Analysis of Service Broker Policies in Cloud Analyst Framework
|
|
|
- Oliver Benson
- 10 years ago
- Views:
Transcription
1 Journal of The International Association of Advanced Technology and Science Analysis of Service Broker Policies in Cloud Analyst Framework Ashish Sankla G.B Pant Govt. Engineering College, Computer Science Department, New Delhi, India Abstract- The aim of the paper is to analyze different service broker policies that can be used with cloud and are been used in cloud analyst. With the advancement in the cloud computing technologies cloud is becoming more popular these days. With the increase in the number of clients and servers there is also arising needs of service broker. Broker is been used to assign a server to the client on clients request. Here I will first discuss about cloud computing, and then cloud analyst and the different broker policies embedded in it under round robin load balancing policy. Then with the help of simulation results will propose the best broker policy on the basis of performance. Index Terms- Cloud Computing, Broker, Service Broker, Cloud Analyst, Broker Policies. I. INTRODUCTION A rapid advancement is been viewed in the area of Cloud computing. This technology is becoming quite popular among the industry as well as academics [4]. It is emerging as one of the most challenging and promising technology. Cloud technology aims at offering elastic, distributed and virtualized resources as utility to end users and also supports realization of computer as a utility [1]. Also with the advancement of cloud there are new possibilities been generated for the developers for internet based applications development and emerging. A. Types of Cloud There are five types of Cloud on the basis of deployment [3]: B. Define of Cloud Public Cloud: IT services provided by cloud can be publically used by anyone using internet. Private Cloud: IT services are only provided to a group of authorized users like an enterprise. The cloud service provider can be an internal IT organization or a third party. Hybrid Clouds: Environment is created through the usage of private and public cloud offerings by an organization. Internal Cloud: Environment is a subset of a private cloud model. Here the cloud environment is the service provided by the same organization to its sub part. External Clouds: Environment hosted by other IT organization and offered as a service to another outside IT organization. It is implemented by a third party and environment can be public or private. Cloud Computing refers as applications delivery as service over the Internet and system software and hardware in the datacenters that provides those services [6].
2 C. Technological Development in Cloud The Cloud is based on two separate technological developments [1]: Cloud Service Providers: These are service providers for cloud willing to provide their services i.e. large scale computing infrastructure at cost based on usage pattern. It eliminates the initial high cost investment on part of developer to create an environment for application development. Software System Providers: They develop applications as e-commerce and social networking sites, which are gaining popularity these days on internet. These types of applications are of great benefit to cloud infrastructure service quality to improve service quality and to minimize costs. For developers who wants to develop such applications require acquisition of servers those are capable of handling the peak demands, installation of applications, whole software infrastructure and configuration of the application itself. And can also choose different cloud environment as per user requirements. The maximum servers remain under utilized as there are fixed peak traffic timings. This problem is overcome by pay-per-usage method used by cloud service providers. Cloud Broker handles the traffic routing between data centers and user bases. Cloud service broker creates a secure cloud management platform. This platform is to ease and simplify the delivery of complex cloud services to users of cloud services. It enables users to realize and experience the full potential that a cloud service provider offers by creating a secure, governed and trusted cloud management platform between the user and the service provider. In this paper a tool named as CloudAnalyst is used. It supports simulation and visual modeling of large scale application deployed on cloud. CloudAnalyst is a tool built on CloudSim framework. It allows user to add description of application, geographic location of user and data centers, number of users and data centers, resource allocation for each data center, peak usage hours as per geographical location, broker policy, and load balancing policy. Using this information CloudAnalyst generates result about request response time, processing time, and cost as per data usage and other metrics. By using CloudAnalyst I determine the best broker policy with respect to performance. II. CLOUD ANALYST Deployment of large scale applications on Cloud is easier and cheaper. As cloud applications can be deployed in several geographical locations and it also affects the user located far away from the datacenter. Users are accessing internet applications from around the world and the popularity of the application also varies with geographical location and so will vary the experience of user of using that application. The impact of simultaneous quantifying number of users, geographical location of relevant component and network in application is hard to achieve in real testbeds, as the presence of such elements cannot be controlled nor predicted by developers. CloudAnalyst is a tool that gives solution to the above problems by allowing user to configure the simulator by its user friendly graphical user interface and configure the duration of simulation, number of users as per their geographical location, data centers and their configuration, and choose from the three different service broker polices. Fig 1: CloudAnalyst Architecture [1].
