Gaussians of varying widths. Ä µ Ë Û Á µ µµ (4) where Û is a weighting term and the Gaussian µ has a width at a scale as defined by µ à ¾ ¾ ¾ (5) 2.3. Homomorphic Filtering A homomorphic filter separates illumination and reflectance by taking the logarithm of Equation 3 [10]. ÐÒ Á µ ÐÒÄ µ ÐÒÊ µ (6) The Fourier transform of the result gives ÐÒ Á µ ÐÒ Ä µ ÐÒ Ê µ (7) which can be written as the sum of two functions in the frequency domain Ù Úµ Ä Ù Úµ Ê Ù Úµ (8) Ê is composed of mostly high frequency components and Ä of mostly low frequency components. can be convolved with a filter of transfer function À Ù Úµ that reduces the low frequencies and amplifies high frequencies, thus improving contrast and compressing dynamic range. À Ù Úµ Ù Úµ À Ù Úµ Ä Ù Úµ À Ù Úµ Ê Ù Úµ (9) The processed image can be found by inverse Fourier transforming Equation 9 and taking the exponential. Á ¼ µ À ÙÚµ ÙÚµ 2.4. Isotropic Smoothing (10) Illumination can be estimated as a blurred version of the original image. This blurring can be implemented by constructing an illumination function Ä that is similar to the original image Á but contains a smoothing constraint. The illumination function can be constructed by minimizing the following cost function.  ĵ Ä Áµ ¾ Ä ¾ ľ µ (11) where parameter controls the relative importance of the smoothness constraint. The problem in Equation 11 can be solved by a Euler-Lagrange diffusion process which can be discretized as follows Á µ Ä µ ÖÄ Æ µ ÖÄ Ë µ ÖÄ µ ÖÄ Ï µ (12) where ÖÄ refers to the derivative with respect to each of the four adjacent neighbouring pixels, i.e. the subscripts Æ, Ë, and Ï define the direction of the neighbouring pixel, so that ÖÁ Æ µ is the value of the µ pixel minus the value of the µ pixel. The amount of smoothing is controlled by the parameter c. This Equation can be quickly solved using multigrid methods [7].

3 2.5. Anisotropic Smoothing The cost function in Equation 11 can be generalized by incorporating a weight, µ, mimicking the perception gain [1, 11], in the term maximising goodness of fit of the solution to data, i.e.  ĵ µ Ä Áµ ¾ Ä ¾ ľ µ (13) Gross suggests that the coefficient should be a function of local image contrast, so as to enhance the image contrast in a manner which is insensitive to illumination. Using the reciprocal of Weber s contrast as the smoothing parameter, the equation becomes Á µ Ä µ where Æ µ ÖÄ Æ µ Ë µ ÖÄ Ë µ µ ÖÄ µ Ï µ ÖÄ Ï µ ¾ Á Á ÑÒ Á Á µ (14) (15) is known as Weber s contrast. As with isotropic diffusion, multigrid methods are used to solve the equation. 3. Comparison of the Methods For a thorough evaluation of the effectiveness of the photometric normalisation algorithms, we investigated their effect on the accuracy of a face verification system. The system was tested using the various normalisation algorithms on the Yale B database [9], the XM2VTS database [16] and the BANCA database [3]. A benchmark set of images, without illumination normalisation, denoted Geometric in the results, were also tested. The Yale B database contains images under widely varying illumination conditions and poses of ten subjects. Tests were carried out using the frontal pose set of images with varying illumination. Both the XM2VTS database and the BANCA database have detailed evaluation protocols. The face verification software is based on linear discriminant analysis. It uses three sets of data, namely training, evaluation and testing. For each claim, the system generates a score reflecting how well the probe image matches the claimed identity. These scores are generated for the evaluation set in order to find a threshold corresponding to the equal error rate i.e. the point at which the false acceptance rate (FAR) equals the false rejection rate (FRR). Figure 1. Examples of the YaleB (top), XM2VTS (middle) and BANCA (bottom) database images This threshold is then used for the test set, from which the FAR and FRR can be calculated. The final result is generated by averaging FAR and FRR, i.e. the half total error rate (HTER). The Yale B database contains 64 different illumination conditions for 10 subjects. The illumination conditions are a single light source, the position of which varies horizontally (from -130 Æ to 130 Æ ) and vertically (from 40 Æ to 65 Æ ). Due to the limited size of the Yale B database, the test was carried out with the face verification system having been trained on the XM2VTS database. The ROC curve was then generated from the resulting scores. The XM2VTS database contains images of 295 subjects, captured over 4 sessions in a controlled environment. The database uses a standard protocol. The Lausanne protocol splits the database randomly into training, evaluation and test groups [16]. The training group contains 200 subjects as clients, the evaluation group an additional 25 subjects as impostors and the testing group another 70 subjects as impostors. The BANCA database was captured over twelve sessions in three different scenarios and has a population of 52 subjects (26 male and 26 female). Sessions 1 4 were captured in a controlled scenario, sessions 5 8 were captured in a degraded scenario which was captured using a simple web cam and session 9 12 were captured in an adverse scenario. The BANCA database has seven configurations of training and testing data incorporating different permutations of data from the twelve sessions. The seven configurations are Matched Controlled (MC),

4 Matched Degraded (MD), Matched Adverse (MA), Unmatched Degraded (UD), Unmatched Adverse (UA), Pooled test (P), and Grand test (G). The content of each configuration is described by table 1. T represents clients for training, I impostors for testing and C represents clients for testing geometric homomorphic isotropic anisotropic retinex pca Session MC MD MA UD UA P G 1 TI T T TI TI 2 CI CI CI 3 CI CI CI 4 CI CI CI 5 TI I I TI 6 CI CI CI CI 7 CI CI CI CI 8 CI CI CI CI 9 TI I I TI 10 CI CI CI CI 11 CI CI CI CI 12 CI CI CI CI True Acceptance False Acceptance Figure 2. ROC curve for the Yale B database Table 1. How different sessions are used for the protocols of the BANCA database 4. Experimental Results geometric homomorphic isotropic anisotropic retinex pca This section presents a summary of the results of testing the various algorithms on the three databases. Firstly, the results of the Yale B database experiment are presented in Figure 2. The homomorphic filter shows a small improvement in performance. The anisotropic method achieves a much better performance and the value of the local contrast coefficients is illustrated by the huge improvement in accuracy over the isotropic method. By far the best performance is obtained by the retinex method. The second experiment was carried out using the two configurations of the XM2VTS database. The results obtained from configuration one of the database show the homomorphic filter achieving the highest accuracy, narrowly outperforming the anisotropic method. In contrast, the results from configuration two of the database show superior results for the anisotropic method. When applied to the XM2VTS database, where the illumination is controlled, the retinex method actually shows a considerable drop in performance. The filtering process therefore removes valuable discriminatory information in addition to the illumination information. The third experiment was carried out on the BANCA database. The results are summarised in table 3 which shows the half total error rates. The seven configurations of the BANCA database show differing results. The principal component analysis method True Acceptance False Acceptance Figure 3. ROC curve for configuration 1 of the XM2VTS database improves performance on the matched and grand configurations, but degrades performance on the unmatched and pooled configurations. The anisotropic method yields the best results by a large margin over all but the matched adverse and unmatched adverse configurations. In the case of the unmatched adverse configuration, the anisotropic method is narrowly better than the homomorphic filter and in the matched adverse case it performs significantly worse. The test sets in these configurations are formed exclusively from sessions 10, 11 and 12 which correspond to the adverse scenarios. The isotropic method outperforms

5 True Acceptance geometric homomorphic isotropic anisotropic retinex pca Protocol Method MC MD MA UD UA P G Geometric PCA Retinex Homomorphic Isotropic Anisotropic Table 3. Performance on all protocols of the BANCA database. Values shown are the HTER: half total error rate False Acceptance Figure 4. ROC curve for configuration 2 of the XM2VTS database Protocol Configuration 1 Configuration 2 Method FAR FRR HTER FAR FRR HTER Geometric PCA Retinex Homomorphic Isotropic Anisotropic Table 2. Performance on both protocols of the XM2VTS database. Values shown are the FAR: false acceptance rate, FRR: false rejection rate, and HTER: half total error rate the anisotropic method on the matched adverse configuration, i.e. the local contrast coefficients lead to a reduction in performance in this case. 5. Conclusions The performance of various photometric normalisation algorithms has been compared on three very different databases and over numerous configurations. The PCA method shows inconsistent improvements. The illumination variation in the Yale B database is vast and the retinex method proves to be superior, however as a photometric normalisation algorithm it performs badly on the realistically illuminated XM2VTS and BANCA databases. The XM2VTS database in contrast with the BANCA database has excellent illumination conditions. There are no examples of shadowing and all images are captured in the same environment. The difference between the homomorphic filter and the anisotropic methods demonstrated by the XM2VTS database is vary small and based entirely on the selection of training and testing data. However when illumination conditions are degraded, such as in the BANCA database, the anisotropic method is clearly shown to be superior. References [1] S. Acton, Multigrid Anisotropic Diffusion IEEE Trans. Image Processing, vol. 7, 1998 [2] Y. Adini, Y. Moses, and S. Ullman, Face recognition: the problem of compensating for illumination changes. IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 19(7), pp , 1997 [3] E Bailly-Bailliere, et al., The BANCA Database and Evaluation Protocol AVBPA, 2003 [4] P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 19, pp , 1997 [5] P. Belhumeur, D. Kriegman, What is the Set of Images of an Object Under All Possible Lighting Conditions? IEEE Proc. Conf. Computer Vision and Pattern Recognition, 1996 [6] H. Bischof, A. Leonardis, Illumination Insensitive Eigenspaces Proc. ICCV, pp , 2001 [7] W. Briggs, V. Henson, S. McCormick, A Multigrid Tutorial Siam, Second ed. [8] B. Funt, et al., Luminance Based Multiscale Retinex Proc. AIC, 1997 [9] A. Georghiades, P. Belhumeur, D. Kriegman, From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 23, pp , 2001 [10] R. Gonzalez, R. Woods, Digital Image Processing Prentice Hall, Second ed. [11] R. Gross, V. Brajovic, An Image Preprocessing Algorithm AVBPA, pp10-18, 2003

