Applying Machine Learning to Network Security Monitoring. Alex Pinto Chief Data Scien2st
|
|
|
- Rosamund Bryan
- 10 years ago
- Views:
Transcription
1 Applying Machine Learning to Network Security Monitoring Alex Pinto Chief Data Scien2st
2 whoami Almost 15 years in Informa2on Security, done a licle bit of everything. Most of them leading security consultancy and monitoring teams in Brazil, London and the US. If there is any way a SIEM can hurt you, it did to me. Researching machine learning and data science in general for the 2 years or so and presen2ng about its intersec2on with Infosec for more then an year now. Created MLSec Project in July 2013
3 Agenda Defini2ons Network Security Monitoring PoC GTFO Feature Intui2on MLSec Project
4 Big Data + Machine Learning + Data Science
5 Big Data + Machine Learning + Data Science
6 Big Data
7 (Security) Data Scien>st Data Scien2st (n.): Person who is becer at sta2s2cs than any so]ware engineer and becer at so]ware engineering than any sta2s2cian. - - Josh Willis, Cloudera Data Science Venn Diagram by Drew Conway!
8 Kinds of Machine Learning Machine learning systems automa2cally learn programs from data CACM 55(10) Domingos 2012 Supervised Learning: Classifica2on (NN, SVM, Naïve Bayes) Regression (linear, logis2c)! Unsupervised Learning : Clustering (k- means) Decomposi2on (PCA, SVD) Source scikit- learn.github.io/scikit- learn- tutorial/general_concepts.html
9 Classifica>on Example VS!
10 Considera>ons on Data Gathering Models will (generally) get becer with more data Always have to consider bias and variance as we select our data points Am I selec2ng the correct features to describe the en22es? Have I got a representable sample of labeled data I can use? I ve got 99 problems, but data ain t one! Domingos, 2012 Abu- Mostafa, Caltech, 2012
11 Security Applica>ons of ML Fraud detec2on systems (not security): Is what he just did consistent with past behavior? SPAM filters Network anomaly detec2on: Good luck finding baselines ML is a bit more then rolling averages User behavior anomaly detec2on: My personal favorite, 2 new companies/day Does fraud detec2on follow the CLT?
12 Considera>ons on Data Gathering (2) Adversaries - Exploi2ng the learning process Understand the model, understand the machine, and you can circumvent it Any predic2ve model on InfoSec will be pushed to the limit Again, think back on the way SPAM engines evolved! Posit: Intrinsic features of malicious actors cannot be masked as easily as behavioral features"
13 Network Security Monitoring
14 Kinds of Network Security Monitoring Alert- based: Tradi2onal log management SIEM Using Threat Intelligence (i.e blacklists) for about a year or so Lack of context Low effec2veness You get the results handed over to you Explora2on- based: Network Forensics tools (2/3 years ago) ELK stacks High effec2veness Lots of people necessary Lots of HIGHLY trained people Much more promising Big Data Security Analy2cs (BDSA): Basically explora2on- based monitoring on Hadoop and friends Sounds kind of painful for the analysts involved
15 Alert- based + Explora>on- based
16 Using robots to catch bad guys
17 PoC GTFO We developed a set of algorithms to detect malicious behavior from log entries of firewall blocks Over 6 months of data from SANS DShield (thanks, guys!) A]er a lot of sta2s2cal- based math (true posi2ve ra2o, true nega2ve ra2o, odds likelihood), it could pinpoint actors that would be 13x- 18x more likely to acack you. Today reducing amount of clucer in log files to less then 0.5% of actors worth inves2ga2ng, and having less than 20% false posi2ves in par2cipant deployments.!