3 to that data center which estimates to give the least response time. Reconfigure Dynamically: It is an experimental service broker policy for peak load sharing. The load is been shared by allocating virtual machines to the data centers according to the best processing time as compared with the current processing time. IV. CONFIGURING SIMULATION Fig 2: CloudAnalyst Simulation Screen. III. SERVICE BROKER A data-intensive Cloud environment can be compared to the real world economic system wherein there are consumers and producers of data. Producers are those who generate the data and control its distribution by copying replica around the globe at different locations. The criteria such as storage and computational requirements, min. bandwidth and access restriction, security and data locality issues should also be considered [5]. A. Broker A broker performs discovery of resource based on characteristics defined by user. It also identifies the list of data sources and replicas available and chooses the optimal one. The broker also ensures minimum credit required by the user to access the resources. It collects the results and passes them to the user. B. Broker Policies In CloudAnalyst there are three service broker policies available each implementing different routing policy Closest Data Center: It is based on network latency; proximity is the fastest path to the data center from a user base. Broker will route user traffic to the closest data center. Optimise Response Time: It actively monitors the performance of all data centers and directs traffic Here six user bases are created representing the six different regions. Each user base is contained in single time zone and assumption is been taken about the peak hours and online users during the peak hours. For this assumption randomly 2 consecutive hours in the evening are taken as peak hours and the user base is been reduced to 1 % and then 10 % of users are assumed to be online during peak hours and 1% of the users are been considered online during off peak hours. Eg:- According to [7] the total number of users A. Simulator Configuration Table 1: Region wise number of users of FaceBook Region Region id Users in millions CloudAnalyst North America South America Europe Asia Africa 4 3 Oceanic 5 12 Rest configurations as per [1]. The simulation is been configured and executed for two broker policies i.e. Closest Data Center Optimise Response time and they both are considered under Round Robin load balancing policy. The scenarios on which the result is based are described in the following table and all the further
4 referencing and comparison is been done under the reference number b) Optimise Response Time Table 2: Scenarios and their Description Scenario Scenario Description 1 1 Data Center(DC) 50 Virtual machines(vms) 2 2 DCs with 25 VMs each 3 2 DCs with 50 VMs each 4 3 DCs with 50 VMs each 5 3 DCs with 75, 50 and 25 VMs Table 6: Overall Response Time B. Simulation Results The result is further sub divided in two parts on the basis of service broker policy been used. a) Closest Data Center Table 3: Overall Response Time Table 4: Data Center Processing/Request Servicing Time Table 7: Data Center Processing/Request Servicing Time Table 8: Total Expenses Table 5: Total Expenses Scenario VMs $ Date Total $ Transfer $ V. OBSERVATIONS A. Observations on Basis of Simulation Results
5 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scensrio 5 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Vol. 16 APRIL 2015 ISSN The overall response time for table 6 is less as compared to table 3 for all the scenarios except scenario 1 max response time. There is a gradual decrease in the overall response time of table 6 with the increase in the number of data centers and virtual machines. The request service time of table 7 is comparatively less than that of table 4. All the scenarios have shows the monotonic downfall in request time in table 7 with the increase in the number of data centers and virtual machine. The virtual machine and data transfer cost is same for both the cases. V. CONCLUSION It is clearly visible by the above data the Optimize response time broker policy approach is the best in the cloud analyst frame work and that can be further supported by the charts below to show the comparison between the average response time using Optimise response time broker and Closest data center broker policy Chart 1: Comparing Avg. Response Time. Avg. Response time for optimise response time Avg.Responce time for closest Data center In chart 1 the difference is visible clearly in the average response time. The Average time required for servicing a request or the data center processing time is less for the Optimise response time broker policy as compared to other broker policy Chart 2: Comparing Avg. Request Servicing Time. So, it is clear on the basis of comparison the Optimise Response Time broker policy is more efficient on the basis of its performance. REFERENCES Avg. Request servicing time for optimise response time Avg. Request servicing time for closest data center [1] B. Wickremasinghe, Rodrigo N. Calheiros, and Rajkumar Buyya CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications [2] M Vall O. M-Salem Scaling Server Selection using a Multi-Broker Architecture,IEEE 2003 (ICDCSW 03). [3] S K. Nair, S Porwal, Theo Dimitrakos, Ana Juan Ferrer, Johan Tordsson, Tabassum Sharif, Craig Sheridan,Muttukrishnan Rajarajan and Afnan Ullah Khan Towards Secure Cloud Bursting, Brokerage and Aggregation 2010 Eighth IEEE European Confrence on web services. [4] Stella Gatziu Grivas, Tripathi Uttam Kumar, Holger Wache Coud Broker:Bringing Intelligence into the Cloud An Event-Based Approach 2010 IEEE 3 rd International Conference on Cloud Computing [5] Srikumar Venugopal, Rajkumar Buyya and Lyle Winton A Grid Service Broker for Schedulling Distributed Data-Oriented Applications on Global Grids [6] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoika, M. Zaharia Above the Clouds: a Berkeley view of Cloud Computing [7] Internet World Stats Facebook
6 Authors Profiles Ashish Sankla, New Delhi, 31 july M-tech in Computer Science Engineering, from University School of Information and Technology, Guru Gobind Singh Indraprastha University, Delhi. B-Tech in Computer Science Engineering from Guru Premsukh Memorial College of Engineering, Guru Gobind Singh Indraprastha University, Delhi. He is working as Assistant Professor, CSE Dept., at G. B Pant Govt Engineering College, from January He qualified UGC-NET-2012 and scholar of his M-Tech batch..