6 [12] B. Horn, Robot Vision MIT Press, 1998 [13] S. Kee, K. Lee and S. Lee, Illumination Invariant Face Recognition Using Photometric Stereo IEICE Trans. Inf & Syst, Vol.E83-D, No.7, 2000 [14] E. Land, J. McCann, Lightness and Retinex Theory Journal of the Optical Society of America, vol. 61, pp1-11, 1971 [15] K. Lee, J. Ho, D. Kriegman, 9 Points of Light: Aquiring Subspaces for Face Recognition Under Variable Lighting IEEE Proc. Conf. Computer Vision and Pattern Recognition, 2001 [16] K. Messer, J. Matas, J. Kittler, XM2VTSDB: The extended M2VTS Database AVBPA, 1999 [17] P. Perona, J. Malik, Scale-Space and Edge Detection Using Anisotropic Diffusion IEEE Trans. Pattern Anal. Mach. Intelligence, vol.12(7), 1990 [18] Z. Rahman, G. Woodell, D. Jobson, A Comparison of the Multiscale Retinex with other Image Enhancement Techniques Proceedings of the IS&T 50th Anniversary Conference, 1997 [19] M. Turk, A. Pentland, Eigenfaces for Recognition J. Congitive Neuroscience, vol. 3, pp 71-86, 1991

Image Normalization for Illumination Compensation in Facial Images

Image Normalization for Illumination Compensation in Facial Images Image Normalization for Illumination Compensation in Facial Images by Martin D. Levine, Maulin R. Gandhi, Jisnu Bhattacharyya Department of Electrical & Computer Engineering & Center for Intelligent Machines

More information

What is the Right Illumination Normalization for Face Recognition?

What is the Right Illumination Normalization for Face Recognition? What is the Right Illumination Normalization for Face Recognition? Aishat Mahmoud Dan-ali Department of Computer Science and Engineering The American University in Cairo AUC Avenue, P.O. Box 74, New Cairo

More information

ILLUMINATION NORMALIZATION BASED ON SIMPLIFIED LOCAL BINARY PATTERNS FOR A FACE VERIFICATION SYSTEM. Qian Tao, Raymond Veldhuis

ILLUMINATION NORMALIZATION BASED ON SIMPLIFIED LOCAL BINARY PATTERNS FOR A FACE VERIFICATION SYSTEM. Qian Tao, Raymond Veldhuis ILLUMINATION NORMALIZATION BASED ON SIMPLIFIED LOCAL BINARY PATTERNS FOR A FACE VERIFICATION SYSTEM Qian Tao, Raymond Veldhuis Signals and Systems Group, Faculty of EEMCS University of Twente, the Netherlands

More information

ILLUMINATION NORMALIZATION METHODS

ILLUMINATION NORMALIZATION METHODS International Journal of Research in Engineering & Technology (IJRET) ISSN 2321-8843 Vol. 1, Issue 2, July 2013, 11-20 Impact Journals PERFORMANCE EVALUATION OF ILLUMINATION NORMALIZATION TECHNIQUES FOR

More information

Image Gradients. Given a discrete image Á Òµ, consider the smoothed continuous image ܵ defined by

Image Gradients. Given a discrete image Á Òµ, consider the smoothed continuous image ܵ defined by Image Gradients Given a discrete image Á Òµ, consider the smoothed continuous image ܵ defined by ܵ Ü ¾ Ö µ Á Òµ Ü ¾ Ö µá µ (1) where Ü ¾ Ö Ô µ Ü ¾ Ý ¾. ½ ¾ ¾ Ö ¾ Ü ¾ ¾ Ö. Here Ü is the 2-norm for the

More information

ÆÏ ÈÈÊÇÀ ÌÇ Ëµ ÁÆÎÆÌÇÊ ËËÌÅË ÂÒ¹ÉÒ ÀÙ ÅÒÙØÙÖÒ ÒÒÖÒ Ó ØÓÒ ÍÒÚÖ ØÝ ËÓÖ ÆÒÒÙÙÐ Ý Ò Ï¹Ó ÓÒ Ý ÐØÖÐ Ò ÓÑÔÙØÖ ÒÒÖÒ ÍÒÚÖ ØÝ Ó Å Ù ØØ ÑÖ Ø ÖÙÖÝ ØÖØ ÁÒ Ø ÔÔÖ Û ÓÒ Ö ÔÖÓ ÖÚÛ Ëµ ÒÚÒØÓÖÝ Ý ØÑ ÛØ ÒÔÒÒØ Ò ÒØÐÐÝ ØÖÙØ

More information

Principal Gabor Filters for Face Recognition

Principal Gabor Filters for Face Recognition Principal Gabor Filters for Face Recognition Vitomir Štruc, Rok Gajšek and Nikola Pavešić Abstract Gabor filters have proven themselves to be a powerful tool for facial feature extraction. An abundance

More information

Ì È ÒÒ Ò ÌÖ Ò È Ö ËØÖÙØÙÖ ÒÒÓØ Ø ÓÒ Ó Ä Ö ÓÖÔÙ Æ ÒÛ Ò Ù Ù¹ ÓÒ ÓÙ Å ÖØ È ÐÑ Ö ÍÒ Ú Ö ØÝ Ó È ÒÒ ÝÐÚ Ò È Ð ÐÔ È ½ ½¼ ÍË ÜÙ Ò Û ÒÐ Òº ºÙÔ ÒÒº Ù Ü Ð Òº ºÙÔ ÒÒº Ù ÓÙ Ð Òº ºÙÔ ÒÒº Ù ÑÔ ÐÑ ÖÐ Òº ºÙÔ ÒÒº Ù ØÖ Ø

More information

ÅÓÖ Ð À Þ Ö ÁÒ ÙÖ Ò Ò ËÓÑ ÓÐÐÙ ÓÒ ÁÒ Ð Ð Ö Ò Ò ¹ØÓ Ð ÖØ Å Ö Ø Ú Ö ÓÒ Ù Ù Ø ½ Ì Ú Ö ÓÒ ÖÙ ÖÝ ¾¼¼½ ØÖ Ø Ï ÓÒ Ö ÑÓ Ð Ó Ò ÙÖ Ò Ò ÓÐÐÙ ÓÒº Æ ÒØ Ö Ö Ò Ö ÕÙ Ö Ø ÓÒ ÙÑ Ö ØÓ Ø ÑÓÒ Ø ÖÝ ÓÑÔ Ò Ø ÓÒ Ò Ó ÐÓ º ÙØ Ø

More information

ÓÒØÖÓÐ ËÝ Ø Ñ Ò Ò Ö Ò ÖÓÙÔ Ò ÙØÓÑ Ø ÓÒ Ì ÒÓÐÓ Ý ÖÓÙÔ Ö¹ÁÒ Ò Ö ÂÓ Ñ ÔÙØݵ Ø ØÖ ½ ¼ ¼ À Ò È ÓÒ ¼¾ ½¹ ¹½½¼¼ Ü ¼¾ ½¹ ¹ ¹Å Ð Ò Ö Ó Ñ ÖÒÙÒ ¹ Ò Ñ Ø «È ÓÒ ÓÒØÖÓÐ ËÝ Ø Ñ Ò Ò Ö Ò ÖÓÙÔ ÔйÁÒ Ò Ö Ó«Ö¹ÁÒ ÍÐÖ ÓÖ ÓÐØ

More information

ÓÑÔ Ö Ø Ú ËØÙ Ý Ó ÌÛÓ ØÖÓÒÓÑ Ð ËÓ ØÛ Ö È Ò Ì Ø Ù Ñ ØØ Ò Ô ÖØ Ð ÙÐ ÐÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó Å Ø Ö Ó Ë Ò Ò ÓÑÔÙØ Ö Ë Ò Ì ÍÒ Ú Ö ØÝ Ó Ù Ð Ò ½ ÌÓ ÅÙÑ Ò Ò ØÖ Ø Ì Ø ÓÑÔ Ö Ø Ú ØÙ Ý Ó ØÛÓ ÓÔ Ò ÓÙÖ ØÖÓÒÓÑ

More information

ÉÙ ÖÝ Ò Ë Ñ ØÖÙØÙÖ Ø ÇÒ Ë Ñ Å Ø Ò Á Ë Ë Ê Ì Ì Á Ç Æ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ö ÖÙÑ Ò ØÙÖ Ð ÙÑ Öº Ö Öº Ò Øºµ Ñ ÁÒ ÓÖÑ Ø Ò Ö Ø Ò Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØĐ Ø ÁÁ ÀÙÑ ÓРعÍÒ Ú Ö ØĐ Ø ÞÙ ÖÐ Ò ÚÓÒ À ÖÖ Ôк¹ÁÒ

More information

ÕÙ ØÝ ÌÖ Ò Ý ÁÒ Ø ØÙØ ÓÒ Ð ÁÒÚ ØÓÖ ÌÓ ÖÓ ÓÖ ÆÓØ ØÓ ÖÓ Ì Ó Ø ÆÓÖÛ Ò È ØÖÓÐ ÙÑ ÙÒ º Ê Ò Æ ÆÓÖ Ò ÖÒØ ÖÒ Ö ÆÓÖ Ò Ò ÆÓÖÛ Ò Ë ÓÓÐ Ó Å Ò Ñ ÒØ ½ Â ÒÙ ÖÝ ¾¼¼¼ ØÖ Ø Ì Ó Ø ØÓ Ò Ø ØÙØ ÓÒ Ð ÒÚ ØÓÖ Ó ØÖ Ò ÕÙ ØÝ Ö Ó