18 Feature Intui>on: IP Proximity Assump2ons to aggregate the data Correla2on / proximity / similarity BY BEHAVIOR Bad Neighborhoods concept: Spamhaus x CyberBunker Google Report (June 2013) Moura 2013 Group by Geoloca2on Group by Netblock (/16, /24) Group by BGP prefix Group by ASN informa2on
19 0 MULTICAST AND FRIENDS 10 Map of the Internet (Hilbert Curve) Block port CN 127 CN, BR, TH RU
20 Feature Intui>on: Temporal Decay Even bad neighborhoods renovate: ACackers may change ISPs/proxies Botnets may be shut down / relocate A licle paranoia is Ok, but not EVERYONE is out to get you (at least not all at once)! As days pass, let's forget, bit by bit, who acacked Last 2me I saw this actor, and how o]en did I see them!
21 Feature Intui>on: DNS features Who resolves to this IP address pdns data + WHOIS Number of domains that resolve to the IP address Distribu2on of their life2me Entropy, size, cctlds Registrar informa2on Reverse DNS informa2on History of DNS registra2on (Thanks, Farsight Security!)
22 Training the Model YAY! We have a bunch of numbers per IP address/domain! How do you define what is malicious or not? Curated indicator feeds OSINT indicator feeds with some help from sta2s2cal- based cura2ng Top X lists of visted sites. Feedback from security tools (if you trust them)!
23 MLSec Project Working with several companies on tuning these models on their environment with their data Looking for par2cipants and data sharing agreements Visit hyps:// or just e- mail me.!
24 MLSec Project - Current Research Inbound acacks on exposed services (BlackHat 2013): Informa2on from inbound connec2ons on firewalls, IPS, WAFs Feature extrac2on and supervised learning Malware Distribu2on and Botnets (hopefully BlackHat 2014): Informa2on from outbound connec2ons on firewalls, DNS and Web Proxy Ini2al labeling provided by intelligence feeds and AV/an2- malware Some semi- supervised learning involved User Impersona2on in Web Applica2ons (early days): Inputs: logs describing authen2ca2on acempts (both failed and successful), click stream data Segmenta2on of users by risk level
25 Thanks! Q&A at the end of the webinar hcps:// " Essen2ally, all models are wrong, but some are useful." - George E. P. Box
Defending Networks with Incomplete Information: A Machine Learning Approach. Alexandre Pinto [email protected] @alexcpsec @MLSecProject
Defending Networks with Incomplete Information: A Machine Learning Approach Alexandre Pinto [email protected] @alexcpsec @MLSecProject Agenda Security Monitoring: We are doing it wrong Machine Learning
Defending Networks with Incomplete Information: A Machine Learning Approach. Alexandre Pinto [email protected] @alexcpsec @MLSecProject
Defending Networks with Incomplete Information: A Machine Learning Approach Alexandre Pinto [email protected] @alexcpsec @MLSecProject ** WARNING ** This is a talk about DEFENDING not attacking NO
Cymon.io. Open Threat Intelligence. 29 October 2015 Copyright 2015 esentire, Inc. 1
Cymon.io Open Threat Intelligence 29 October 2015 Copyright 2015 esentire, Inc. 1 #> whoami» Roy Firestein» Senior Consultant» Doing Research & Development» Other work include:» docping.me» threatlab.io
Secure Because Math: Understanding ML- based Security Products (#SecureBecauseMath)
Secure Because Math: Understanding ML- based Security Products (#SecureBecauseMath) Alex Pinto Chief Data Scientist Niddel / MLSec Project @alexcpsec @MLSecProject @NiddelCorp MLSec Project / Niddel MLSec
Protec'ng Communica'on Networks, Devices, and their Users: Technology and Psychology
Protec'ng Communica'on Networks, Devices, and their Users: Technology and Psychology Alexey Kirichenko, F- Secure Corpora7on ICT SHOK, Future Internet program 30.5.2012 Outline 1. Security WP (WP6) overview
Whose IP Is It Anyways: Tales of IP Reputation Failures