A Proposed Service Broker Strategy in CloudAnalyst for Cost-Effective Data Center Selection
A Proposed Service Broker Strategy in CloudAnalyst for Cost-Effective Selection Dhaval Limbani*, Bhavesh Oza** *(Department of Information Technology, S. S. Engineering College, Bhavnagar) ** (Department
Efficient Service Broker Policy For Large-Scale Cloud Environments
www.ijcsi.org 85 Efficient Service Broker Policy For Large-Scale Cloud Environments Mohammed Radi Computer Science Department, Faculty of Applied Science Alaqsa University, Gaza Palestine Abstract Algorithms,
Performance Evaluation of Round Robin Algorithm in Cloud Environment
Performance Evaluation of Round Robin Algorithm in Cloud Environment Asha M L 1 Neethu Myshri R 2 Sowmyashree C.S 3 1,3 AP, Dept. of CSE, SVCE, Bangalore. 2 M.E(dept. of CSE) Student, UVCE, Bangalore.
High performance computing network for cloud environment using simulators
High performance computing network for cloud environment using simulators Ajith Singh. N 1 and M. Hemalatha 2 1 Ph.D, Research Scholar (CS), Karpagam University, Coimbatore, India 2 Prof & Head, Department
CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications
CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe 1, Rodrigo N. Calheiros 2, and Rajkumar Buyya 1 1 The Cloud Computing
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 4, July-Aug 2014
RESEARCH ARTICLE An Efficient Service Broker Policy for Cloud Computing Environment Kunal Kishor 1, Vivek Thapar 2 Research Scholar 1, Assistant Professor 2 Department of Computer Science and Engineering,
Performance Analysis of VM Scheduling Algorithm of CloudSim in Cloud Computing
IJECT Vo l. 6, Is s u e 1, Sp l-1 Ja n - Ma r c h 2015 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Performance Analysis Scheduling Algorithm CloudSim in Cloud Computing 1 Md. Ashifuddin Mondal,
Round Robin with Server Affinity: A VM Load Balancing Algorithm for Cloud Based Infrastructure
J Inf Process Syst, Vol.9, No.3, September 2013 pissn 1976-913X eissn 2092-805X http://dx.doi.org/10.3745/jips.2013.9.3.379 Round Robin with Server Affinity: A VM Load Balancing Algorithm for Cloud Based
An Efficient Cloud Service Broker Algorithm
An Efficient Cloud Service Broker Algorithm 1 Gamal I. Selim, 2 Rowayda A. Sadek, 3 Hend Taha 1 College of Engineering and Technology, AAST, [email protected] 2 Faculty of Computers and Information, Helwan
A Proposed Service Broker Policy for Data Center Selection in Cloud Environment with Implementation
A Service Broker Policy for Data Center Selection in Cloud Environment with Implementation Dhaval Limbani*, Bhavesh Oza** *(Department of Information Technology, S. S. Engineering College, Bhavnagar) **
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 4, July-Aug 2014
RESEARCH ARTICLE An Efficient Priority Based Load Balancing Algorithm for Cloud Environment Harmandeep Singh Brar 1, Vivek Thapar 2 Research Scholar 1, Assistant Professor 2, Department of Computer Science
Keywords: Cloudsim, MIPS, Gridlet, Virtual machine, Data center, Simulation, SaaS, PaaS, IaaS, VM. Introduction
Vol. 3 Issue 1, January-2014, pp: (1-5), Impact Factor: 1.252, Available online at: www.erpublications.com Performance evaluation of cloud application with constant data center configuration and variable
Full Length Research Article
Available online at http://www.journalijdr.com International Journal of DEVELOPMENT RESEARCH ISSN: 2230-9926 International Journal of Development Research Vol. 4, Issue, 5, pp. 1035-1040, May, 2014 Full
CloudAnalyst: A CloudSim-based Tool for Modelling and Analysis of Large Scale Cloud Computing Environments
433-659 DISTRIBUTED COMPUTING PROJECT, CSSE DEPT., UNIVERSITY OF MELBOURNE CloudAnalyst: A CloudSim-based Tool for Modelling and Analysis of Large Scale Cloud Computing Environments MEDC Project Report
Cloud Analyst: An Insight of Service Broker Policy
