From Clean Slate to SDN

Size: px
Start display at page:

Download "From Clean Slate to SDN"

Transcription

1 From Clean Slate to SDN Software-defined networking (SDN) is considered the next stage in the evolution of telco architecture, but it is worth noting that it is in fact a splendid example of technological cross-pollination; OpenFlow and its protocol brethren came about through recent efforts to remake the Internet for the 21st century, and these technologies will no doubt continue to intertwine for the foreseeable future. By Haisang Wu It all started with the Internet Born in 1969 as a Defense Advanced Research Projects Agency (DARPA) test network, the Internet is now more than 40 years old. The TCP/IP-based Internet was destined to succeed due to three factors connectionless packet switching, besteffort operational principles, and end-to-end transmission; all have helped it prevail over traditional circuit-switched architecture at each turning point in its development. However, the Internet has inherent flaws in its scalability, security, mobility, and QoS. Improvements and innovations have been carried out to address them, including classless inter-domain routing (CIDR), network address translation (NAT), and multiprotocol label switching (MPLS), which, miraculously, have enabled the Internet to stay ahead of obsolescence to this day. However, the Internet s fundamental flaws remain, and no amount of patching can ultimately overcome them. Many researchers are starting to believe that the problem can be ultimately solved by redefining the network structure, though this a task is on par with replacing a jet engine at 30,000 feet. This radical solution, known in academia as the Clean Slate, represents the abandoning of the original network structure altogether with a new one built from scratch, one that can satisfy current as well as future needs. The Clean Slate moniker in its proper sense refers to a research program initiated by Nick McKeown from Stanford, but it has since expanded to include a variety of government-led projects such as the Global Environment for Network Innovations (GENI) project, a subproject of the Future Internet Network Design (FIND) initiated by the U.S. National Science Foundation (NSF); the Future Internet Research and Experimentation (FIRE) project, a subproject of the Seventh Framework Programme (FP7) of the EU; and the AKARI and corresponding testbed JGN2+ projects sponsored by Japan s National Institute of Information and Communications Technology (NICT). 20

2 Perspectives The Internet has inherent flaws in scalability, security, mobility, and QoS that no amount of patching can overcome. Many researchers believe that these problems can be solved by redefining the network structure. The birth of SDN In 2007, Nick McKeown, his student Martin Casado, and Professor Scott Shenker from the University of California-Berkeley, founded Nicira, a network virtualization company with the slogan OpenFlow. In July, 2012, Nicira was acquired by VMware in a USD1.26 billion deal; what VMware was after was Nicira s network virtualization technology. In 2011, Nick McKeown and Scott Shenker co-founded the Open Networking Foundation (ONF), a non-profit organization, seeking to expand the influence of OpenFlow and SDN beyond academia. Though a college-level project, Clean Slate has a bold aim reinvent the Internet. It advocates starting from scratch and abandoning the traditional incremental and backwards-compatible rules. Program coordinators have identified five key areas for research network architecture, heterogeneous applications, heterogeneous physical-layer technologies, security, and economics & policy. This program relies on the academic, scientific, and commercial resources of Silicon Valley to successfully draw both attention and funding. Clean Slate was phased out in January 2012, giving way to four major follow-up projects Internet Infrastructure: OpenFlow and Softwaredefined Networking; Mobile Internet: Programmable Open Mobile Internet 2020 (POMI 2020); Mobile Social Networking: MobiSocial; and Data Centers: Stanford Experimental Data Center Laboratory. As an incubator, Clean Slate has undoubtedly been successful. The four follow-up projects are also attractive and promising. Clean Slate s research on network architecture started with OpenFlow. OpenFlow can be explained in traditional routing and switching terms. A traditional router or 21

3 In terms of network applications, separation of the control from the forwarding facilitates VM migration and security policy control. This flexible software-based control lays the basis for the software-defined networking (SDN). switch has a forwarding plane and a control plane, with the latter performing route calculation and the former forwarding data. An OpenFlow switch separates the two planes by shifting the route calculation function to an independent controller. The controller and the OpenFlow switch communicate through the OpenFlow protocol. The forwarding plane on the OpenFlow switch can then abstract the flow table to determine formats, matching rules, and actions for packets. One of the aims for OpenFlow is the development of new network protocols so that the forwarding plane does not necessarily forward packets based on IP xtuple. Initially, OpenFlow was simply defined as a Layer-2 control protocol, which is certainly not enough to revolutionize Internet architecture. If the forwarding planes for all nodes in a network are deployed externally through OpenFlow, the control and the forwarding for the entire network will be separated, allowing for more refined and sophisticated traffic management than access control lists (ACLs) and routing protocols on traditional routers would allow. In terms of network applications, separation of the control from the forwarding also facilitates virtual machine (VM) migration and security policy control. This flexible software-based control lays the basis for the software-defined networking (SDN). More revolutionary than OpenFlow, SDN popularizes the idea of network virtualization, with OpenFlow functioning as an enabler. OpenFlow is an enabler of SDN Centralized network control and distributed forwarding are not new concepts. OpenFlow was first developed to control the forwarding planes of switches or routers through the network. This out-of-band model very much resembles public switched telephone network (PSTN) architecture a typical example of centralized control. Centralized network control is orthogonal to distributed Internet route calculation. The new wrinkle here is that OpenFlow is capable of controlling out-of-band equipment and testing new network-layer protocols in incubators such as campus networks. By supporting OpenFlow, a traditional equipment vendor is able to provide hooks to users that enable out-of-band control of devices, without releasing system implementation details. After the control and forwarding planes are separated, the gear no longer needs to calculate routes for packet forwarding, making the task itself that much easier. With SDN, bottom-layer hardware is virtualized, independent of VMs and applications running on it. OpenFlow s design goal also aims at router commoditization, just like PCs with Windows operating systems and applications. Existing routers on the network can be transformed into OpenFlow-enabled nodes, with newly-deployed network elements now OpenFlow-dedicated nodes, all with a simple forwarding plane. Network services can then be delivered flexibly as applications through application programming interfaces (APIs) or native applications. However, the communications community is known for its resistance to radical reform. Since router design is dominated by major vendors as opposed to the OpenFlow community, the software layer is commonly added between the applications and the network engine, which functions as an alternate controller. Some alternate controllers are open-source applications, others are provided with APIs to access the network engine, while still others have no APIs at all. However, OpenFlow is only one of many possible ways to connect the forwarding plane with the controller, and major vendors often choose other practice-proven protocols. 22