More information

ÐÓÒ¹Ü Ö ËÔÖ ½ ÖÖÐÐ ÙÆ Ò ÂÙÒ ÄÙ ËÒÓÖ ÍÒÚÖ Ý ÙÖÖÒ ÎÖ ÓÒ ÑÖ ¾ ½ Ö Ï ÙÝ ÖÑ ÖÙÙÖ Ó ÝÐ ÔÖ ÛÒ ÓÒ¹Ö Ò Ü¹ Ö ÒÓ Ó Ñ Ö ÕÙÐÝ Ò ÑÙÖݺ ÐÓÒ¹ Ü ÔÖ Ö ÓÖÐÐÝ ÖÖÞ Ò ÓÑ ÔÖÐ Ò ÕÙÒ Ò ÑÔÐ ÑÓÐ Ò ÖÑ Ó ÑÙÖÝ Ö ÕÙÐÝ ÝÐ ÚÓÐÐÝ Ýй ÔÖ

More information

ÆÆ ÄË Ç ÇÆÇÅÁ Ë Æ ÁÆ Æ ½ ß½¼¼ ¾¼¼¼µ ÁÒÚ ØÑ ÒØ ÀÓÖ ÞÓÒ Ò Ø ÖÓ Ë Ø ÓÒ Ó ÜÔ Ø Ê ØÙÖÒ Ú Ò ÖÓÑ Ø ÌÓ ÝÓ ËØÓ Ü Ò È Ò¹ÀÙ Ò ÓÙ Ô ÖØÑ ÒØ Ó Ò Ò Æ Ø ÓÒ Ð ÒØÖ Ð ÍÒ Ú Ö ØÝ ÙÒ Ä Ì Û Ò ¾¼ Ù Ò¹Ä Ò À Ù Ô ÖØÑ ÒØ Ó Ò Ò Æ

More information

Ê ÔÓÒ Ú Ì ÒÛ Ö Î Ù Ð Þ Ø ÓÒ Ó Ä Ö Ó Ö Ô Ø Ø Ý Ã ÒÒ Ø Ò ÖØ Ø ÓÒ Ù Ñ ØØ Ò Ô ÖØ Ð ÙÐ ÐÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó ÓØÓÖ Ó È ÐÓ ÓÔ Ý Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Æ Û ÓÖ ÍÒ Ú Ö ØÝ Ë ÔØ Ñ Ö ¾¼¼¾ ÔÔÖÓÚ Ô Ã ÒÒ Ø Ò

More information

Primitives. Ad Hoc Network. (a) User Applications Distributed Primitives. Routing Protocol. Ad Hoc Network. (b)

Primitives. Ad Hoc Network. (a) User Applications Distributed Primitives. Routing Protocol. Ad Hoc Network. (b) Ï Ö Ð Æ ØÛÓÖ ¼ ¾¼¼½µ ß ½ ÅÙØÙ Ð ÜÐÙ ÓÒ Ð ÓÖ Ø Ñ ÓÖ ÀÓ ÅÓ Ð Æ ØÛÓÖ Â ÒÒ Ö º Ï ÐØ Ö Â ÒÒ Ö Äº Ï Ð Æ Ø Ò Àº Î Ý Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ì Ü ²Å ÍÒ Ú Ö ØÝ ÓÐÐ ËØ Ø ÓÒ Ì ¹ ½½¾ ¹Ñ Ð ÒÒÝÛ ºØ ÑÙº Ù Û Ð ºØ ÑÙº Ù

More information

Universitat Autònoma de Barcelona

Universitat Autònoma de Barcelona Universitat Autònoma de Barcelona ÙÐØ Ø Ò Ë Ó ³ Ò ÒÝ Ö ÁÒ ÓÖÑ Ø ÇÒ Ø Ò Ò ÓÒ ØÖÙØ ÓÒ Ó ÒØ¹Ñ Ø ÁÒ Ø ØÙØ ÓÒ Å Ñ ÓÖ ÔÖ ÒØ Ô Ö Ò ÂÙ Ò ÒØÓÒ Ó ÊÓ Ö Ù Þ Ù Ð Ö Ô Ö ÓÔØ Ö Ð Ö Ù ÓØÓÖ Ò ÒÝ Ö Ò ÁÒ ÓÖÑ Ø ÐÐ Ø ÖÖ Å ¾¼¼½

More information

ÆÓØ Ä ØÙÖ Ð Ñ Ø ØÖÙ ÙØ ÓÒ ØÓ Á ¼ ØÙ ÒØ ÓÖ ÐÐ ÓØ Ö Ö Ø Ö ÖÚ Á ¼ ÈÊÇ Í ÌÁÇÆ ÈÄ ÆÆÁÆ Æ ÇÆÌÊÇÄ Ê Æ Ô ÖØÑ ÒØ Ó ÁÒ Ù ØÖ Ð Ò Ò Ö Ò ÍÒ Ú Ö ØÝ Ø Ù«ÐÓ ¹ ËØ Ø ÍÒ Ú Ö ØÝ Ó Æ Û ÓÖ Ò Ù«ÐÓº Ù Á ¼ ÈÊÇ Í ÌÁÇÆ ÈÄ ÆÆÁÆ Æ

More information

Ë ÓÒ Ð ØÝ Ò Ö ÙÐØÙÖ Ð ÓÑÑÓ ØÝ ÙØÙÖ Ö Ø Ò Ë Ö Ò Ò Ô ÖØÑ ÒØ Ó Ò Ò ÓÔ Ò Ò Ù Ò Ë ÓÓÐ ÊÓ Ò ÖÒ ÐÐ ½ ù½ ¼ Ö Ö Ö ÒÑ Ö Ì Ä ½ ½ ½ ¼¼ ¹Ñ Ð Óº º Ñ Ö ½ Ì ÙØ ÓÖ Ø Ò ÓÖ ÐÔ ÙÐ Ø Ò ÖÓÑ Â Ô Ö ĐÙÐÓÛ Ò ÓÑÑ ÒØ Ò Ù Ø ÓÒ ÖÓÑ

More information

ÌÖ Ò Ø ÓÒ¹ Ö Ò Ò ÅÒ ÑÓ ÝÒ È Ö¹ØÓ¹È Ö ËØ ÒÓ Ö Ô ËØÓÖ ËÝ Ø Ñ Ì ÑÓØ Ý ÊÓ Ó ½ Ò ËØ Ú Ò À Ò ¾ ¾ ½ ËÔÖ ÒØ Ú Ò Ì ÒÓÐÓ Ý Ä ÓÖ ØÓÖÝ ÙÖÐ Ò Ñ ¼½¼ ÍË ÍÒ Ú Ö ØÝ Ó Ñ Ö ÓÑÔÙØ Ö Ä ÓÖ ØÓÖÝ Ñ Ö ¼ Íà ØÖ Øº ÅÒ ÑÓ ÝÒ Ô Ö¹ØÓ¹Ô

More information

Ø Ö ØÒ ÓÑÔ Ð Â Ú ÈÖÓ º ÓÒÒ Ø ÔÖÓÚ º Ø Þº µ ÔÖ Ð ¾ ¾¼¼½ ØÖ Ø ÓÖ ÕÙ Ø ÓÑ Ø Ñ ÒÓÛ Ñ Ö Ó Â Ú Î ÖØÙ Ð Å Ò ÂÎÅ µ ÓÒ Â٠عÁÒ¹Ì Ñ ÂÁ̵ Ò ¹Ç ¹Ì Ñ Ç̵ ÓÑÔ Ð Ö Û Ø Óҹع Ý ÓÔØ Ñ Þ Ø ÓÒ Ú Ò ÙÒØ Ò Ø Ö ÈÖÓ ÙØ ÖÙÒÒ Ò

More information

ÔØ Ö ½ ÊÇÍÌÁÆ ÁÆ ÅÇ ÁÄ ÀÇ Æ ÌÏÇÊÃË Å Ãº Å Ö Ò Ò Ë Ñ Ö Êº Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ËØ Ø ÍÒ Ú Ö ØÝ Ó Æ Û ÓÖ Ø ËØÓÒÝ ÖÓÓ ËØÓÒÝ ÖÓÓ Æ ½½ ¹ ¼¼ ØÖ Ø Æ ÒØ ÝÒ Ñ ÖÓÙØ Ò ÓÒ Ó Ø Ý ÐÐ Ò Ò ÑÓ Ð Ó Ò ØÛÓÖ º ÁÒ Ø Ö ÒØ Ô

More information

Æ ÒØ Ò Ö Ø ÓÒ Ó ÊÓØ Ø Ò ÏÓÖ ÓÖ Ë ÙÐ ÆÝ Ö Ø ÅÙ Ð ÂÓ ÒÒ Đ ÖØÒ Ö Ò ÏÓÐ Ò ËÐ ÒÝ ØÖ Øº Ò Ö Ø Ò ¹ÕÙ Ð ØÝ ÙÐ ÓÖ ÖÓØ Ø Ò ÛÓÖ ÓÖ Ö Ø Ð Ø Ò ÐÐ ØÙ Ø ÓÒ Û Ö ÖØ Ò Ø ÆÒ Ð Ú Ð ÑÙ Ø Ù Ö¹ ÒØ Ù Ò Ò Ù ØÖ Ð ÔÐ ÒØ Ó Ô Ø Ð