Cloud Analyst: An Insight of Service Broker Policy Hetal V. Patel 1, Ritesh Patel 2 Student, U & P U. Patel Department of Computer Engineering, CSPIT, CHARUSAT, Changa, Gujarat, India Associate Professor,
An Implementation of Load Balancing Policy for Virtual Machines Associated With a Data Center
An Implementation of Load Balancing Policy for Virtual Machines Associated With a Data Center B.SANTHOSH KUMAR Assistant Professor, Department Of Computer Science, G.Pulla Reddy Engineering College. Kurnool-518007,
LOAD BALANCING OF USER PROCESSES AMONG VIRTUAL MACHINES IN CLOUD COMPUTING ENVIRONMENT
LOAD BALANCING OF USER PROCESSES AMONG VIRTUAL MACHINES IN CLOUD COMPUTING ENVIRONMENT 1 Neha Singla Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India Email: 1 [email protected]
WEIGHTED ROUND ROBIN POLICY FOR SERVICE BROKERS IN A CLOUD ENVIRONMENT
WEIGHTED ROUND ROBIN POLICY FOR SERVICE BROKERS IN A CLOUD ENVIRONMENT MOHAMMED RADI Computer Science Department,Faculty of Applied Science Alaqsa University, Gaza [email protected] ABSTRACT Cloud
Service Broker Algorithm for Cloud-Analyst
Service Broker Algorithm for Cloud-Analyst Rakesh Kumar Mishra, Sreenu Naik Bhukya Department of Computer Science & Engineering National Institute of Technology Calicut, India Abstract Cloud computing
Dr. J. W. Bakal Principal S. S. JONDHALE College of Engg., Dombivli, India
Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Factor based Resource
SERVICE BROKER ROUTING POLICES IN CLOUD ENVIRONMENT: A SURVEY
SERVICE BROKER ROUTING POLICES IN CLOUD ENVIRONMENT: A SURVEY Rekha P M 1 and M Dakshayini 2 1 Department of Information Science & Engineering, VTU, JSS academy of technical Education, Bangalore, Karnataka
A Comparative Study on Load Balancing Algorithms with Different Service Broker Policies in Cloud Computing
A Comparative Study on Load Balancing Algorithms with Different Service Broker Policies in Cloud Computing Sonia Lamba, Dharmendra Kumar United College of Engineering and Research,Allahabad, U.P, India.
EFFICIENT VM LOAD BALANCING ALGORITHM FOR A CLOUD COMPUTING ENVIRONMENT
EFFICIENT VM LOAD BALANCING ALGORITHM FOR A CLOUD COMPUTING ENVIRONMENT Jasmin James, 38 Sector-A, Ambedkar Colony, Govindpura, Bhopal M.P Email:[email protected] Dr. Bhupendra Verma, Professor
Automated Scaling of Cluster Using Deployment Diagrams in Platform-As-A- Service
Automated Scaling of Cluster Using Deployment Diagrams in Platform-As-A- Service Sudhir S. Kanade*, Pushkaraj B. Thorat HOD, Department of ENTC, COE, Osmanabad, India ME, Department of Computer, COE, Osmanabad,
Utilizing Round Robin Concept for Load Balancing Algorithm at Virtual Machine Level in Cloud Environment
Utilizing Round Robin Concept for Load Balancing Algorithm at Virtual Machine Level in Cloud Environment Stuti Dave B H Gardi College of Engineering & Technology Rajkot Gujarat - India Prashant Maheta
A NOVEL LOAD BALANCING STRATEGY FOR EFFECTIVE UTILIZATION OF VIRTUAL MACHINES IN CLOUD
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 6, June 2015, pg.862
A Comparative Study of Load Balancing Algorithms in Cloud Computing
A Comparative Study of Load Balancing Algorithms in Cloud Computing Reena Panwar M.Tech CSE Scholar Department of CSE, Galgotias College of Engineering and Technology, Greater Noida, India Bhawna Mallick,
Response Time Minimization of Different Load Balancing Algorithms in Cloud Computing Environment
Response Time Minimization of Different Load Balancing Algorithms in Cloud Computing Environment ABSTRACT Soumya Ranjan Jena Asst. Professor M.I.E.T Dept of CSE Bhubaneswar In the vast complex world the
Profit Based Data Center Service Broker Policy for Cloud Resource Provisioning
I J E E E C International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626 and Computer Engineering 5(1): 54-60(2016) Profit Based Data Center Service Broker Policy for Cloud Resource Provisioning
Modeling Local Broker Policy Based on Workload Profile in Network Cloud