4 Perspectives SDN cannot replace the Internet at this point, and neither can a lot of other innovations. In fact, it is inappropriate to compare SDN with the Internet, as each attempts to solve different problems. Technically, SDN-based network virtualization makes connection between applications and the network possible. The type of controller determines how difficult that connection is to make. However, technical difficulty is a secondary concern to carriers, who may be more worried about network deployment and evolution. Will SDN replace the Internet? The jury is still out on this question. For the Clean Slate project, SDN is a new networking method that features the separation of the control plane from the forwarding plane, with unified OpenFlow acting as the channel and interface between the control plane and forwarding planes. The centralized control plane makes the entire network topology transparent to applications and services, as well as virtualization and bottom-layer programming. In other words, this network restructuring does nothing less than redefine the Internet. However, SDN cannot replace the Internet at this point, and neither can a lot of other innovations. In fact, it is inappropriate to compare SDN with the Internet, as each attempts to solve different problems. If the forwarding and the control planes are separated, they still need to be connected in some way. And what s more, distributed controllers also need to be connected, but direct interconnection of the planes or the controllers is surely impossible on a large scale. So what else can be used? Most current SDN ideas assume a traditional network, which means standard autonomous systems, routing, and peering architecture for interconnection. In this sense, SDN is a supplementary layer or a virtualization layer of the current network, driven by technologies such as cloud architecture, dynamic resource allocation, mobile computing, and virtualized computing. It aims to help carriers decouple services from interfaces to facilitate network O&M and simplify network structure. SDN and the routing-based Internet can be compared to the kernel space and user space in an operating system. Modern operating systems use process space to realize isolation and protection, and employ system calls to help applications access the kernel, while the memory management unit (MMU) maps virtual and physical addresses. However, isolation of the kernel and user space would seem to degrade system performance, and therefore many high-performance embedded operating systems allow users to directly access the kernel, without employing user space. Nevertheless, isolation, protection, and virtualization do have their uses. Programmers need only visit the virtual address, without considering the problem of kernel crash. This makes application development kernel-independent, facilitating development and maintenance, and today s software industry is based on this mechanism. If SDN is to be applied to the current network, the prerequisite is the keeping of traditional bridging, routing, and switching functionalities, which secure scalability, interoperability, and reliability (similar to the basic functions of the operating system kernel). The upper SDN layer (or virtualization layer) decouples services from physical interfaces, interface features, and network topologies (similar to the kernel/user space isolation in the operating system). The upper layer services are similar to applications in the operating system. Such services seen in carrier use today are basically cache, carrier grade NAT (CGN), firewalls, load balancing, IPTV, and VPN. In view of the development of the software industry, it s easy to envision that new SDN application scenarios will be available for carrier, enterprise, and data center networks. 23

5 SDN helps carriers improve operational efficiency, service quality, and resource usage, while facilitating service deployment and not bringing about network architecture revolution. SDN application scenarios SDN cannot replace the Internet at this time, but it can be used in certain scenarios, especially in data centers and infrastructure as a service (IaaS) applications that use large numbers of VMs. Network virtualization obscures the location information for VMs, so customers who buy a large number of them need not know the details. Network virtualization, along with storage & computing virtualization, can implement flexible resource allocation in cloud environments, while simulating traditional interprocess communication (IPC) to deliver resource scheduling among VMs. Niche applications will also be easier through SDN. In an operating system, consecutive virtual addresses may correspond to discrete physical addresses. Similarly, the scattered storage space of data centers can be integrated into a pool to improve resource use efficiency. What s more, SDN makes their load balancing easier. Traditionally, link state update notifications are sent to each egress router, while distributed SDN can inform each server cluster, or even each hypervisor (virtual machine monitor) for link state updates. VMs and SDN have spawned many startups, who apply distributed dynamic resource computing to traditional services such as load balancing and firewalls. As the old stomping grounds of SDN, campus networks are natural applications. FlowVisor (an OpenFlow controller) and SDN can create multiple independent and programmable logical networks (slices) on a physical network, which is advocated by the Global Environment for Network Innovations (GENI). In the telco field, the most likely market is access services as carrier networks are in desperate need of flexible service migration. SDN and network virtualization effectively control traffic, making network planning and O&M easier than static in-band processing. Key challenges of applying SDN to carrier networks are performance, service complexity, and security. Most conservative carriers are skeptical of network openness; thanks to, or unfortunately because of, subscriber-aware services such as AAA (authentication, authorization and accounting), IPTV, and VPN, carriers cannot change their services/applications as often as Google and Facebook do. SDN as a guiding philosophy IT enterprises are service-oriented. They hope to use SDN to virtualize networks, computing, and storage, ensuring dynamic and flexible resource allocation for profitable business. Carriers, thus far, have been network oriented. Network bandwidth is a scarce resource and carriers face less competition than enterprises in other industries. In this sense, SDN helps carriers improve operational efficiency, service quality, and resource usage, while facilitating service deployment and not bringing about network architecture revolution. SDN can serve as a guiding philosophy, with OpenFlow, controllers, floodless deployment, and symmetrical/asymmetrical deployment supporting it. Networking, computing, storage virtualization, and cloud computing have brought limitless opportunities for SDN and have greatly driven its development. SDN is a rare opportunity for IT enterprises, carriers, and manufacturers. The problem is how to seize the opportunity. Once a bold presumption is established, you need to verify it. In the case of SDN, what the IT/telecom enterprises need to do is to see it through, to figure out the best ways (mechanisms) to fulfill their goals. Editor: Michael huangzhuojian@huawei.com 24