Whose IP Is It Anyways: Tales of IP Reputation Failures SESSION ID: SPO-T07 Michael Hamelin Lead X-Force Security Architect IBM Security Systems @HackerJoe What is reputation? 2 House banners tell a story
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tidatasci)
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tidatasci) Alex Pinto Chief Data Scientist Niddel / MLSec Project @alexcpsec @MLSecProject () { :; }; whoami Alex Pinto That guy
ThreatSTOP Technology Overview
ThreatSTOP Technology Overview The Five Parts to ThreatSTOP s Service We provide 5 integral services to protect your network and stop botnets from calling home ThreatSTOP s 5 Parts: 1 Multiple threat feeds
Next Generation IPS and Reputation Services
Next Generation IPS and Reputation Services Richard Stiennon Chief Research Analyst IT-Harvest 2011 IT-Harvest 1 IPS and Reputation Services REPUTATION IS REQUIRED FOR EFFECTIVE IPS Reputation has become
ISSA Phoenix Chapter Meeting Topic: Security Enablement & Risk Reducing Best Practices for BYOD + SaaS Cloud Apps
ISSA Phoenix Chapter Meeting Topic: Security Enablement & Risk Reducing Best Practices for BYOD + SaaS Cloud Apps Agenda Security Enablement Concepts for BYOD & SaaS Cloud Apps! Intro and background! BYOD
Defend Your Network with DNS Defeat Malware and Botnet Infections with a DNS Firewall
Defeat Malware and Botnet Infections with a DNS Firewall By 2020, 30% of Global 2000 companies will have been directly compromised by an independent group of cyberactivists or cybercriminals. How to Select
Data Mining. Supervised Methods. Ciro Donalek [email protected]. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot.
Data Mining Supervised Methods Ciro Donalek [email protected] Supervised Methods Summary Ar@ficial Neural Networks Mul@layer Perceptron Support Vector Machines SoLwares Supervised Models: Supervised
How To Use Data Analysis And Machine Learning For Information Security
Secure because Math: A deep- dive on Machine Learning- based Monitoring Alex Pinto [email protected] / @alexcpsec Chief Data Scientist of MLSec Project Introduction and Abstract We could all have
Unified Security Management and Open Threat Exchange
13/09/2014 Unified Security Management and Open Threat Exchange RICHARD KIRK SENIOR VICE PRESIDENT 11 SEPTEMBER 2014 Agenda! A quick intro to AlienVault Unified Security Management (USM)! Overview of the
No Cloud Allowed. Denying Service to DDOS Protection Services
No Cloud Allowed Denying Service to DDOS Protection Services Presented by: Allison Nixon [email protected] Pentesting, Incident Response PaulDotCom host Cloud Based DDOS Protection How it works
APPLICATION PROGRAMMING INTERFACE
DATA SHEET Advanced Threat Protection INTRODUCTION Customers can use Seculert s Application Programming Interface (API) to integrate their existing security devices and applications with Seculert. With
Defend Your Network with DNS Defeat Malware and Botnet Infections with a DNS Firewall
Defeat Malware and Botnet Infections with a DNS Firewall By 2020, 30% of Global 2000 companies will have been directly compromised by an independent group of cyberactivists or cybercriminals. How to Select
DNS Traffic Monitoring. Dave Piscitello VP Security and ICT Coordina;on, ICANN
DNS Traffic Monitoring Dave Piscitello VP Security and ICT Coordina;on, ICANN Domain Names ICANN coordinates the administra2on of global iden2fier systems Domain names provide user friendly identification
Domain Hygiene as a Predictor of Badness
Domain Hygiene as a Predictor of Badness Tim Helming Director, Product Management DomainTools Your Presenter Director of Product Management (aka the roadmap guy ) Over 13 years in cybersecurity Passionate
Software that provides secure access to technology, everywhere.