More information

Client URL. List of object servers that contain object

Client URL. List of object servers that contain object ÄÓ Ø Ò ÓÔ Ó Ç Ø Í Ò Ø ÓÑ Ò Æ Ñ ËÝ Ø Ñ ÂÙ Ã Ò Ö Ù Ã Ø Ïº ÊÓ ÁÒ Ø ØÙØ ÙÖ ÓÑ ËÓÔ ÒØ ÔÓÐ Ö Ò Ò ÖÓ ÙÖ ÓѺ Ö Â Ñ Ïº ÊÓ ÖØ Ö Ò Ì Ð ÓÑ ß Æ Ì Á Ý Ð ÅÓÙÐ Ò ÙÜ Ö Ò ØÖ Ø ½ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ÓÖ Ö ØÓ Ö Ù Ú Ö Ð Ý Ò Ò ¹

More information

ÔØ Ö Ê Ö ÓÐÓ Ý ÁÒ Ø ÔØ Ö Ø Ö Ñ Ò ÛÓÖ Ø Ø ÓÒ Ú ÐÓÔ ÔÖ ÒØ º Ì ÛÓÖ Ø ¹ Ø ÓÒ ÓÑÔÙØ Ö Ø ÒÓ Ø ÑÓ ÙÐ Û Ö Ø ÓÖÓÒ ÖÝ ØÖ ÑÓ Ð ÐÐ ÔÐ Ý Ò ÑÔÓÖØ ÒØ ÖÓÐ Û Ò Ó Ò ÙØÓÑ Ø Ú Ð Ò ÐÝ Û Ø ÓÖÓÒ ÖÝ Ò Ó Ö ¹ Ô Ý Ñ º Ì ÔØ Ö Ò Û

More information

ËØØ ØÐ ÒÐÝ Ó ÒÓÑÔÐØ Ø ØÓÖÝ ØÒÕÙ Ò ÓØÛÖ º ź ÆÓÖÓÚ ÈÖ Ò ÙÔÔÐÑÒØ ØÓ Ø ÊÙ Ò ØÓÒ Ó ÄØØРʺºº ÊÙÒ ºº ËØØ ØÐ ÒÐÝ ÏØ Å Ò Øº ÅÓ ÓÛ ÒÒ Ý ËØØ Ø ÔÔº ¹ ¾¹ ¾ ½½µ Ò ÊÙ Òµ ÈÖ ËØØ ØÐ ÒÐÝ ÛØ Ñ Ò Ø ÔÖÓÐÑ ÒÓÛÒ ØÓ ÐÑÓ Ø

More information

Bud row 1. Chips row 2. Coors. Bud. row 3 Milk. Chips. Cheesies. Coors row 4 Cheesies. Diapers. Milk. Diapers

Bud row 1. Chips row 2. Coors. Bud. row 3 Milk. Chips. Cheesies. Coors row 4 Cheesies. Diapers. Milk. Diapers Ð ØÖ ØÝ ÜØ ÖÒ Ð Ë Ñ Ð Ö ØÝ Ó Ø ÓÖ Ð ØØÖ ÙØ Ö ØÓÔ Ö Êº È ÐÑ Ö ½ Ò Ö ØÓ ÐÓÙØ Ó ¾ ¾ ½ Î Ú ÑÓ ÁÒº ¾ ÛÓÓ ÐÚ È ØØ ÙÖ È Ô ÐÑ ÖÚ Ú ÑÓºÓÑ ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ ÖÒ Å ÐÐÓÒ ÍÒ Ú Ö ØÝ ¼¼¼ ÓÖ Ú È ØØ ÙÖ È Ö ØÓ ºÑÙº Ù

More information

Downloaded from SPIE Digital Library on 29 Aug 2011 to 128.196.210.138. Terms of Use: http://spiedl.org/terms

Downloaded from SPIE Digital Library on 29 Aug 2011 to 128.196.210.138. Terms of Use: http://spiedl.org/terms ÔØ Ú ÓÒ ÖÝ Ñ ÖÖÓÖ ÓÖ Ø Ä Ö ÒÓÙÐ Ö Ì Ð ÓÔ º Ê Ö º Ö٠Ⱥ Ë Ð Ò Ö º ÐÐ Ò Êº ź Ò Ö ØØÓÒ ÀºÅº Å ÖØ Ò Ç ÖÚ ØÓÖ Ó ØÖÓ Ó Ö ØÖ Ä Ö Ó º ÖÑ ¼½¾ Ö ÒÞ ÁØ ÐÝ Ë ÁÒØ ÖÒ Ø ÓÒ Ð ºÖºÐº ÓÖ Ó ÈÖÓÑ ËÔÓ ¾» ¾¾¼ Ä Ó ÁØ ÐÝ Å ÖÓ

More information

The CMS Silicon Strip Tracker and its Electronic Readout

The CMS Silicon Strip Tracker and its Electronic Readout The CMS Silicon Strip Tracker and its Electronic Readout Markus Friedl Dissertation May 2001 ÖØ Ø ÓÒ Ì ÅË Ë Ð ÓÒ ËØÖ Ô ÌÖ Ö Ò Ø Ð ØÖÓÒ Ê ÓÙØ ÔÖ ÒØ Ò Ô ÖØ Ð ÙÐ ÐÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö ÓØÓÖ Ó Ì Ò Ð

More information

ÍÒ Ö Ø Ò Ò Ø ÒØ ÖÔÖ ÁÒ ÓÖÑ Ø ÓÒ ËÝ Ø Ñ Ì ÒÓÐÓ Ý Ó Ò ÊÈ Ö Ï Ò Ö ØØÔ»»ÛÛÛº Ò º Ù¹ ÖÐ Òº» Û Ò Ö ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØĐ Ø ÖÐ Ò Ì Ù ØÖº ¹½ ½ ÖÐ Ò ÖÑ ÒÝ ¹Ñ Ð Û Ò º Ù¹ ÖÐ Òº ÔÖ Ð ¾ ¾¼¼¼ ÌÙØÓÖ Ð Ø Ø

More information

Ì ÍÆÁÎ ÊËÁÌ ÌÁË ÆÁ ˵ Ë Öº Ð º Ò Ö º ÚÓк ½ ÆÓº ½ ÔÖ Ð ¾¼¼¾ ½ ¹ ½ ÐÓ Ò Ò ÅÙÐØ ¹ ÀÞ ÒÚ ÖÓÒÑ ÒØ ÎÓ Ò º Ç ÐÓ Þ ÁÒÚ Ø È Ô Ö ØÖ Ø Ò ÓÚ ÖÚ Û Ó ÐÓ Ò Ò Ò Ó ÐÓ ØÓÖ Ð Ñ ÒØ ÔÖ ÒØ º ËÝ Ø Ñ Ø Ò Ó Ô¹ ÓÔ ÜÔÐ Ò Û ÐÐ Ø

More information

Object Recognition and Template Matching

Object Recognition and Template Matching Object Recognition and Template Matching Template Matching A template is a small image (sub-image) The goal is to find occurrences of this template in a larger image That is, you want to find matches of

More information

Comparative Analysis of various Illumination Normalization Techniques for Face Recognition

Comparative Analysis of various Illumination Normalization Techniques for Face Recognition Comparative Analysis of various Illumination Normalization Techniques for Face Recognition Tripti Goel GPMCE, Delhi Vijay Nehra BPSMV, Khanpur Virendra P.Vishwakarma JIIT, Noida ABSTRACT The change in

More information

Author manuscript, published in "1st International IBM Cloud Academy Conference - ICA CON 2012 (2012)" hal-00684866, version 1-20 Apr 2012

Author manuscript, published in 1st International IBM Cloud Academy Conference - ICA CON 2012 (2012) hal-00684866, version 1-20 Apr 2012 Author manuscript, published in "1st International IBM Cloud Academy Conference - ICA CON 2012 (2012)" Á ÇÆ ¾¼½¾ ÌÓÛ Ö Ë Ð Ð Ø Å Ò Ñ ÒØ ÓÖ Å Ô¹Ê Ù ¹ Ø ¹ÁÒØ Ò Ú ÔÔÐ Ø ÓÒ ÓÒ ÐÓÙ Ò ÀÝ Ö ÁÒ Ö ØÖÙØÙÖ Ö Ð ÒØÓÒ

More information

Application. handle layer. access layer. reference layer. transport layer. ServerImplementation. Stub. Skeleton. ClientReference.