Open Source Network: Software-Defined Networking (SDN) and OpenFlow

Open Source Network: Software-Defined Networking (SDN) and OpenFlow Open Source Network: Software-Defined Networking (SDN) and OpenFlow Insop Song, Ericsson LinuxCon North America, Aug. 2012, San Diego CA Objectives Overview of OpenFlow Overview of Software Defined Networking

More information

A Coordinated. Enterprise Networks Software Defined. and Application Fluent Programmable Networks

A Coordinated. Enterprise Networks Software Defined. and Application Fluent Programmable Networks A Coordinated Virtual Infrastructure for SDN in Enterprise Networks Software Defined Networking (SDN), OpenFlow and Application Fluent Programmable Networks Strategic White Paper Increasing agility and

More information

Virtualization, SDN and NFV

Virtualization, SDN and NFV Virtualization, SDN and NFV HOW DO THEY FIT TOGETHER? Traditional networks lack the flexibility to keep pace with dynamic computing and storage needs of today s data centers. In order to implement changes,

More information

Network Virtualization

Network Virtualization Network Virtualization What is Network Virtualization? Abstraction of the physical network Support for multiple logical networks running on a common shared physical substrate A container of network services

More information

How the emergence of OpenFlow and SDN will change the networking landscape

How the emergence of OpenFlow and SDN will change the networking landscape How the emergence of OpenFlow and SDN will change the networking landscape Software-defined networking (SDN) powered by the OpenFlow protocol has the potential to be an important and necessary game-changer

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SOFTWARE DEFINED NETWORKING A NEW ARCHETYPE PARNAL P. PAWADE 1, ANIKET A. KATHALKAR

More information

SDN and NFV in the WAN

SDN and NFV in the WAN WHITE PAPER Hybrid Networking SDN and NFV in the WAN HOW THESE POWERFUL TECHNOLOGIES ARE DRIVING ENTERPRISE INNOVATION rev. 110615 Table of Contents Introduction 3 Software Defined Networking 3 Network

More information

Leveraging SDN and NFV in the WAN

Leveraging SDN and NFV in the WAN Leveraging SDN and NFV in the WAN Introduction Software Defined Networking (SDN) and Network Functions Virtualization (NFV) are two of the key components of the overall movement towards software defined

More information

Project 3 and Software-Defined Networking (SDN)

Project 3 and Software-Defined Networking (SDN) Project 3 and Software-Defined Networking (SDN) EE122 Fall 2011 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues

More information

Lecture 02b Cloud Computing II

Lecture 02b Cloud Computing II Mobile Cloud Computing Lecture 02b Cloud Computing II 吳 秀 陽 Shiow-yang Wu T. Sridhar. Cloud Computing A Primer, Part 2: Infrastructure and Implementation Topics. The Internet Protocol Journal, Volume 12,

More information

How the Emergence of OpenFlow and SDN will Change the Networking Landscape

How the Emergence of OpenFlow and SDN will Change the Networking Landscape How the Emergence of OpenFlow and SDN will Change the Networking Landscape Software-Defined Networking (SDN) powered by the OpenFlow protocol has the potential to be an important and necessary game-changer

More information

White Paper. SDN 101: An Introduction to Software Defined Networking. citrix.com

White Paper. SDN 101: An Introduction to Software Defined Networking. citrix.com SDN 101: An Introduction to Software Defined Networking citrix.com Over the last year, the hottest topics in networking have been software defined networking (SDN) and Network ization (NV). There is, however,

More information

Testing Challenges for Modern Networks Built Using SDN and OpenFlow

Testing Challenges for Modern Networks Built Using SDN and OpenFlow Using SDN and OpenFlow July 2013 Rev. A 07/13 SPIRENT 1325 Borregas Avenue Sunnyvale, CA 94089 USA Email: Web: sales@spirent.com www.spirent.com AMERICAS 1-800-SPIRENT +1-818-676-2683 sales@spirent.com

More information

software networking Jithesh TJ, Santhosh Karipur QuEST Global

software networking Jithesh TJ, Santhosh Karipur QuEST Global software defined networking Software Defined Networking is an emerging trend in the networking and communication industry and it promises to deliver enormous benefits, from reduced costs to more efficient

More information

SDN/Virtualization and Cloud Computing

SDN/Virtualization and Cloud Computing SDN/Virtualization and Cloud Computing Agenda Software Define Network (SDN) Virtualization Cloud Computing Software Defined Network (SDN) What is SDN? Traditional Network and Limitations Traditional Computer

More information

Testing Software Defined Network (SDN) For Data Center and Cloud VERYX TECHNOLOGIES

Testing Software Defined Network (SDN) For Data Center and Cloud VERYX TECHNOLOGIES Testing Software Defined Network (SDN) For Data Center and Cloud VERYX TECHNOLOGIES Table of Contents Introduction... 1 SDN - An Overview... 2 SDN: Solution Layers and its Key Requirements to be validated...