Software that provides secure access to technology, everywhere. Joseph Patrick Schorr @JoeSchorr October, 2015 2015 BOMGAR CORPORATION ALL RIGHTS RESERVED WORLDWIDE 1 Agenda What are we dealing with? How
Getting the Most Out of SIEM. Presentation Title. Data in Big Data. Presented By: Dr. Char Sample, CERT
Getting the Most Out of SIEM Presentation Title Data in Big Data Presented By: Dr. Char Sample, CERT Acknowledgements Dr. Ben Shniederman, UMD Big Data Big Insights George Jones, John Stogoski, CERT Alternatives
Splunk and Big Data for Insider Threats
Copyright 2014 Splunk Inc. Splunk and Big Data for Insider Threats Mark Seward Sr. Director, Public Sector Company Company (NASDAQ: SPLK)! Founded 2004, first sohware release in 2006! HQ: San Francisco
Separating Signal from Noise: Taking Threat Intelligence to the Next Level
SESSION ID: SPO2-T09 Separating Signal from Noise: Taking Threat Intelligence to the Next Level Doron Shiloach X-Force Product Manager IBM @doronshiloach Agenda Threat Intelligence Overview Current Challenges
Modern Approach to Incident Response: Automated Response Architecture
SESSION ID: ANF-T10 Modern Approach to Incident Response: Automated Response Architecture James Carder Director, Security Informatics Mayo Clinic @carderjames Jessica Hebenstreit Senior Manager, Security
Using SIEM for Real- Time Threat Detection
Using SIEM for Real- Time Threat Detection Presentation to ISSA Baltimore See and secure what matters Joe Magee CTO and Co-Founder March, 27 2013 About us Vigilant helps clients build and operate dynamic,
Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on
Pa8ern Recogni6on and Machine Learning Chapter 4: Linear Models for Classifica6on Represen'ng the target values for classifica'on If there are only two classes, we typically use a single real valued output
WHITE PAPER: THREAT INTELLIGENCE RANKING
WHITE PAPER: THREAT INTELLIGENCE RANKING SEPTEMBER 2015 2 HOW WELL DO YOU KNOW YOUR THREAT DATA? HOW THREAT INTELLIGENCE FEED MODELING CAN SAVE MONEY AND PREVENT BREACHES Who are the bad guys? What makes
Global Network Pandemic The Silent Threat Darren Grabowski, Manager NTT America Global IP Network Security & Abuse Team
Global Network Pandemic The Silent Threat Darren Grabowski, Manager NTT America Global IP Network Security & Abuse Team The Internet is in the midst of a global network pandemic. Millions of computers
NGFW is yesterdays news what is next in scope for the firewall in the threat intelligence age
NGFW is yesterdays news what is next in scope for the firewall in the threat intelligence age Dynamic Threat Protection for Enterprise Edge and Data Center Rasmus Andersen Lead Security Sales Specialist
Cisco Security Intelligence Operations
Operations Operations of 1 Operations Operations of Today s organizations require security solutions that accurately detect threats, provide holistic protection, and continually adapt to a rapidly evolving,
RSA Security Analytics
RSA Security Analytics This is what SIEM was Meant to Be 1 The Original Intent of SIEM Single compliance & security interface Compliance yes, but security? Analyze & prioritize alerts across various sources
Machine Learning for Cyber Security Intelligence
Machine Learning for Cyber Security Intelligence 27 th FIRST Conference 17 June 2015 Edwin Tump Senior Analyst National Cyber Security Center Introduction whois Edwin Tump 10 yrs at NCSC.NL (GOVCERT.NL)
CALNET 3 Category 7 Network Based Management Security. Table of Contents
State of California IFB STPD 12-001-B CALNET 3 Category 7 Network Based Security Table of Contents 7.2.1.4.a DDoS Detection and Mitigation Features... 1 7.2.2.3 Email Monitoring Service Features... 2 7.2.3.2
DDOS Mi'ga'on in RedIRIS. SIG- ISM. Vienna
DDOS Mi'ga'on in RedIRIS SIG- ISM. Vienna Index Evolu'on of DDOS a:acks in RedIRIS Mi'ga'on Tools Current DDOS strategy About RedIRIS Spanish Academic & research network. Universi'es, research centers,.