Application. handle layer. access layer. reference layer. transport layer. ServerImplementation. Stub. Skeleton. ClientReference. ÜÔÐÓ Ø Ò Ç Ø ÄÓ Ð ØÝ Ò Â Ú È ÖØÝ ØÖ ÙØ ÓÑÔÙØ Ò ÒÚ ÖÓÒÑ ÒØ ÓÖ ÏÓÖ Ø Ø ÓÒ ÐÙ Ø Ö ÖÒ Ö À ÙÑ Ö Ò Å Ð È Ð ÔÔ Ò ÍÒ Ú Ö ØÝ Ó Ã ÖÐ ÖÙ ÖÑ ÒÝ ÙÑ Ö ºÙ º Ò Ô Ð ÔÔ Ö ºÙ º ØØÔ»»ÛÛÛ Ô º Ö ºÙ º»Â Ú È ÖØÝ» ØÖ Øº ÁÒ ØÖ

More information

Ò Ñ Ö Ð ÓÙÒ Ø ÓÒ ÓÖ ÙØÓÑ Ø Ï ÁÒØ Ö Ú ÐÙ Ø ÓÒ Ý Å ÐÓ Ý Ú ØØ ÁÚÓÖÝ ºËº ÈÙÖ Ù ÍÒ Ú Ö Øݵ ½ ź˺ ÍÒ Ú Ö ØÝ Ó Ð ÓÖÒ Ø Ö Ð Ýµ ½ ÖØ Ø ÓÒ Ù Ñ ØØ Ò ÖØ Ð Ø Ø ÓÒ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó ÓØÓÖ Ó È ÐÓ Ó Ý Ò ÓÑÙØ Ö

More information

ØÙÖ Ò Ö Ø ÓÒ Ý ÁÑ Ø Ø ÓÒ ÖÓÑ ÀÙÑ Ò Ú ÓÖ ØÓ ÓÑÔÙØ Ö Ö Ø Ö Ò Ñ Ø ÓÒ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö Æ ØÙÖÛ Ò ØÐ ¹Ì Ò Ò ÙÐØĐ Ø Ò Ö ÍÒ Ú Ö ØĐ Ø Ë ÖÐ Ò ÚÓÖ Ð Ø ÚÓÒ Å Ð Ã ÔÔ Ë Ö ÖĐÙ Ò ¾¼¼ Ò ÎÓÖ

More information

ÁÒÖÒ ÓÖ Ó ÖÚØÓÒ Ó ÒØÖØ «Ù ÓÒ ÔÖÓ º ËÙ ÒÒ ØÐÚ Ò ÔÖØÑÒØ Ó Ó ØØ Ø ÅÐ ËÖÒ Ò ÔÖØÑÒØ Ó ËØØ Ø Ò ÇÔÖØÓÒ Ê Ö ÍÒÚÖ ØÝ Ó ÓÔÒÒ ÒÑÖ ØÖØ ØÑØÓÒ Ó ÔÖÑØÖ Ò «Ù ÓÒ ÑÓÐ Ù ÙÐÐÝ ÓÒ Ó Ö¹ ÚØÓÒ Ó Ø ÔÖÓ Ø ÖØ ØÑ ÔÓÒØ º ÀÖ Û ÒÚ ØØ

More information

ÓÑÔ Ö Ø Ú Ê Ú Û Ó ÊÓ ÓØ ÈÖÓ Ö ÑÑ Ò Ä Ò Ù ÁÞÞ Ø È Ñ Ö ÓÖÝ À Ö Ù Ù Ø ½ ¾¼¼½ ØÖ Ø ÁÒ Ø Ô Ô Ö Û Ñ ÓÑÔ Ö Ø Ú Ö Ú Û Ó Ú Ö ØÝ Ó ÒØ ÖÑ Ø ¹Ð Ú Ð ÖÓ ÓØ Ð Ò Ù Ø Ø Ú Ñ Ö Ò Ö ÒØ Ý Ö º Ï Ð Ó Ö ÖÓ ÓØ ÔÖÓ Ö ÑÑ Ò Ð Ò Ù

More information

universe nonself self detection system false negatives false positives

universe nonself self detection system false negatives false positives Ö Ø ØÙÖ ÓÖ Ò ÖØ Ð ÁÑÑÙÒ ËÝ Ø Ñ ËØ Ú Ò º ÀÓ Ñ ÝÖ ½ Ò Ëº ÓÖÖ Ø ½ ¾ ½ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÆÅ Ð ÙÕÙ ÖÕÙ ÆÅ ½ ½ ¾ Ë ÒØ ÁÒ Ø ØÙØ ½ ÀÝ È Ö ÊÓ Ë ÒØ ÆÅ ¼½ ØÖ Ø Ò ÖØ Ð ÑÑÙÒ Ý Ø Ñ ÊÌÁ˵ Ö Û ÒÓÖÔÓÖ Ø Ñ ÒÝ ÔÖÓÔ

More information

ÌÊÅ ÎÄÍ ÌÀÇÊ ÈÇÌÆÌÁÄ Æ ÄÁÅÁÌÌÁÇÆË Ë Æ ÁÆÌÊÌ ÊÁËà ÅÆÅÆÌ ÌÇÇÄ ÈÍÄ ÅÊÀÌË ÈÊÌÅÆÌ Ç ÅÌÀÅÌÁË ÌÀ ĐÍÊÁÀ ÈÙÐ ÑÖØ ÈÖÓ ÓÖ Ó ÅØÑØ Ø Ø ÌÀ ËÛ ÖÐ ÁÒ Ø¹ ØÙØ Ó ÌÒÓÐÓÝ ĐÙÖµ ÛÖ Ø Ò ÙÖÒ Ò ÒÒÐ ÑØÑع º À ÖÚ ÑØÑØ ÔÐÓÑ ÖÓÑ Ø

More information

(a) Original Images. (b) Stitched Image

(a) Original Images. (b) Stitched Image ÁÅ Ê ÁËÌÊ ÌÁÇÆ ÁÆ ÌÀ Å ÌÄ ÆÎÁÊÇÆÅ ÆÌ Åº ÅÙ ÖÓÚ º ÈÖÓ Þ ÁÒ Ø ØÙØ Ó Ñ Ð Ì ÒÓÐÓ Ý Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ò Ò ÓÒØÖÓÐ Ò Ò Ö Ò ØÖ Ø Ì Ô Ô Ö ÚÓØ ØÓ ÔÓ Ð Ø Ó ÓÑ ØÖ ÑÓ Ø ÓÒ Ó Ñ ØÓ Ò Ð ÓÒÒ Ø ÓÒ Ó Ô Ö Ø Ò Ó ÓÚ ÖÐ Ý Ò Ñ

More information

application require ment? reliability read/write caching disk

application require ment? reliability read/write caching disk Í Ò Ê ÑÓØ Å ÑÓÖÝ ØÓ ËØ Ð Ø Æ ÒØÐÝ ÓÒ Ò Ì¾ Ä ÒÙÜ Ð ËÝ Ø Ñ Ö Ò Ó Ö Ð ÖÓ Ï Ð Ö Ó ÖÒ Ö È Ó Ò Ì Ø Ò ËØ Ò ÍÒ Ú Ö Ö Ð È Ö ÓÓÖ Ò Ó È Ó ¹ Ö Ù Ó Ñ ÁÒ ÓÖÑ Ø Úº ÔÖ Ó Î ÐÓ Ó»Ò Ó ÓÓÒ Ó ½¼ ¹ ¼ ÑÔ Ò Ö Ò È Ö Þ Ð Ì Ð µ

More information

Face Illumination Normalization on Large and Small Scale Features

Face Illumination Normalization on Large and Small Scale Features Face llumination Normalization on Large and Small Scale Features Xiaohua Xie 1,3, Wei-Shi Zheng 1,3, Jianhuang Lai 2,3 *, Pong C. Yuen 4 1 School of Mathematics & Computational Science, Sun Yat-sen Universit,

More information

Gamma Comprehensive Normalisation

Gamma Comprehensive Normalisation Appeared in Proc 10th Color Imaging Conference Copyright IS & T 2002 1 Gamma Comprehensive Normalisation Graham Finlayson and Ruixia Xu School of Information Systems University of East Anglia Norwich NR4

More information

Å Ò Ñ ÒØ Ö Ø ØÙÖ Ö Ñ ÛÓÖ ÓÖ Ø Ú Æ ØÛÓÖ Ð ÒϺ ÓÒ Â Ñ Èº ºËØ Ö ÒÞ Ñ Ñ Ò Ð Ü Ò ÖκÃÓÒ Ø ÒØ ÒÓÙ ÆÌ ÒÓÐÓ Î Ö ÞÓÒ ÓÐÙÑ ÍÒ Ú Ö ØÝÝ ¼ÂÙÒ ¾¼¼ ÝØ ÊÄÙÒ ÖÓÒØÖ Ø ¼ ¼¾¹ ¹ ¹¼½ ½º Ì ÛÓÖ Û ÔÓÒ ÓÖ ÝØ Ò Ú Ò Ê Ö ÈÖÓ Ø ÒÝ

More information

Adaptive Face Recognition System from Myanmar NRC Card

Adaptive Face Recognition System from Myanmar NRC Card Adaptive Face Recognition System from Myanmar NRC Card Ei Phyo Wai University of Computer Studies, Yangon, Myanmar Myint Myint Sein University of Computer Studies, Yangon, Myanmar ABSTRACT Biometrics is

More information

Ä ØÙÖ ËÐ ÁÒÚ ØÑ ÒØ Ò ÐÝ ½ ÌÖ Ò Ò ÁÒØÖÓ ØÓ ÌË Ó Ð ØÖ Ò Ø ÖÑ ÒÓÐÓ Ý ÜÔÐ Ò Ä Û Ó ÇÒ ÈÖ Ò Ö ØÖ ÐÙÐ Ø Ö ÔÐ Ø Ò ÔÓÖØ ÓÐ Ó Ó ÓÒ ÜÔÐ Ò Ö Ð Ø ÓÒ Ô Ö ØÖ Ò Ê ÔÐ Ø ÓÒ ËÔÓØ Ê Ø ÓÖÛ Ö Ê Ø Ä ØÙÖ ËÐ ÁÒÚ ØÑ ÒØ Ò ÐÝ ¾ ÇÖ

More information

Numerical Methods For Image Restoration

Numerical Methods For Image Restoration Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:

More information

ÁÆÎÆÌÇÊ ÇÆÌÊÇÄ ÍÆÊÌÁÆ ÅƵ ÑÒ ÙÒÖØÒ Ø ÊÒ ÎÖÒ Ó ÊÒ Ø Á ¼ ÈÊÇÍÌÁÇÆ ÈÄÆÆÁÆ Æ ÇÆÌÊÇÄ ÁÒÚÒØÓÖÝ ÓÒØÖÓÐ ÙÒÖØÒ ÑÒµ ÁÒØÖÓÙØÓÒ ÊÒÓÑ ÚÖØÓÒ ÑÔÓÖØÒØ ÔÖØÐ ÚÖØÓÒ ÈÖÓÐÑ ØÖÙØÙÖ ÑÔÐ ØÓ ÖÔÖ ÒØ ÖÒÓÑÒ Ò Ø ÑÓÐ Ê Æ ÍÒÚÖ ØÝ Ø