More information

The Promise and the Reality of a Software Defined Data Center

The Promise and the Reality of a Software Defined Data Center The Promise and the Reality of a Software Defined Data Center Authored by Sponsored by Introduction The traditional IT operational model is highly manual and very hardware centric. As a result, IT infrastructure

More information

Software-Defined Networking. Starla Wachsmann. University Of North Texas

Software-Defined Networking. Starla Wachsmann. University Of North Texas Running head: Software-Defined Networking (SDN) Software-Defined Networking Starla Wachsmann University Of North Texas What is Software-Defined Networking? Software-Defined Networking has one consistent

More information

The Road to SDN: Software-Based Networking and Security from Brocade

The Road to SDN: Software-Based Networking and Security from Brocade WHITE PAPER www.brocade.com SOFTWARE NETWORKING The Road to SDN: Software-Based Networking and Security from Brocade Software-Defined Networking (SDN) presents a new approach to rapidly introducing network

More information

A Study on Software Defined Networking

A Study on Software Defined Networking A Study on Software Defined Networking Yogita Shivaji Hande, M. Akkalakshmi Research Scholar, Dept. of Information Technology, Gitam University, Hyderabad, India Professor, Dept. of Information Technology,

More information

Network Virtualization and its Application to M2M Business

Network Virtualization and its Application to M2M Business Network Virtualization and its Application to M2M Business M2M Partner Event Dr. Markus Breitbach Deutsche Telekom, Group Technology Rotterdam, 2011/09/28 Image source: http://clementvalla.com/work/google-earth-bridges/

More information

Ten Things to Look for in an SDN Controller

Ten Things to Look for in an SDN Controller Ten Things to Look for in an SDN Controller Executive Summary Over the last six months there has been significant growth in the interest that IT organizations have shown in Software-Defined Networking

More information

SDN AND SECURITY: Why Take Over the Hosts When You Can Take Over the Network

SDN AND SECURITY: Why Take Over the Hosts When You Can Take Over the Network SDN AND SECURITY: Why Take Over the s When You Can Take Over the Network SESSION ID: TECH0R03 Robert M. Hinden Check Point Fellow Check Point Software What are the SDN Security Challenges? Vulnerability

More information

Software Defined Networks (SDN)

Software Defined Networks (SDN) Software Defined Networks (SDN) Nick McKeown Stanford University With: Martín Casado, Teemu Koponen, Scott Shenker and many others With thanks to: NSF, GPO, Stanford Clean Slate Program, Cisco, DoCoMo,

More information

Lecture 02a Cloud Computing I

Lecture 02a Cloud Computing I Mobile Cloud Computing Lecture 02a Cloud Computing I 吳 秀 陽 Shiow-yang Wu What is Cloud Computing? Computing with cloud? Mobile Cloud Computing Cloud Computing I 2 Note 1 What is Cloud Computing? Walking

More information

SOFTWARE-DEFINED NETWORKS

SOFTWARE-DEFINED NETWORKS THE PROMISE OF SOFTWARE-DEFINED NETWORKS SDNs offer organizations a flexible solution capable of reimagining the enterprise network. The IT community is abuzz with discussions about software-defined networks

More information

How To Manage A Virtualization Server

How To Manage A Virtualization Server Brain of the Virtualized Data Center Contents 1 Challenges of Server Virtualization... 3 1.1 The virtual network breaks traditional network boundaries... 3 1.2 The live migration function of VMs requires

More information

Flexible Building Blocks for Software Defined Network Function Virtualization (Tenant-Programmable Virtual Networks)

Flexible Building Blocks for Software Defined Network Function Virtualization (Tenant-Programmable Virtual Networks) Flexible Building Blocks for Software Defined Network Function Virtualization (Tenant-Programmable Virtual Networks) Aryan TaheriMonfared Chunming Rong Department of Electrical Engineering and Computer

More information

CSCI-1680 So ware-defined Networking

CSCI-1680 So ware-defined Networking CSCI-1680 So ware-defined Networking Rodrigo Fonseca Most content from lecture notes by Scott Shenker SDN For now: a new paradigm for network management SDN widely accepted as future of networking ~1000

More information

Software Defined Networking - a new approach to network design and operation. Paul Horrocks Pre-Sales Strategist 8 th November 2012

Software Defined Networking - a new approach to network design and operation. Paul Horrocks Pre-Sales Strategist 8 th November 2012 Software Defined Networking - a new approach to network design and operation Paul Horrocks Pre-Sales Strategist 8 th November 2012 Agenda What is Software Defined Networking What is the value of Software

More information

ESG Brief. Modern Data Centers: Massive Scale and Complexity. Data Center Networking Discontinuity

ESG Brief. Modern Data Centers: Massive Scale and Complexity. Data Center Networking Discontinuity ESG Brief IBM and NEC Bring SDN/OpenFlow to Enterprise Data Center Networks Date: January, 2012 Author: Jon Oltsik, Senior Principal Analyst, and Bob Laliberte, Senior Analyst Abstract: Enterprise data

More information

The Future of Networking, and the Past of Protocols

The Future of Networking, and the Past of Protocols 1 The Future of Networking, and the Past of Protocols Scott Shenker with Martín Casado, Teemu Koponen, Nick McKeown (and many others.) 2 Software-Defined Networking SDN clearly has advantages over status

More information

SINGLE-TOUCH ORCHESTRATION FOR PROVISIONING, END-TO-END VISIBILITY AND MORE CONTROL IN THE DATA CENTER

SINGLE-TOUCH ORCHESTRATION FOR PROVISIONING, END-TO-END VISIBILITY AND MORE CONTROL IN THE DATA CENTER SINGLE-TOUCH ORCHESTRATION FOR PROVISIONING, END-TO-END VISIBILITY AND MORE CONTROL IN THE DATA CENTER JOINT SDN SOLUTION BY ALCATEL-LUCENT ENTERPRISE AND NEC APPLICATION NOTE EXECUTIVE SUMMARY Server

More information

Software Defined Network Application in Hospital

Software Defined Network Application in Hospital InImpact: The Journal of Innovation Impact: ISSN 2051-6002 : http://www.inimpact.org Special Edition on Innovation in Medicine and Healthcare : Vol. 6. No. 1 : pp.1-11 : imed13-011 Software Defined Network