Hunting for the Undefined Threat: Advanced Analytics & Visualization
SESSION ID: ANF-W04 Hunting for the Undefined Threat: Advanced Analytics & Visualization Joshua Stevens Enterprise Security Architect Hewlett-Packard Cyber Security Technology Office Defining the Hunt
Advanced Visibility. Moving Beyond a Log Centric View. Matthew Gardiner, RSA & Richard Nichols, RSA
Advanced Visibility Moving Beyond a Log Centric View Matthew Gardiner, RSA & Richard Nichols, RSA 1 Security is getting measurability worse Percent of breaches where time to compromise (red)/time to Discovery
Cloud and Critical Infrastructures how Cloud services are factored in from a risk perspective
Cloud and Critical Infrastructures how Cloud services are factored in from a risk perspective Reaching the Cloud era in the EU Riga 16 June 2015 Jonathan Sage Government and Regulatory Affairs Cyber Security
NETWORK DEVICE SECURITY AUDITING
E-SPIN PROFESSIONAL BOOK VULNERABILITY MANAGEMENT NETWORK DEVICE SECURITY AUDITING ALL THE PRACTICAL KNOW HOW AND HOW TO RELATED TO THE SUBJECT MATTERS. NETWORK DEVICE SECURITY, CONFIGURATION AUDITING,
Content Security: Protect Your Network with Five Must-Haves
White Paper Content Security: Protect Your Network with Five Must-Haves What You Will Learn The continually evolving threat landscape is what makes the discovery of threats more relevant than defense as
Cyber Watch. Written by Peter Buxbaum
Cyber Watch Written by Peter Buxbaum Security is a challenge for every agency, said Stanley Tyliszczak, vice president for technology integration at General Dynamics Information Technology. There needs
SANS Top 20 Critical Controls for Effective Cyber Defense
WHITEPAPER SANS Top 20 Critical Controls for Cyber Defense SANS Top 20 Critical Controls for Effective Cyber Defense JANUARY 2014 SANS Top 20 Critical Controls for Effective Cyber Defense Summary In a
Data- Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing (#ddti)
Data- Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing (#ddti) Alex Pinto Chief Data Scientist Niddel / MLSec Project @alexcpsec @MLSecProject Alexandre Sieira CTO Niddel @AlexandreSieira
IT Sicherheit im Web 2.0 Zeitalter
IT Sicherheit im Web 2.0 Zeitalter Dirk Beste Consulting System Engineer 1 IT Sicherheit im Web 2.0 Zeitalter Cisco SIO und Global Threat Correlation Nach dem Webinar sollte der Zuhörer in der Lage sein:
Reduce Your Network's Attack Surface
WHITE PAPER Reduce Your Network's Attack Surface Ixia's ThreatARMOR Frees Up Security Resources and Personnel The Threat Landscape When you re dealing with network security, one of the primary measurements
Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing
CS 188: Artificial Intelligence Lecture 20: Dynamic Bayes Nets, Naïve Bayes Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. Part III: Machine Learning Up until now: how to reason in a model and
Presentation Title: When Anti-virus Doesn t Cut it: Catching Malware with SIEM
LISA 10 Speaking Proposal Category: Practice and Experience Reports Presentation Title: When Anti-virus Doesn t Cut it: Catching Malware with SIEM Proposed by/speaker: Wyman Stocks Information Security
AlienVault. Unified Security Management (USM) 5.x Policy Management Fundamentals
AlienVault Unified Security Management (USM) 5.x Policy Management Fundamentals USM 5.x Policy Management Fundamentals Copyright 2015 AlienVault, Inc. All rights reserved. The AlienVault Logo, AlienVault,
Email/Endpoint Security and More Rondi Jamison
Email/Endpoint Security and More Rondi Jamison Sr. Marke)ng Manager - Enterprise Security Strategy Agenda 1 Why Symantec? 2 Partnership 3 APS2 Packages 4 What s next Copyright 2014 Symantec Corpora)on
Enabling Security Operations with RSA envision. August, 2009
Enabling Security Operations with RSA envision August, 2009 Agenda What is security operations? How does RSA envision help with security operations? How does RSA envision fit with other EMC products? If