Modeling Local Broker Policy Based on Workload Profile in Network Cloud Amandeep Sandhu 1, Maninder Kaur 2 1 Swami Vivekanand Institute of Engineering and Technology, Banur, Punjab, India 2 Swami Vivekanand
Reallocation and Allocation of Virtual Machines in Cloud Computing Manan D. Shah a, *, Harshad B. Prajapati b
Proceedings of International Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA-14) Reallocation and Allocation of Virtual Machines in Cloud Computing Manan
004.738.5:378.091.214.18 ADJUSTING THE MASSIVELY OPEN ONLINE COURSES IN CLOUD COMPUTING ENVIRONMENT 9
004.738.5:378.091.214.18 ADJUSTING THE MASSIVELY OPEN ONLINE COURSES IN CLOUD COMPUTING ENVIRONMENT 9 Aleksandar Karadimce, MSc University of information science and technology St. Paul the Apostle Ohrid,
Comparison of Dynamic Load Balancing Policies in Data Centers
Comparison of Dynamic Load Balancing Policies in Data Centers Sunil Kumar Department of Computer Science, Faculty of Science, Banaras Hindu University, Varanasi- 221005, Uttar Pradesh, India. Manish Kumar
HOST SCHEDULING ALGORITHM USING GENETIC ALGORITHM IN CLOUD COMPUTING ENVIRONMENT
International Journal of Research in Engineering & Technology (IJRET) Vol. 1, Issue 1, June 2013, 7-12 Impact Journals HOST SCHEDULING ALGORITHM USING GENETIC ALGORITHM IN CLOUD COMPUTING ENVIRONMENT TARUN
Throtelled: An Efficient Load Balancing Policy across Virtual Machines within a Single Data Center
Throtelled: An Efficient Load across Virtual Machines within a Single ata Center Mayanka Gaur, Manmohan Sharma epartment of Computer Science and Engineering, Mody University of Science and Technology,
Study and Comparison of CloudSim Simulators in the Cloud Computing
Study and Comparison of CloudSim Simulators in the Cloud Computing Dr. Rahul Malhotra* & Prince Jain** *Director-Principal, Adesh Institute of Technology, Ghauran, Mohali, Punjab, INDIA. E-Mail: [email protected]
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 575 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 575 Simulation-Based Approaches For Evaluating Load Balancing In Cloud Computing With Most Significant Broker Policy
CSE LOVELY PROFESSIONAL UNIVERSITY
Comparison of load balancing algorithms in a Cloud Jaspreet kaur M.TECH CSE LOVELY PROFESSIONAL UNIVERSITY Jalandhar, punjab ABSTRACT This paper presents an approach for scheduling algorithms that can
Multilevel Communication Aware Approach for Load Balancing
Multilevel Communication Aware Approach for Load Balancing 1 Dipti Patel, 2 Ashil Patel Department of Information Technology, L.D. College of Engineering, Gujarat Technological University, Ahmedabad 1
ISBN: 978-0-9891305-3-0 2013 SDIWC 1
Implementation of Novel Accounting, Pricing and Charging Models in a Cloud-based Service Provisioning Environment Peter Bigala and Obeten O. Ekabua Department of Computer Science North-West University,
Nutan. N PG student. Girish. L Assistant professor Dept of CSE, CIT GubbiTumkur
Cloud Data Partitioning For Distributed Load Balancing With Map Reduce Nutan. N PG student Dept of CSE,CIT GubbiTumkur Girish. L Assistant professor Dept of CSE, CIT GubbiTumkur Abstract-Cloud computing
IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT
IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT Muhammad Muhammad Bala 1, Miss Preety Kaushik 2, Mr Vivec Demri 3 1, 2, 3 Department of Engineering and Computer Science, Sharda
Effective Virtual Machine Scheduling in Cloud Computing
Effective Virtual Machine Scheduling in Cloud Computing Subhash. B. Malewar 1 and Prof-Deepak Kapgate 2 1,2 Department of C.S.E., GHRAET, Nagpur University, Nagpur, India [email protected] and [email protected]
Load Balancing using DWARR Algorithm in Cloud Computing
IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Load Balancing using DWARR Algorithm in Cloud Computing Niraj Patel PG Student
CDBMS Physical Layer issue: Load Balancing
CDBMS Physical Layer issue: Load Balancing Shweta Mongia CSE, School of Engineering G D Goenka University, Sohna [email protected] Shipra Kataria CSE, School of Engineering G D Goenka University,