More information

The Many Faces of SDN: An Industry Perspective

The Many Faces of SDN: An Industry Perspective The Many Faces of SDN: An Industry Perspective Kenneth Duda CTO / SVP Software Arista Networks, Inc. Face 1: SDN is for Experimentation Today, there is almost no practical way to experiment with new network

More information

Software Defined Networking for Telecom Operators: Architecture and Applications

Software Defined Networking for Telecom Operators: Architecture and Applications 2013 8th International Conference on Communications and Networking in China (CHINACOM) Software Defined Networking for Telecom Operators: Architecture and Applications Jian-Quan Wang China Unicom Research

More information

Krishan Sabnani Bell Labs. Converged Networks of the Future

Krishan Sabnani Bell Labs. Converged Networks of the Future Krishan Sabnani Bell Labs Converged Networks of the Future Today s Networks 3G Cellular Networks Radio Controller Aggregation Access Enterprise Networks Metro Networks Access Packet-Based Network Aggregation

More information

Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心

Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 1 SDN Introduction Decoupling of control plane from data plane

More information

Stanford SDN-Based Private Cloud. Johan van Reijendam (jvanreij@stanford.edu) Stanford University

Stanford SDN-Based Private Cloud. Johan van Reijendam (jvanreij@stanford.edu) Stanford University Stanford SDN-Based Private Cloud (jvanreij@stanford.edu) Stanford University Executive Summary The Web and its infrastructure continue to make phenomenal progress, allowing the creation and scaling of

More information

The Mandate for a Highly Automated IT Function

The Mandate for a Highly Automated IT Function The Mandate for a Highly Automated IT Function Introduction The traditional IT operational model is highly manual and very hardware centric. As a result, IT infrastructure services have historically been

More information

OpenFlow and Onix. OpenFlow: Enabling Innovation in Campus Networks. The Problem. We also want. How to run experiments in campus networks?

OpenFlow and Onix. OpenFlow: Enabling Innovation in Campus Networks. The Problem. We also want. How to run experiments in campus networks? OpenFlow and Onix Bowei Xu boweixu@umich.edu [1] McKeown et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, 38(2):69-74, Apr. 2008. [2] Koponen et al., "Onix: a Distributed Control

More information

How To Make A Vpc More Secure With A Cloud Network Overlay (Network) On A Vlan) On An Openstack Vlan On A Server On A Network On A 2D (Vlan) (Vpn) On Your Vlan

How To Make A Vpc More Secure With A Cloud Network Overlay (Network) On A Vlan) On An Openstack Vlan On A Server On A Network On A 2D (Vlan) (Vpn) On Your Vlan Centec s SDN Switch Built from the Ground Up to Deliver an Optimal Virtual Private Cloud Table of Contents Virtualization Fueling New Possibilities Virtual Private Cloud Offerings... 2 Current Approaches

More information

ADVANCED SECURITY MECHANISMS TO PROTECT ASSETS AND NETWORKS: SOFTWARE-DEFINED SECURITY

ADVANCED SECURITY MECHANISMS TO PROTECT ASSETS AND NETWORKS: SOFTWARE-DEFINED SECURITY ADVANCED SECURITY MECHANISMS TO PROTECT ASSETS AND NETWORKS: SOFTWARE-DEFINED SECURITY One of the largest concerns of organisations is how to implement and introduce advanced security mechanisms to protect

More information

Panel: The Future of Datacenter Networking Software-Defined Networking (SDN) for Datacenter Interconnect and Cloud Computing

Panel: The Future of Datacenter Networking Software-Defined Networking (SDN) for Datacenter Interconnect and Cloud Computing Panel: The Future of Datacenter Networking Software-Defined Networking (SDN) for Datacenter Interconnect and Cloud Computing Achim Autenrieth HPSR 2012, Belgrade June 25 27, 2012 Evolution of cloud architectures

More information

Funded in part by: NSF, Cisco, DoCoMo, DT, Ericsson, Google, Huawei, NEC, Xilinx

Funded in part by: NSF, Cisco, DoCoMo, DT, Ericsson, Google, Huawei, NEC, Xilinx Funded in part by: NSF, Cisco, DoCoMo, DT, Ericsson, Google, Huawei, NEC, Xilinx Nick McKeown, Guru Parulkar, Guido Appenzeller, Nick Bastin, David Erickson, Glen Gibb, Nikhil Handigol, Brandon Heller,

More information

Transform Your Business and Protect Your Cisco Nexus Investment While Adopting Cisco Application Centric Infrastructure

Transform Your Business and Protect Your Cisco Nexus Investment While Adopting Cisco Application Centric Infrastructure White Paper Transform Your Business and Protect Your Cisco Nexus Investment While Adopting Cisco Application Centric Infrastructure What You Will Learn The new Cisco Application Centric Infrastructure

More information

Boosting Business Agility through Software-defined Networking

Boosting Business Agility through Software-defined Networking Executive Summary: Boosting Business Agility through Software-defined Networking Completing the last mile of virtualization Introduction Businesses have gained significant value from virtualizing server

More information

Designing Virtual Network Security Architectures Dave Shackleford

Designing Virtual Network Security Architectures Dave Shackleford SESSION ID: CSV R03 Designing Virtual Network Security Architectures Dave Shackleford Sr. Faculty and Analyst SANS @daveshackleford Introduction Much has been said about virtual networking and softwaredefined

More information

Network Virtualization and SDN/OpenFlow for Optical Networks - EU Project OFELIA. Achim Autenrieth, Jörg-Peter Elbers ADVA Optical Networking SE