Metric Matters. Dain Perkins, CISSP [email protected]
Metric Matters Dain Perkins, CISSP [email protected] My Perspective Information security metrics do not show us how we need to improve our defenses Image: http://abcnews.go.com/sports/2014-fifa-world-cup-us-goalie-tim-howard/story?id=24400295
Threat Intelligence for Dummies. Karen Scarfone Scarfone Cybersecurity
Threat Intelligence for Dummies Karen Scarfone Scarfone Cybersecurity 1 Source Material Threat Intelligence for Dummies ebook Co-authored with Steve Piper of CyberEdge Group Published by Wiley Sponsored
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION CSE 537 Ar@ficial Intelligence Professor Anita Wasilewska GROUP 2 TEAM MEMBERS: SAEED BOOR BOOR - 110564337 SHIH- YU TSAI - 110385129 HAN LI 110168054 SOURCES
Security Intelligence Blacklisting
The following topics provide an overview of Security Intelligence, including use for blacklisting and whitelisting traffic and basic configuration. Security Intelligence Basics, page 1 Security Intelligence
Machine learning for algo trading
Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with
Ensemble Methods. Adapted from slides by Todd Holloway h8p://abeau<fulwww.com/2007/11/23/ ensemble- machine- learning- tutorial/
Ensemble Methods Adapted from slides by Todd Holloway h8p://abeau
WORKING WITH WINDOWS FIREWALL IN WINDOWS 7
WORKING WITH WINDOWS FIREWALL IN WINDOWS 7 Firewall in Windows 7 Windows 7 comes with two firewalls that work together. One is the Windows Firewall, and the other is Windows Firewall with Advanced Security
True in Depth Security through Next Generation SIEM. Ray Menard Senior Principal Security Consultant Q1 Labs
True in Depth Security through Next Generation SIEM Ray Menard Senior Principal Security Consultant Q1 Labs "Electronic intelligence, valuable though it is in its own way, serves to augment the daunting
Know Your Foe. Threat Infrastructure Analysis Pitfalls
Know Your Foe Threat Infrastructure Analysis Pitfalls Who Are We? Founders of PassiveTotal Analysts/researchers with 10+ years of collective experience Interested in Better UX/UI for security systems Improving/re-thinking
Cybercrime myths, challenges and how to protect our business. Vladimir Kantchev Managing Partner Service Centrix
Cybercrime myths, challenges and how to protect our business Vladimir Kantchev Managing Partner Service Centrix Agenda Cybercrime today Sources and destinations of the attacks Breach techniques How to
WhatWorks in Detecting and Blocking Advanced Threats:
WhatWorks in Detecting and Blocking Advanced Threats: A Real Case Study at a Large Research Organization with WhatWorks is a user-to-user program in which security managers who have implemented effective
Presented by: Aaron Bossert, Cray Inc. Network Security Analytics, HPC Platforms, Hadoop, and Graphs Oh, My
Presented by: Aaron Bossert, Cray Inc. Network Security Analytics, HPC Platforms, Hadoop, and Graphs Oh, My The Proverbial Needle In A Haystack Problem The Nuclear Option Problem Statement and Proposed
Cyber Intelligence Workforce
Cyber Intelligence Workforce Troy Townsend Melissa Kasan Ludwick September 17, 2013 Agenda Project Background Research Methodology Findings Training and Education Project Findings Workshop Results Objectives
Security Analytics for Smart Grid
Security Analytics for Smart Grid Dr. Robert W. Griffin Chief Security Architect RSA, the Security Division of EMC [email protected] blogs.rsa.com/author/griffin @RobtWesGriffin 1 No Shortage of Hard
Intercept Anti-Spam Quick Start Guide
Intercept Anti-Spam Quick Start Guide Software Version: 6.5.2 Date: 5/24/07 PREFACE...3 PRODUCT DOCUMENTATION...3 CONVENTIONS...3 CONTACTING TECHNICAL SUPPORT...4 COPYRIGHT INFORMATION...4 OVERVIEW...5
Threat Intelligence is Dead. Long Live Threat Intelligence!