More information

Ì ÈÖ Ò Ó ËØÖ ÔÔ ÅÓÖØ ¹ Ë ÙÖ Ø Â Ó ÓÙ ÓÙ Å ØØ Û Ê Ö ÓÒ Ê Ö ËØ ÒØÓÒ Ò ÊÓ ÖØ º Ï Ø Ð Û Â ÒÙ ÖÝ ½ ØÖ Ø ÁÒØ Ö Ø ÓÒÐÝ Áǵ Ò ÔÖ Ò Ô Ð ÓÒÐÝ Èǵ ØÖ ÔÔ ÑÓÖØ ¹ ÙÖ Ø Å Ëµ Ö Ö Ú Ø Ú ÙÖ Ø Û Ô Ý ÓÙØ ÓÒÐÝ Ø ÒØ Ö Ø ÓÑÔÓÒ

More information

SYMMETRIC EIGENFACES MILI I. SHAH

SYMMETRIC EIGENFACES MILI I. SHAH SYMMETRIC EIGENFACES MILI I. SHAH Abstract. Over the years, mathematicians and computer scientists have produced an extensive body of work in the area of facial analysis. Several facial analysis algorithms

More information

FRAME. ... Data Slot S. Data Slot 1 Data Slot 2 C T S R T S. No. of Simultaneous Users. User 1 User 2 User 3. User U. No.

FRAME. ... Data Slot S. Data Slot 1 Data Slot 2 C T S R T S. No. of Simultaneous Users. User 1 User 2 User 3. User U. No. ÂÓÙÖÒ ÐÓ ÁÒØ ÖÓÒÒ Ø ÓÒÆ ØÛÓÖ ÎÓк¾ ÆÓº½ ¾¼¼½µ ¹ ÏÓÖÐ Ë ÒØ ÈÙ Ð Ò ÓÑÔ ÒÝ È Ê ÇÊÅ Æ Î ÄÍ ÌÁÇÆÇ Ê ÉÍ ËÌ¹Ì Å» Å ÈÊÇÌÇ ÇÄ ÇÊÏÁÊ Ä ËËÆ ÌÏÇÊÃË ÒØ Ö ÓÖÊ Ö ÒÏ Ö Ð ÅÓ Ð ØÝ Ò Æ ØÛÓÖ Ò Ê ÏŠƵ Ô ÖØÑ ÒØÓ ÓÑÔÙØ ÖË Ò

More information

ÔÔÖ Ò ÂÓÙÖÒÐ Ó ÓÑÔÙØÖ Ò ËÝ ØÑ ËÒ ÎÓк ½ ÆÓº ¾¼¼¼ ÔÔº ¾ß º ÈÖÐÑÒÖÝ ÚÖ ÓÒ Û Ò ÚÒ Ò ÖÝÔØÓÐÓÝ ß ÖÝÔØÓ ÈÖÓÒ ÄØÙÖ ÆÓØ Ò ÓÑÔÙØÖ ËÒ ÎÓк º ÑØ º ËÔÖÒÖ¹ÎÖÐ ½º Ì ËÙÖØÝ Ó Ø ÔÖ ÐÓ ÒÒ Å ÙØÒØØÓÒ Ó ÅÖ ÐÐÖ ÂÓ ÃÐÒ Ý ÈÐÐÔ

More information

A Mobile-based Face Verification System

A Mobile-based Face Verification System A Mobile-based Face Verification System Zongying Ou, Tieming Su, Fan Ou, Jianxin Zhang, Dianting Liu CAD CG & Network Lab. Dalian Uniersity of Technology, China E-mail ouzyg@dlut.edu.cn Abstract Intelligent

More information

TheHow and Why of Having a Successful Home Office System

TheHow and Why of Having a Successful Home Office System ÊÇÄ ¹ Ë ËË ÇÆÌÊÇÄ ÇÆ ÌÀ Ï ÍËÁÆ Ä È ÂÓÓÒ Ëº È Ö ÁÒ ÓÖÑ Ø ÓÒ Ò ËÓ ØÛ Ö Ò Ò Ö Ò Ô ÖØÑ ÒØ ÓÖ Å ÓÒ ÍÒ Ú Ö ØÝ Ô Ö Ø ºÒÖÐºÒ ÚÝºÑ Ð Ð¹ÂÓÓÒ Ò ÓÐÐ Ó ÁÒ ÓÖÑ Ø ÓÒ Ì ÒÓÐÓ Ý ÍÒ Ú Ö ØÝ Ó ÆÓÖØ ÖÓÐ Ò Ø ÖÐÓØØ ÒÙÒº Ù Ê Ú

More information

In Proceedings of the 1999 USENIX Symposium on Internet Technologies and Systems (USITS 99) Boulder, Colorado, October 1999

In Proceedings of the 1999 USENIX Symposium on Internet Technologies and Systems (USITS 99) Boulder, Colorado, October 1999 In Proceedings of the 999 USENIX Symposium on Internet Technologies and Systems (USITS 99) Boulder, Colorado, October 999 ÓÒÒ Ø ÓÒ Ë ÙÐ Ò Ò Ï Ë ÖÚ Ö Å Ö º ÖÓÚ ÐÐ ÊÓ ÖØ Ö Ò Ó Ó Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ó

More information

(a) Hidden Terminal Problem. (b) Direct Interference. (c) Self Interference

(a) Hidden Terminal Problem. (b) Direct Interference. (c) Self Interference ØÖ ÙØ ÝÒ Ñ ÒÒ Ð Ë ÙÐ Ò ÓÖ ÀÓ Æ ØÛÓÖ ½ Ä ÙÒ Ó Ò ÂºÂº Ö ¹ÄÙÒ ¹ Ú Ë ÓÓÐ Ó Ò Ò Ö Ò ÍÒ Ú Ö ØÝ Ó Ð ÓÖÒ Ë ÒØ ÖÙÞ ¼ ¹Ñ Ð ÓÐ Ó ºÙ º Ù Î Ö ÓÒ ¼»½»¾¼¼¾ Ì Ö ØÝÔ Ó ÓÐÐ ÓÒ¹ Ö ÒÒ Ð ÔÖÓØÓÓÐ ÓÖ Ó Ò ØÛÓÖ Ö ÔÖ ÒØ º Ì ÔÖÓØÓÓÐ

More information

Ø Ú ÉÙ Ù Å Ò Ñ ÒØ ÓÒ Ø Ú Æ ØÛÓÖ ¹ ÍÒ Ø ÓÒ Ø ÓÒ ÓÒØÖÓÐ ÈÖÓØÓÓÐ Ê Ö ØÖ Ë Ö Ã Ö Ñ Ñ Ñ Æ ØÛÓÖ Ò Ê Ö ÖÓÙÔ Ë ÓÓÐ Ó ÓÑÔÙØ Ò ÍÒ Ú Ö ØÝ Ó Ä Ä Ä˾ ÂÌ ÍÒ Ø Ã Ò ÓÑ ßÖ Ö Ö ÑÐÓÑԺРº ºÙ ØØÔ»»ÛÛÛºÓÑԺРº ºÙ» ØѹÑÑ ØÖ

More information

PROTOCOLS FOR SECURE REMOTE DATABASE ACCESS WITH APPROXIMATE MATCHING

PROTOCOLS FOR SECURE REMOTE DATABASE ACCESS WITH APPROXIMATE MATCHING CERIAS Tech Report 2001-02 PROTOCOLS FOR SECURE REMOTE DATABASE ACCESS WITH APPROXIMATE MATCHING Wenliang Du, Mikhail J. Atallah Center for Education and Research in Information Assurance and Security

More information

Chen Ding Yutao Zhong Computer Science Department University of Rochester Rochester, New York U.S.A. cding,ytzhong @cs.rochester.

Chen Ding Yutao Zhong Computer Science Department University of Rochester Rochester, New York U.S.A. cding,ytzhong @cs.rochester. ÓÑÔ Ð Ö¹ Ö Ø ÊÙÒ¹Ì Ñ ÅÓÒ ØÓÖ Ò Ó ÈÖÓ Ö Ñ Ø Chen Ding Yutao Zhong Computer Science Department University of Rochester Rochester, New York U.S.A. cding,ytzhong @cs.rochester.edu ABSTRACT ÙÖ Ø ÖÙÒ¹Ø Ñ Ò ÐÝ

More information

ÅÁÌ ½ º ÌÓÔ Ò Ì Ë ÁÒØ ÖÒ Ø Ê Ö ÈÖÓ Ð Ñ ËÔÖ Ò ¾¼¼¾ Ä ØÙÖ ½ ÖÙ ÖÝ ¾¼¼¾ Ä ØÙÖ Ö ÌÓÑ Ä ØÓÒ ËÖ ÇÑ Ö Ø ÑÓÒ Ï Ð ½º½ ÁÒØÖÓ ÙØ ÓÒ Ì Ð Û ÐÐ Ù Ú Ö Ð Ö Ö ÔÖÓ Ð Ñ Ø Ø Ö Ö Ð Ø ØÓ Ø ÁÒØ ÖÒ Øº Ð ØÙÖ Û ÐÐ Ù ÀÓÛ Ô ÖØ ÙÐ