Network Virtualization and SDN/OpenFlow for Optical Networks - EU Project OFELIA. Achim Autenrieth, Jörg-Peter Elbers ADVA Optical Networking SE Network Virtualization and SDN/OpenFlow for Optical Networks - EU Project OFELIA Achim Autenrieth, Jörg-Peter Elbers ADVA Optical Networking SE Networked Systems (NetSys) 2013 Stuttgart, 14.03.2013 Outline

More information

SplitArchitecture Applying Software Defined Networking concept to carrier networks

SplitArchitecture Applying Software Defined Networking concept to carrier networks SplitArchitecture Applying Software Defined Networking concept to carrier networks Mario Kind, Steffen Topp, Fritz-Joachim Westphal, Andreas Gladisch Presentation given at World Telecommunication Congress

More information

SOFTWARE-DEFINED NETWORKING AND OPENFLOW

SOFTWARE-DEFINED NETWORKING AND OPENFLOW SOFTWARE-DEFINED NETWORKING AND OPENFLOW Freddie Örnebjär TREX Workshop 2012 2012 Brocade Communications Systems, Inc. 2012/09/14 Software-Defined Networking (SDN): Fundamental Control

More information

BROCADE NETWORKING: EXPLORING SOFTWARE-DEFINED NETWORK. Gustavo Barros Systems Engineer Brocade Brasil

BROCADE NETWORKING: EXPLORING SOFTWARE-DEFINED NETWORK. Gustavo Barros Systems Engineer Brocade Brasil BROCADE NETWORKING: EXPLORING SOFTWARE-DEFINED NETWORK Gustavo Barros Systems Engineer Brocade Brasil Software- Defined Networking Summary Separate control and data planes Networks are becoming: More programmatic

More information

The Role of Virtual Routers In Carrier Networks

The Role of Virtual Routers In Carrier Networks The Role of Virtual Routers In Carrier Networks Sterling d Perrin Senior Analyst, Heavy Reading Agenda Definitions of SDN and NFV Benefits of SDN and NFV Challenges and Inhibitors Some Use Cases Some Industry

More information

ONOS [Open Source SDN Network Operating System for Service Provider networks]

ONOS [Open Source SDN Network Operating System for Service Provider networks] ONOS [Open Source SDN Network Operating System for Service Provider networks] http://onosproject.org/ Released on December 5 th, 2014 Guru Parulkar parulkar@stanford.edu ONOS Partnership A partnership

More information

Network Management and Software-Defined Networking (SDN)" EE122 Fall 2013 Scott Shenker (understudy to Sylvia Ratnasamy)

Network Management and Software-Defined Networking (SDN) EE122 Fall 2013 Scott Shenker (understudy to Sylvia Ratnasamy) Network Management and Software-Defined Networking (SDN)" EE122 Fall 2013 Scott Shenker (understudy to Sylvia Ratnasamy) 1 Goal for today" Provide the why of software-defined networking Some history Some

More information

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 楊 竹 星 教 授 國 立 成 功 大 學 電 機 工 程 學 系 Outline Introduction OpenFlow NetFPGA OpenFlow Switch on NetFPGA Development Cases Conclusion 2 Introduction With the proposal

More information

U s i n g S D N - and NFV-based Servi c e s to M a x i m iz e C SP Reve n u e s a n d I n c r e ase

U s i n g S D N - and NFV-based Servi c e s to M a x i m iz e C SP Reve n u e s a n d I n c r e ase I D C T E C H N O L O G Y S P O T L I G H T U s i n g S D N - and NFV-based Servi c e s to M a x i m iz e C SP Reve n u e s a n d I n c r e ase Operational Efficiency March 2013 Adapted from Will New SDN

More information

OpenFlow & Software Defined Networking

OpenFlow & Software Defined Networking OpenFlow & Software Defined Networking HPC SEMINAR DELL & INTEL, 24 APRIL 2014 Ronald van der Pol Outline Vision behind Software Defined Networking (SDN) OpenFlow OpenDaylight

More information

How To Orchestrate The Clouddusing Network With Andn

How To Orchestrate The Clouddusing Network With Andn ORCHESTRATING THE CLOUD USING SDN Joerg Ammon Systems Engineer Service Provider 2013-09-10 2013 Brocade Communications Systems, Inc. Company Proprietary Information 1 SDN Update -

More information

SDN. What's Software Defined Networking? Angelo Capossele

SDN. What's Software Defined Networking? Angelo Capossele SDN What's Software Defined Networking? Angelo Capossele Outline Introduction to SDN OpenFlow Network Functions Virtualization Some examples Opportunities Research problems Security Case study: LTE (Mini)Tutorial

More information

IPOP-TinCan: User-defined IP-over-P2P Virtual Private Networks

IPOP-TinCan: User-defined IP-over-P2P Virtual Private Networks IPOP-TinCan: User-defined IP-over-P2P Virtual Private Networks Renato Figueiredo Advanced Computing and Information Systems Lab University of Florida ipop-project.org Unit 3: Intra-cloud Virtual Networks

More information

Network Functions Virtualization in Home Networks

Network Functions Virtualization in Home Networks Network Functions Virtualization in Home Networks Marion Dillon Timothy Winters Abstract The current model of home networking includes relatively low- cost, failure- prone devices, requiring frequent intervention

More information

Limitations of Current Networking Architecture OpenFlow Architecture

Limitations of Current Networking Architecture OpenFlow Architecture CECS 572 Student Name Monday/Wednesday 5:00 PM Dr. Tracy Bradley Maples OpenFlow OpenFlow is the first open standard communications interface that enables Software Defined Networking (SDN) [6]. It was

More information

Facility Usage Scenarios

Facility Usage Scenarios Facility Usage Scenarios GDD-06-41 GENI: Global Environment for Network Innovations December 22, 2006 Status: Draft (Version 0.1) Note to the reader: this document is a work in progress and continues to