International Journal of Engineering Research & Management Technology
International Journal of Engineering Research & Management Technology March- 2015 Volume 2, Issue-2 Survey paper on cloud computing with load balancing policy Anant Gaur, Kush Garg Department of CSE SRM
AN EFFICIENT STRATEGY OF THE DATA INTEGRATION BASED CLOUD
INTERNATIONAL JOURNAL OF REVIEWS ON RECENT ELECTRONICS AND COMPUTER SCIENCE AN EFFICIENT STRATEGY OF THE DATA INTEGRATION BASED CLOUD Koncha Anantha Laxmi Prasad 1, M.Yaseen Pasha 2, V.Hari Prasad 3 1
CloudAnalyzer: A cloud based deployment framework for Service broker and VM load balancing policies
CloudAnalyzer: A cloud based deployment framework for Service broker and VM load balancing policies Komal Mahajan 1, Deepak Dahiya 1 1 Dept. of CSE & ICT, Jaypee University Of Information Technology, Waknaghat,
Dr. Ravi Rastogi Associate Professor Sharda University, Greater Noida, India
Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Round Robin Approach
Extended Round Robin Load Balancing in Cloud Computing
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue 8 August, 2014 Page No. 7926-7931 Extended Round Robin Load Balancing in Cloud Computing Priyanka Gautam
Estimating Trust Value for Cloud Service Providers using Fuzzy Logic
Estimating Trust Value for Cloud Service Providers using Fuzzy Logic Supriya M, Venkataramana L.J, K Sangeeta Department of Computer Science and Engineering, Amrita School of Engineering Kasavanahalli,
Table of Contents. Abstract... Error! Bookmark not defined. Chapter 1... Error! Bookmark not defined. 1. Introduction... Error! Bookmark not defined.
Table of Contents Abstract... Error! Bookmark not defined. Chapter 1... Error! Bookmark not defined. 1. Introduction... Error! Bookmark not defined. 1.1 Cloud Computing Development... Error! Bookmark not
Simulation-based Evaluation of an Intercloud Service Broker
Simulation-based Evaluation of an Intercloud Service Broker Foued Jrad, Jie Tao and Achim Streit Steinbuch Centre for Computing, SCC Karlsruhe Institute of Technology, KIT Karlsruhe, Germany {foued.jrad,
The Hidden Extras. The Pricing Scheme of Cloud Computing. Stephane Rufer
The Hidden Extras The Pricing Scheme of Cloud Computing Stephane Rufer Cloud Computing Hype Cycle Definition Types Architecture Deployment Pricing/Charging in IT Economics of Cloud Computing Pricing Schemes
Cloud Computing Simulation Using CloudSim
Cloud Computing Simulation Using CloudSim Ranjan Kumar #1, G.Sahoo *2 # Assistant Professor, Computer Science & Engineering, Ranchi University, India Professor & Head, Information Technology, Birla Institute
A Comparison of Four Popular Heuristics for Load Balancing of Virtual Machines in Cloud Computing
A Comparison of Four Popular Heuristics for Load Balancing of Virtual Machines in Cloud Computing Subasish Mohapatra Department Of CSE NIT, ROURKELA K.Smruti Rekha Department Of CSE ITER, SOA UNIVERSITY
Storage CloudSim: A Simulation Environment for Cloud Object Storage Infrastructures
Storage CloudSim: A Simulation Environment for Cloud Object Storage Infrastructures http://github.com/toebbel/storagecloudsim [email protected], {foud.jrad, achim.streit}@kit.edu STEINBUCH CENTRE
Efficient and Enhanced Algorithm in Cloud Computing
International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-1, March 2013 Efficient and Enhanced Algorithm in Cloud Computing Tejinder Sharma, Vijay Kumar Banga Abstract
Comparative Study of Load Balancing Algorithms in Cloud Environment
Comparative Study of Load Algorithms in Cloud Environment Harvinder singh Dept. of CSE BCET Gurdaspur, India. e-mail:[email protected] Rakesh Chandra Gangwar Associate Professor,Dept. of CSE BCET
MODIFIED BITTORRENT PROTOCOL AND ITS APPLICATION IN CLOUD COMPUTING ENVIRONMENT
MODIFIED BITTORRENT PROTOCOL AND ITS APPLICATION IN CLOUD COMPUTING ENVIRONMENT Soumya V L 1 and Anirban Basu 2 1 Dept of CSE, East Point College of Engineering & Technology, Bangalore, Karnataka, India