SESSION ID: STR-R02 Threat Intelligence is Dead. Long Live Threat Intelligence! Mark Orlando Director of Cyber Operations Foreground Security Background Threat Intelligence is Dead. Long Live Threat Intelligence!
Microsoft Exchange 2003
Microsoft Exchange 2003 Configuration Guide Microsoft Exchange 2003 Configuration Guide Page 1 Table of Contents Introduction... 2 Document and naming conventions... 2 Outbound email protection... 3 SMTP
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing (#ddti)
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing (#ddti) Alex Pinto Chief Data Scientist MLSec Project @alexcpsec @MLSecProject Alexandre Sieira CTO Niddel @AlexandreSieira
F-SECURE MESSAGING SECURITY GATEWAY
F-SECURE MESSAGING SECURITY GATEWAY DEFAULT SETUP GUIDE This guide describes how to set up and configure the F-Secure Messaging Security Gateway appliance in a basic e-mail server environment. AN EXAMPLE
Stream Deployments in the Real World: Enhance Opera?onal Intelligence Across Applica?on Delivery, IT Ops, Security, and More
Copyright 2015 Splunk Inc. Stream Deployments in the Real World: Enhance Opera?onal Intelligence Across Applica?on Delivery, IT Ops, Security, and More Stela Udovicic Sr. Product Marke?ng Manager Clayton
Comprehensive Malware Detection with SecurityCenter Continuous View and Nessus. February 3, 2015 (Revision 4)
Comprehensive Malware Detection with SecurityCenter Continuous View and Nessus February 3, 2015 (Revision 4) Table of Contents Overview... 3 Malware, Botnet Detection, and Anti-Virus Auditing... 3 Malware
Enterprise Organizations Need Contextual- security Analytics Date: October 2014 Author: Jon Oltsik, Senior Principal Analyst
ESG Brief Enterprise Organizations Need Contextual- security Analytics Date: October 2014 Author: Jon Oltsik, Senior Principal Analyst Abstract: Large organizations have spent millions of dollars on security
Comprehensive Understanding of Malicious Overlay Networks
Comprehensive Understanding of Malicious Overlay Networks Cyber Security Division 2012 Principal Investigators Meeting October 10, 2012 Wenke Lee and David Dagon Georgia Institute of Technology [email protected]
Patching, AlerFng, BYOD and More: Managing Security in the Enterprise with Splunk Enterprise
Copyright 2013 Splunk Inc. Patching, AlerFng, BYOD and More: Managing Security in the Enterprise with Splunk Enterprise Marquis Montgomery, CISSP, SSCP, GSEC Senior Security Architect, CedarCrestone #splunkconf
Evolution Of Cyber Threats & Defense Approaches
Evolution Of Cyber Threats & Defense Approaches Antony Abraham IT Architect, Information Security, State Farm Kevin McIntyre Tech Lead, Information Security, State Farm Agenda About State Farm Evolution
The principle of Network Security Monitoring[NSM] C.S.Lee[[email protected]] http://geek00l.blogspot.com
The principle of Network Security Monitoring[NSM] C.S.Lee[[email protected]] http://geek00l.blogspot.com Claim: Before I proceed, I would like to make it clear about the topic I gonna deliver, I'm not
Intel Security Certified Product Specialist Security Information Event Management (SIEM)
Intel Security Certified Product Specialist Security Information Event Management (SIEM) Why Get Intel Security Certified? As technology and security threats continue to evolve, organizations are looking