More information

Open Source Tools & Platforms

Open Source Tools & Platforms Open Source Tools & Platforms Open Networking Lab Ali Al-Shabibi Agenda Introduction to ON.Lab; Who we are? What we are doing? ONOS Overview OpenVirtex Overview ONRC Organizational Structure Berkeley Scott

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Richard T. B. Ma School of Computing National University of Singapore Material from: Scott Shenker (UC Berkeley), Nick McKeown (Stanford), Jennifer Rexford (Princeton) CS 4226:

More information

Software-Defined Networks Powered by VellOS

Software-Defined Networks Powered by VellOS WHITE PAPER Software-Defined Networks Powered by VellOS Agile, Flexible Networking for Distributed Applications Vello s SDN enables a low-latency, programmable solution resulting in a faster and more flexible

More information

OpenFlow/SDN activities of NTT Communications

OpenFlow/SDN activities of NTT Communications OpenFlow/SDN activities of NTT Communications Yukio ITO NTT Communications Senior Vice President Member of the ONF Board 6 th June 2013 Virtualization Technology Server Physical Logical Storage Virtualize

More information

Cloud Computing Security: What Changes with Software-Defined Networking?

Cloud Computing Security: What Changes with Software-Defined Networking? Cloud Computing Security: What Changes with Software-Defined Networking? José Fortes Center for Cloud and Autonomic Computing Advanced Computing and Information Systems Lab ARO Workshop on Cloud Security

More information

Contents UNIFIED COMPUTING DATA SHEET. Virtual Data Centre Support. www.interoute.com

Contents UNIFIED COMPUTING DATA SHEET. Virtual Data Centre Support. www.interoute.com Contents Scope of this Document... 2 Product Overview... 2 Virtual Data Centre and VDC Dedicated Infrastructure... 2 Service Levels... 3 Severity and Support Response Times... 4 On-boarding... 5 Incident

More information

OpenFlow -Enabled Cloud Backbone Networks Create Global Provider Data Centers. ONF Solution Brief November 14, 2012

OpenFlow -Enabled Cloud Backbone Networks Create Global Provider Data Centers. ONF Solution Brief November 14, 2012 OpenFlow -Enabled Cloud Backbone Networks Create Global Provider Data Centers ONF Solution Brief November 14, 2012 Table of Contents 2 OpenFlow-Enabled Software-Defined Networking 2 Executive Summary 3

More information

Why ISPs need SDN: SDN-based Network Service Chaining and Software-defined Multicast

Why ISPs need SDN: SDN-based Network Service Chaining and Software-defined Multicast Why ISPs need SDN: SDN-based Network Chaining and Software-defined Multicast ZKI Herbsttagung, Kaiserslautern, Germany, 24. Sept. 2014 Jeremias Blendin, Julius Rückert, David Hausheer Department of Electrical

More information

Software Defined Networks

Software Defined Networks Software Defined Networks Inspired from the article Software-defined Networking: A Comprehensive Survey by Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky

More information

An Intelligent Framework for Vehicular Ad-hoc Networks using SDN Architecture

An Intelligent Framework for Vehicular Ad-hoc Networks using SDN Architecture 435 An Intelligent Framework for Vehicular Ad-hoc Networks using SDN Architecture Balamurugan.V School of Computing Science and Engineering, VIT University Chennai Campus, 600127, Tamilnadu, India. Abstract

More information

Deliver the Next Generation Intelligent Datacenter Fabric with the Cisco Nexus 1000V, Citrix NetScaler Application Delivery Controller and Cisco vpath

Deliver the Next Generation Intelligent Datacenter Fabric with the Cisco Nexus 1000V, Citrix NetScaler Application Delivery Controller and Cisco vpath Citrix NetScaler for Cisco Nexus 1000v White Paper Deliver the Next Generation Intelligent Datacenter Fabric with the Cisco Nexus 1000V, Citrix NetScaler Application Delivery Controller and Cisco vpath

More information

THE SDN TRANSFORMATION A Framework for Sustainable Success

THE SDN TRANSFORMATION A Framework for Sustainable Success WHITE PAPER THE SDN TRANSFORMATION A Framework for Sustainable Success The promise of Software Defined Networking (SDN) is gaining more and more attention as traffic growth increases the costs and complexity

More information

What is SDN? And Why Should I Care? Jim Metzler Vice President Ashton Metzler & Associates

What is SDN? And Why Should I Care? Jim Metzler Vice President Ashton Metzler & Associates What is SDN? And Why Should I Care? Jim Metzler Vice President Ashton Metzler & Associates 1 Goals of the Presentation 1. Define/describe SDN 2. Identify the drivers and inhibitors of SDN 3. Identify what

More information

Relational Databases in the Cloud

Relational Databases in the Cloud Contact Information: February 2011 zimory scale White Paper Relational Databases in the Cloud Target audience CIO/CTOs/Architects with medium to large IT installations looking to reduce IT costs by creating

More information

Transport SDN - Clearing the Roadblocks to Wide-scale Commercial

Transport SDN - Clearing the Roadblocks to Wide-scale Commercial Transport SDN - Clearing the Roadblocks to Wide-scale Commercial Vishnu Shukla OIF President Verizon, USA OFC Los Angeles, March 25, 2015 Changing Role of Transport Networks A new kind of business customer

More information

Cisco Unified Network Services: Overcome Obstacles to Cloud-Ready Deployments

Cisco Unified Network Services: Overcome Obstacles to Cloud-Ready Deployments Cisco Unified Network Services: Overcome Obstacles to Cloud-Ready Deployments What You Will Learn Deploying network services in virtual data centers is extremely challenging. Traditionally, such Layer

More information

SOFTWARE DEFINED NETWORKING

SOFTWARE DEFINED NETWORKING SOFTWARE DEFINED NETWORKING Bringing Networks to the Cloud Brendan Hayes DIRECTOR, SDN MARKETING AGENDA Market trends and Juniper s SDN strategy Network virtualization evolution Juniper s SDN technology

More information

HP OpenFlow and SDN Technical Overview

HP OpenFlow and SDN Technical Overview HP OpenFlow and SDN Technical Overview Technical Solution Guide Version: 1 September 2013 Table of Contents Introduction... 2 SDN in a Nutshell... 2 Why SDN?... 2 HP s Vision... 5 Operational Planes...