Payment minimization and Error-tolerant Resource Allocation for Cloud System Using equally spread current execution load
Payment minimization and Error-tolerant Resource Allocation for Cloud System Using equally spread current execution load Pooja.B. Jewargi Prof. Jyoti.Patil Department of computer science and engineering,
Dynamic Round Robin for Load Balancing in a Cloud Computing
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 6, June 2013, pg.274
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK IMPLEMENTATION OF AN APPROACH TO ENHANCE QOS AND QOE BY MIGRATING SERVICES IN CLOUD
Dynamically optimized cost based task scheduling in Cloud Computing
Dynamically optimized cost based task scheduling in Cloud Computing Yogita Chawla 1, Mansi Bhonsle 2 1,2 Pune university, G.H Raisoni College of Engg & Mgmt, Gate No.: 1200 Wagholi, Pune 412207 Abstract:
A Hybrid Load Balancing Policy underlying Cloud Computing Environment
A Hybrid Load Balancing Policy underlying Cloud Computing Environment S.C. WANG, S.C. TSENG, S.S. WANG*, K.Q. YAN* Chaoyang University of Technology 168, Jifeng E. Rd., Wufeng District, Taichung 41349
Geoprocessing in Hybrid Clouds
Geoprocessing in Hybrid Clouds Theodor Foerster, Bastian Baranski, Bastian Schäffer & Kristof Lange Institute for Geoinformatics, University of Münster, Germany {theodor.foerster; bastian.baranski;schaeffer;
Exploring Resource Provisioning Cost Models in Cloud Computing
Exploring Resource Provisioning Cost Models in Cloud Computing P.Aradhya #1, K.Shivaranjani *2 #1 M.Tech, CSE, SR Engineering College, Warangal, Andhra Pradesh, India # Assistant Professor, Department
Cost Effective Selection of Data Center in Cloud Environment
Cost Effective Selection of Data Center in Cloud Environment Manoranjan Dash 1, Amitav Mahapatra 2 & Narayan Ranjan Chakraborty 3 1 Institute of Business & Computer Studies, Siksha O Anusandhan University,
A Review of Load Balancing Algorithms for Cloud Computing
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume - 3 Issue -9 September, 2014 Page No. 8297-8302 A Review of Load Balancing Algorithms for Cloud Computing Dr.G.N.K.Sureshbabu
INVESTIGATION OF RENDERING AND STREAMING VIDEO CONTENT OVER CLOUD USING VIDEO EMULATOR FOR ENHANCED USER EXPERIENCE
INVESTIGATION OF RENDERING AND STREAMING VIDEO CONTENT OVER CLOUD USING VIDEO EMULATOR FOR ENHANCED USER EXPERIENCE Ankur Saraf * Computer Science Engineering, MIST College, Indore, MP, India [email protected]
THE CLOUD AND ITS EFFECTS ON WEB DEVELOPMENT
TREX WORKSHOP 2013 THE CLOUD AND ITS EFFECTS ON WEB DEVELOPMENT Jukka Tupamäki, Relevantum Oy Software Specialist, MSc in Software Engineering (TUT) [email protected] / @tukkajukka 30.10.2013 1 e arrival
PRIVACY PRESERVATION ALGORITHM USING EFFECTIVE DATA LOOKUP ORGANIZATION FOR STORAGE CLOUDS
PRIVACY PRESERVATION ALGORITHM USING EFFECTIVE DATA LOOKUP ORGANIZATION FOR STORAGE CLOUDS Amar More 1 and Sarang Joshi 2 1 Department of Computer Engineering, Pune Institute of Computer Technology, Maharashtra,
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS Survey of Optimization of Scheduling in Cloud Computing Environment Er.Mandeep kaur 1, Er.Rajinder kaur 2, Er.Sughandha Sharma 3 Research Scholar 1 & 2 Department of Computer
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
Email: [email protected]. 2 Prof, Dept of CSE, Institute of Aeronautical Engineering, Hyderabad, Andhrapradesh, India,
www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.06, May-2014, Pages:0963-0968 Improving Efficiency of Public Cloud Using Load Balancing Model SHRAVAN KUMAR 1, DR. N. CHANDRA SEKHAR REDDY
Dynamic Resource Pricing on Federated Clouds
Dynamic Resource Pricing on Federated Clouds Marian Mihailescu and Yong Meng Teo Department of Computer Science National University of Singapore Computing 1, 13 Computing Drive, Singapore 117417 Email:
Secured Storage of Outsourced Data in Cloud Computing