More information

ÀÖÖÐ ÈÐÑÒØ Ò ÆØÛÓÖ Ò ÈÖÓÐÑ ËÙÔØÓ Ù Ñ ÅÝÖ ÓÒ Ý ÃÑ ÅÙÒÐ Þ ÅÝ ½ ¾¼¼¼ ØÖØ ÁÒ Ø ÔÔÖ Û Ú Ø Ö Ø ÓÒ ØÒعÔÔÖÓÜÑØÓÒ ÓÖ ÒÙÑÖ Ó ÐÝÖ ÒØÛÓÖ Ò ÔÖÓÐÑ º Ï Ò Ý ÑÓÐÒ ÖÖÐ Ò ÛÖ Ö ÔÐ Ò ÐÝÖ Ò ÐÝÖ Ø Ü ÔÖÒØ Ó Ø ÑÒ ÓÙÒ Ñ ÖØ µº

More information

ÌÀ ÀÁ¹ÇÅÈÊÇÅÁË ÎÄÍ ÇÊ ÆÇÆßÌÊÆËÊÄ ÍÌÁÄÁÌ ÅË Ý Ù ØÚÓ ÖÒØÒÓ Ò ÂÓÖ Å Ó Ý ÏºÈº ͹Á º¼¼ ÖÙÖÝ ¾¼¼¼ ØÖØ Ï ÒØÖÓÙ Ò ØÙÝ ÓÑÔÖÓÑ ÚÐÙ ÓÖ ÒÓÒ¹ØÖÒ ÖÐ ÙØÐØÝ Ñ Ø ¹ÓÑÔÖÓÑ ÚÐÙº ÁØ ÐÓ ÐÝ ÖÐØ ØÓ Ø ÓÑÔÖÓ¹ Ñ ÚÐÙ ÒØÖÓÙ Ý ÓÖÑ

More information

Ì Ë Ø ÅÄ Ë Ö Ò Ò Ò Ò ÅÄ ÉÙ ÖÝ Ò Ñ Ö Ò Ò Ò Ó Ò ÒØ ÓÒÝ ÂÓ Ô Ö Ú Ò Ò º Ö Ð Ýº Ù Ê ÔÓÖØ ÆÓº Í» Ë ¹¼¼¹½½½¾ Ë ÔØ Ñ Ö ¾¼¼¼ ÓÑÔÙØ Ö Ë Ò Ú ÓÒ Ëµ ÍÒ Ú Ö ØÝ Ó Ð ÓÖÒ Ö Ð Ý Ð ÓÖÒ ¾¼ Ì Ë Ø ÅÄ Ë Ö Ò Ò Ò Ò ÅÄ ÉÙ ÖÝ Ò

More information

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

More information

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory Jun WuÝ, Sheng ChenÞand Jian ChuÝ ÝNational Laboratory of Industrial Control Technology Institute of Advanced Process Control Zhejiang University,

More information

Ê ½µ ¼»¼»¼½ ÓÑÔÙØÖ ËÒ»ÅØÑØ ½ Ô Ê Ö ÊÔÓÖØ Ì ÈÊËÍË ËÝ ØÑ ÖØØÙÖ ÖØ ÈØÞÑÒÒ ½ ÂÑ ÊÓÖÒ ¾ Ö ØÒ ËØÐ ½ ÅÐ ÏÒÖ ¾ ÖÒ ÏÖ ½ ÍÒÚÖ ØØ ËÖÐÒ ÁÑ ËØØÛÐ ¹½¾ ËÖÖÒ ÖÑÒÝ ßÔØÞÑÒÒ ØÙÐÐ ºÙÒ¹ º ¾ ÁÅ ÙÖ Ê Ö ÄÓÖØÓÖÝ ËÙÑÖ ØÖ À¹¼ Ê

More information

BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 123 CHAPTER 7 BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 7.1 Introduction Even though using SVM presents

More information

The BANCA Database and Evaluation Protocol

The BANCA Database and Evaluation Protocol The BANCA Database and Evaluation Protocol Enrique Bailly-Baillire 4, Samy Bengio 1, Frédéric Bimbot 2, Miroslav Hamouz 5, Josef Kittler 5, Johnny Mariéthoz 1, Jiri Matas 5, Kieron Messer 5, Vlad Popovici

More information

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide

More information

A secure face tracking system

A secure face tracking system International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 10 (2014), pp. 959-964 International Research Publications House http://www. irphouse.com A secure face tracking

More information

Access control: adaptation and real time implantation of a face recognition method.

Access control: adaptation and real time implantation of a face recognition method. Access control: adaptation and real time implantation of a face recognition method. J. Mitéran, J.P. Zimmer, F. Yang, M. Paindavoine. Laboratory Le2i, University of Burgundy, Aile des Sciences de l'ingénieur,

More information

desired behaviour (global constraints) composite system putative behaviour: putative agents, actions, etc.

desired behaviour (global constraints) composite system putative behaviour: putative agents, actions, etc. Ó Ð¹ Ö Ú Ò ÔÔÖÓ ØÓ Ö ÕÙ Ö Ñ ÒØ Ò Ò Ö Ò ËØ Û ÖØ Ö Ò Ø Û Öغ Ö ÒÙÛ º ºÙ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ò ÍÒ Ú Ö ØÝ Ó Ø Ï Ø Ó Ò Ð Ò Ö ØÓÐ ØÖ Ø ÒÙÑ Ö Ó Ö ÒØ ÔÔÖÓ ØÓ Ö ÕÙ Ö Ñ ÒØ Ò Ò Ö Ò Ù Ø Ø Ø Ò Û Ô Ö Ñ Ñ Ö Ò ÙÔÓÒ Ø Ù Ó

More information

Statistics in Face Recognition: Analyzing Probability Distributions of PCA, ICA and LDA Performance Results

Statistics in Face Recognition: Analyzing Probability Distributions of PCA, ICA and LDA Performance Results Statistics in Face Recognition: Analyzing Probability Distributions of PCA, ICA and LDA Performance Results Kresimir Delac 1, Mislav Grgic 2 and Sonja Grgic 2 1 Croatian Telecom, Savska 32, Zagreb, Croatia,

More information

From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose. Abstract

From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose. Abstract To Appear in the IEEE Trans. on Pattern Analysis and Machine Intelligence From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose Athinodoros S. Georghiades Peter

More information

ÇÔ Ò ÈÖÓ Ð Ñ Ò Ø ¹Ë Ö Ò È Ö¹ØÓ¹È Ö ËÝ Ø Ñ Æ Ð Û Ò À ØÓÖ Ö ¹ÅÓÐ Ò Ò Ú ÖÐÝ Ò ËØ Ò ÓÖ ÍÒ Ú Ö ØÝ ËØ Ò ÓÖ ¼ ÍË Û Ò ØÓÖ Ý Ò º Ø Ò ÓÖ º Ù ØØÔ»»ÛÛÛ¹ º Ø Ò ÓÖ º Ù ØÖ Øº ÁÒ È Ö¹ÌÓ¹È Ö È¾Èµ Ý Ø Ñ ÙØÓÒÓÑÓÙ ÓÑÔÙØ Ö

More information

Archiving Scientific Data

Archiving Scientific Data Archiving Scientific Data Peter Buneman Sanjeev Khanna Ý Keishi Tajima Þ Wang-Chiew Tan Ü ABSTRACT Ï ÔÖ ÒØ Ò Ö Ú Ò Ø Ò ÕÙ ÓÖ Ö Ö Ð Ø Û Ø Ý ØÖÙØÙÖ º ÇÙÖ ÔÔÖÓ ÓÒ Ø ÒÓ¹ Ø ÓÒ Ó Ø Ñ Ø ÑÔ Û Ö Ý Ò Ð Ñ ÒØ ÔÔ Ö

More information

Incremental PCA: An Alternative Approach for Novelty Detection

Incremental PCA: An Alternative Approach for Novelty Detection Incremental PCA: An Alternative Approach for Detection Hugo Vieira Neto and Ulrich Nehmzow Department of Computer Science University of Essex Wivenhoe Park Colchester CO4 3SQ {hvieir, udfn}@essex.ac.uk

More information

ÆØÛÓÖ ÏÓÖÒ ÖÓÙÔ ÁÒØÖÒØ ÖØ ÜÔÖØÓÒ Ø ÙÙ Ø ¾¼¼¾ º ÓÖÐØØ ÉÇË ÁÒº ÁÖÚÒ ºÁº ÈÙÐÐÒ ÐÓÖÒ ÁÒ ØØÙØ Ó ÌÒÓÐÓÝ Ëº ËÖÓÓ ÆÓÖØÐ ÆØÛÓÖ Íà ËØØ Ø Ó ÇÒ¹ÏÝ ÁÒØÖÒØ ÈØ ÐÝ ÖعÓÖÐØعËØØ Ø ¹Ó¹ÔعÐÝ ¹¼¼ºØÜØ ½ ËØØÙ Ó Ø ÅÑÓ Ì ÓÙÑÒØ

More information

ÅÓÖÐ ÀÞÖ ÅÖØ ÈÓÛÖ Ò ËÓÒ Ø ÀÐØ ÁÒ ÙÖÒ Ý ÖØÓРͺ ÏÖ ÔÖØÑÒØ Ó ÓÒÓÑ ÍÒÚÖ ØÝ Ó ÅÒÒÑ ¹½ ½ ÅÒÒÑ ÛÖÓÒºÙÒ¹ÑÒÒѺ Ò ÅÖÙ ÒÐÙ ÎÖÒØ ÃÖÒÒÚÖ ÖÙÒ ¹½ ÅĐÙÒÒ ÑÖÙ ºÒÐÙÚÖÒغº ÙÙ Ø ¾¼¼½ ØÖØ ÁÒÚÙÐ ÑÓÖÐ ÞÖ ÒÒÖ Ý ÐØ Ò ÙÖÒ Ò ÑÓÒÓÔÓÐ

More information

ÓÒØÜع ÔÔÖÓ ÓÖ ÅÓÐ ÔÔÐØÓÒ ÚÐÓÔÑÒØ ÄÙØÓ ÆÙÖÓÓ ÁÖº ŵ ź˺ ÂÑ ÓÓµ Ì ÙÑØØ Ò ÙÐ ÐÐÑÒØ Ó Ø ÖÕÙÖÑÒØ ÓÖ Ø Ö Ó ÓØÓÖ Ó ÈÐÓ ÓÔÝ ËÓÓÐ Ó ÓÑÔÙØÖ ËÒ Ò ËÓØÛÖ ÒÒÖÒ ÅÓÒ ÍÒÚÖ ØÝ ÅÖ ¾¼¼½ ÐÖØÓÒ Ì Ø ÓÒØÒ ÒÓ ÑØÖÐ ØØ Ò ÔØ ÓÖ

More information

Best Place to Find Information For a Wedding?