More information

SDN Software Defined Networks

SDN Software Defined Networks There is nothing more important than our customers SDN Software Defined Networks A deployable approach for the Enterprise 2012 Enterasys Networks, Inc. All rights reserved SDN Overview What is SDN? Loosely

More information

ENSEMBLE OSA Bringing the Benefits of the Cloud to the Metro Edge

ENSEMBLE OSA Bringing the Benefits of the Cloud to the Metro Edge TECHNOLOGY BRIEF ENSEMBLE OSA Bringing the Benefits of the Cloud to the Metro Edge Business and individual consumers are enjoying the benefits of cloud technology every day, sometimes without even knowing

More information

Virtualization and SDN Applications

Virtualization and SDN Applications Virtualization and SDN lications 2 Virtualization Sharing physical hardware or software resources by multiple users and/or use cases Examples system shares physical hardware resources Virtual machine shares

More information

Tutorial: OpenFlow in GENI

Tutorial: OpenFlow in GENI Tutorial: OpenFlow in GENI GENI Project Office The current Internet is at an impasse because new architecture cannot be deployed or even adequately evaluated [PST04] [PST04]: Overcoming the Internet Impasse

More information

OpenFlow: Load Balancing in enterprise networks using Floodlight Controller

OpenFlow: Load Balancing in enterprise networks using Floodlight Controller OpenFlow: Load Balancing in enterprise networks using Floodlight Controller Srinivas Govindraj, Arunkumar Jayaraman, Nitin Khanna, Kaushik Ravi Prakash srinivas.govindraj@colorado.edu, arunkumar.jayaraman@colorado.edu,

More information

The Advantages of Cloud Services

The Advantages of Cloud Services Cloud-Based Services: Assure Performance, Availability, and Security What You Will Learn Services available from the cloud offer cost and efficiency benefits to businesses, but until now many customers

More information

SDN, a New Definition of Next-Generation Campus Network

SDN, a New Definition of Next-Generation Campus Network SDN, a New Definition of Next-Generation Campus Network Contents Campus Evolution and Development Trends... 1 Three Changes to Drive the Campus Network Development... 2 Fundamental Changes in User Behaviors...2

More information

Software Defined Networking & Openflow

Software Defined Networking & Openflow Software Defined Networking & Openflow Autonomic Computer Systems, HS 2015 Christopher Scherb, 01.10.2015 Overview What is Software Defined Networks? Brief summary on routing and forwarding Introduction

More information

Network Functions Virtualization (NFV) for Next Generation Networks (NGN)

Network Functions Virtualization (NFV) for Next Generation Networks (NGN) P a g e 1 Network Functions Virtualization (NFV) for Next Generation Networks (NGN) Summary Network Functions Virtualization (NFV) has drawn industry attention. Network Virtualization aims to transform

More information

Cloud Networking Disruption with Software Defined Network Virtualization. Ali Khayam

Cloud Networking Disruption with Software Defined Network Virtualization. Ali Khayam Cloud Networking Disruption with Software Defined Network Virtualization Ali Khayam In the next one hour Let s discuss two disruptive new paradigms in the world of networking: Network Virtualization Software

More information

Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments

Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments Aryan TaheriMonfared Department of Electrical Engineering and Computer Science University of Stavanger

More information

Software-defined networking and Network Function Virtualization-based approach for optimizing a carrier network with integrated datacenters

Software-defined networking and Network Function Virtualization-based approach for optimizing a carrier network with integrated datacenters Software-defined networking and Network Function Virtualization-based approach for optimizing a carrier network with integrated datacenters Present-day carrier network operators are faced with the challenge

More information

Networking in the Age of Cloud Computing

Networking in the Age of Cloud Computing WHITE PAPER Networking in the Age of Cloud Computing 32 % of organizations surveyed by 451 Research now possess a formal cloud computing plan as part of their overall IT and business strategy. On-premises

More information

Software-Defined Networking for the Data Center. Dr. Peer Hasselmeyer NEC Laboratories Europe

Software-Defined Networking for the Data Center. Dr. Peer Hasselmeyer NEC Laboratories Europe Software-Defined Networking for the Data Center Dr. Peer Hasselmeyer NEC Laboratories Europe NW Technology Can t Cope with Current Needs We still use old technology... but we just pimp it To make it suitable

More information

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com W H I T E P A P E R A p p l i c a t i o n D e l i v e r y f o r C l o u d S e r v i c e s : C u s t o m i z i n g S e r v i c e C r e a t i o n i n V i r t u a l E n v i r o n m e n t s Sponsored by: Brocade

More information

NEC ProgrammableFlow:

NEC ProgrammableFlow: NEC ProgrammableFlow: Redefining Cloud Network Virtualization with OpenFlow NEC Corporation of America www.necam.com Table of Contents The Place of Network in Cloud Computing...3 The Challenges in Cloud

More information

IRATI - Investigating RINA as an Alternative to TCP/IP

IRATI - Investigating RINA as an Alternative to TCP/IP Títol de la presentació de powerpoint IRATI - Investigating RINA as an Alternative to TCP/IP FIRE Engineering Workshop, Ghent, Belgium November 6th, 2012 Sergi Figuerola Project coordinator Director @

More information