Best Place to Find Information For a Wedding? ÔÔ Ö Ò ÈÖÓ Ò Ó Ø Ø ÁÒØ ÖÒ Ø ÓÒ Ð ÓÒ Ö Ò ÓÒ Ö Ø ØÙÖ Ð ËÙÔÔÓÖØ ÓÖ ÈÖÓ Ö ÑÑ Ò Ä Ò Ù Ò ÇÔ Ö Ø Ò ËÝ Ø Ñ ¾¼¼¼ Designing Computer Systems with MEMS-based Storage Steven W. Schlosser, John Linwood Griffin, David

More information

Illumination, Expression and Occlusion Invariant Pose-Adaptive Face Recognition System for Real- Time Applications

Illumination, Expression and Occlusion Invariant Pose-Adaptive Face Recognition System for Real- Time Applications Illumination, Expression and Occlusion Invariant Pose-Adaptive Face Recognition System for Real- Time Applications Shireesha Chintalapati #1, M. V. Raghunadh *2 Department of E and CE NIT Warangal, Andhra

More information

Simultaneous Gamma Correction and Registration in the Frequency Domain

Simultaneous Gamma Correction and Registration in the Frequency Domain Simultaneous Gamma Correction and Registration in the Frequency Domain Alexander Wong a28wong@uwaterloo.ca William Bishop wdbishop@uwaterloo.ca Department of Electrical and Computer Engineering University

More information

Sliding Window ... Basic Window S[0] S[k 1] S[k] Digests Digests Digests

Sliding Window ... Basic Window S[0] S[k 1] S[k] Digests Digests Digests ËØØËØÖÑ ËØØ ØÐ ÅÓØÓÖ Ó ÌÓÙ Ó Ø ËØÖÑ ÊÐ ÌÑ ÙÝÙ Ù Ë ÓÙÖØ Á ØØÙØ Ó ÅØÑØÐ Ë ÔÖØÑØ Ó ÓÑÔÙØÖ Ë ÆÛ ÓÖ ÍÚÖ ØÝ ÝÙÝÙ ºÝÙºÙ ØÖØ Ó Ö Ø ÔÖÓÐÑ Ó ÑÓØÓÖ Ø Ó ØÓÙ Ó ØÑ Ö Ø ØÖÑ ÓÐ Ó Ñ Ó Ó ØѺ Á ØÓ ØÓ Ð ØÖÑ ØØ ¹ Ø Ù ÚÖ ØÖ

More information

Applications. Decode/ Encode ... Meta- Data. Data. Shares. Multi-read/ Multi-write. Intermediary Software ... Storage Nodes

Applications. Decode/ Encode ... Meta- Data. Data. Shares. Multi-read/ Multi-write. Intermediary Software ... Storage Nodes ËÐØÒ Ø ÊØ Ø ØÖÙØÓÒ ËÑ ÓÖ ËÙÖÚÚÐ ËØÓÖ ËÝ ØÑ ÂÝ Âº ÏÝÐ ÅÑØ ÐÓÐÙ ÎÝ ÈÒÙÖÒÒ ÅРϺ Ö ËÑ ÇÙÞ ÃÒ ÌÛ ÓÖÝ ÏÐÐÑ ÖÓÖÝ Êº ÒÖ ÈÖÔ Ãº ÃÓ Ð ÅÝ ¾¼¼½ Å͹˹¼½¹½¾¼ ËÓÓÐ Ó ÓÑÔÙØÖ ËÒ ÖÒ ÅÐÐÓÒ ÍÒÚÖ ØÝ ÈØØ ÙÖ È ½¾½ ØÖØ ËÙÖÚÚÐ

More information

How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm

How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode

More information

Ì ÈÒÒ ÝÐÚÒ ËØØ ÍÒÚÖ ØÝ Ì ÖÙØ ËÓÓÐ ÔÖØÑÒØ ÓËØØ Ø ËÌÊÌÁË ÇÊ Ì ÆÄËÁË ÏÁÌÀ ÌÏÇ ÌÈË Ç ÅÁËËÁÆ ÎÄÍË Ì Ò ËØØ Ø Ý ÇÖ ÀÖÐ ¾¼¼ ÇÖ ÀÖÐ ËÙÑØØ Ò ÈÖØÐ ÙÐ ÐÐÑÒØ Ó Ø ÊÕÙÖÑÒØ ÓÖ Ø Ö Ó ÓØÓÖ Ó ÈÐÓ ÓÔÝ ÙÙ Ø ¾¼¼ Ì Ø Ó ÇÖ ÀÖÐ

More information

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application

More information

ÔØÖ ÄÒÖ Ç ÐÐØÓÖ ß ÇÒ Ö Ó ÖÓÑ º½ ÇÚÖÚÛ ÏØ Ó Ø ØÒ Ú Ò ÓÑÑÓÒ ÔÖÓÔØÓÒ Ó Ñ ÛÚ ÒÖØ Ý Öع ÕÙ ÖÑÓØ ØØÓÒ Ó ÓÑÔÐÜ ÑÓÐÙÐ Ú ÒÖÖ ÔØÖ Ø ÐØÖ Ò ÑÒØ Ð Ò ÑÖÓÛÚ ÚØÝ Ò ÖÒØÖ ÐÓ Ì ÙÑÐ ÑÔÐ ÖÑÓÒ Ó Ð¹ ÐØÓÖ ÔÐÝ ØÖÖÒ ÖÓÐ Ò Ø ÙÒÖ

More information

A Nonparametric Statistical Comparison of Principal Component and Linear Discriminant Subspaces for Face Recognition

A Nonparametric Statistical Comparison of Principal Component and Linear Discriminant Subspaces for Face Recognition A Nonparametric Statistical Comparison of Principal Component and Linear Discriminant Subspaces for Face Recognition J Ross Beveridge, Kai She and Bruce A Draper Geof H Givens Computer Science Department

More information

autocorrelation analysis

autocorrelation analysis ÌÓÛÖ ËÔ¹ÒÖØ ÖÝÔØÓÖÔ ÃÝ ÓÒ Ê ÓÙÖ ÓÒ ØÖÒ Ú ÜØÒ ØÖص Ò ÅÓÒÖÓ ÅРú ÊØÖ Ý É Ä ÒРȺ ÄÓÔÖ Ø ÐÒ Ë ØÖØ ÈÖÓÖÑÑÐ ÑÓÐ ÔÓÒ Ò ÔÖ ÓÒÐ ØÐ ØÒØ È µ ÛØ ÑÖÓÔÓÒ ÔÖÑØ ÚÓ¹ ÖÚÒ Ù Ö ÒØÖ Ò Û Ù Ö ÔÖÓÚ Ò¹ ÔÙØ Ý ÔÒº ÁÒ Ø ÔÔÖ Û ÓÛÓÛØÓܹ

More information

Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis

Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?

More information

Euler Vector: A Combinatorial Signature for Gray-Tone Images

Euler Vector: A Combinatorial Signature for Gray-Tone Images Euler Vector: A Combinatorial Signature for Gray-Tone Images Arijit Bishnu, Bhargab B. Bhattacharya y, Malay K. Kundu, C. A. Murthy fbishnu t, bhargab, malay, murthyg@isical.ac.in Indian Statistical Institute,

More information

Face Identification by Human and by Computer: Two Sides of the Same Coin, or Not? Tsuhan Chen tsuhan@cmu.edu

Face Identification by Human and by Computer: Two Sides of the Same Coin, or Not? Tsuhan Chen tsuhan@cmu.edu Face Identification by Human and by Computer: Two Sides of the Same Coin, or Not? Tsuhan Chen tsuhan@cmu.edu Carnegie Mellon University Pittsburgh, USA What do you see? 1 What do you see? 2 What do you

More information

Low-resolution Character Recognition by Video-based Super-resolution

Low-resolution Character Recognition by Video-based Super-resolution 2009 10th International Conference on Document Analysis and Recognition Low-resolution Character Recognition by Video-based Super-resolution Ataru Ohkura 1, Daisuke Deguchi 1, Tomokazu Takahashi 2, Ichiro

More information

History-Based Batch Job Scheduling on a Network of Interactively Used Workstations

History-Based Batch Job Scheduling on a Network of Interactively Used Workstations À ØÓÖݹ Ø ÂÓ Ë ÙÐ Ò ÓÒ Æ ØÛÓÖ Ó ÁÒØ Ö Ø Ú ÐÝ Í ÏÓÖ Ø Ø ÓÒ ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ö ÏĐÙÖ Ò Ó ØÓÖ Ö È ÐÓ ÓÔ ÚÓÖ Ð Ø Ö È ÐÓ ÓÔ ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØĐ Ø Ö ÍÒ Ú Ö ØĐ Ø Ð ÚÓÒ Ò Ö Ï Ô Ù Ë ĐÙÔ Ñ ÄÍ Ð ½ Ò Ñ

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information