Secured Storage of Outsourced Data in Cloud Computing Chiranjeevi Kasukurthy 1, Ch. Ramesh Kumar 2 1 M.Tech(CSE), Nalanda Institute of Engineering & Technology,Siddharth Nagar, Sattenapalli, Guntur Affiliated
Distributed and Dynamic Load Balancing in Cloud Data Center
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.233
CloudSim: A Novel Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services
CloudSim: A Novel Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services Rodrigo N. Calheiros 1,2, Rajiv Ranjan 1, César A. F. De Rose 2, and Rajkumar Buyya 1 1 Grid Computing
Agent Based Framework for Scalability in Cloud Computing
Agent Based Framework for Scalability in Computing Aarti Singh 1, Manisha Malhotra 2 1 Associate Prof., MMICT & BM, MMU, Mullana 2 Lecturer, MMICT & BM, MMU, Mullana 1 Introduction: Abstract: computing
Webpage: www.ijaret.org Volume 3, Issue XI, Nov. 2015 ISSN 2320-6802
An Effective VM scheduling using Hybrid Throttled algorithm for handling resource starvation in Heterogeneous Cloud Environment Er. Navdeep Kaur 1 Er. Pooja Nagpal 2 Dr.Vinay Guatum 3 1 M.Tech Student,
Comparison of PBRR Scheduling Algorithm with Round Robin and Heuristic Priority Scheduling Algorithm in Virtual Cloud Environment
www.ijcsi.org 99 Comparison of PBRR Scheduling Algorithm with Round Robin and Heuristic Priority Scheduling Algorithm in Cloud Environment Er. Navreet Singh 1 1 Asst. Professor, Computer Science Department
Beyond the Internet? THIN APPS STORE FOR SMART PHONES BASED ON PRIVATE CLOUD INFRASTRUCTURE. Innovations for future networks and services
Beyond the Internet? Innovations for future networks and services THIN APPS STORE FOR SMART PHONES BASED ON PRIVATE CLOUD INFRASTRUCTURE Authors Muzahid Hussain, Abhishek Tayal Ashish Tanwer, Parminder
Comparative Study of Load Balancing Algorithms in Cloud Environment using Cloud Analyst
Comparative Study of Load Balancing Algorithms in Cloud Environment using Cloud Analyst Veerawali Behal Mtech(SS) Student Department of Computer Science & Engineering Guru Nanak Dev University, Amritsar
How To Understand Cloud Computing
International Journal of Advanced Computer and Mathematical Sciences ISSN 2230-9624. Vol4, Issue3, 2013, pp234-238 http://bipublication.com CURRENT SCENARIO IN ARCHITECT AND APPLICATIONS OF CLOUD Doddini
Load Balancing Scheduling with Shortest Load First
, pp. 171-178 http://dx.doi.org/10.14257/ijgdc.2015.8.4.17 Load Balancing Scheduling with Shortest Load First Ranjan Kumar Mondal 1, Enakshmi Nandi 2 and Debabrata Sarddar 3 1 Department of Computer Science
Comparative Analysis of Load Balancing Algorithms in Cloud Computing
Comparative Analysis of Load Balancing Algorithms in Cloud Computing Ms.NITIKA Computer Science & Engineering, LPU, Phagwara Punjab, India Abstract- Issues with the performance of business applications
On the Performance-cost Tradeoff for Workflow Scheduling in Hybrid Clouds
On the Performance-cost Tradeoff for Workflow Scheduling in Hybrid Clouds Thiago A. L. Genez, Luiz F. Bittencourt, Edmundo R. M. Madeira Institute of Computing University of Campinas UNICAMP Av. Albert
An Efficient Checkpointing Scheme Using Price History of Spot Instances in Cloud Computing Environment
An Efficient Checkpointing Scheme Using Price History of Spot Instances in Cloud Computing Environment Daeyong Jung 1, SungHo Chin 1, KwangSik Chung 2, HeonChang Yu 1, JoonMin Gil 3 * 1 Dept. of Computer
A Survey on Cloud Computing
A Survey on Cloud Computing Poulami dalapati* Department of Computer Science Birla Institute of Technology, Mesra Ranchi, India [email protected] G. Sahoo Department of Information Technology Birla
Performance Gathering and Implementing Portability on Cloud Storage Data
International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 17 (2014), pp. 1815-1823 International Research Publications House http://www. irphouse.com Performance Gathering
Efficient and Enhanced Load Balancing Algorithms in Cloud Computing
, pp.9-14 http://dx.doi.org/10.14257/ijgdc.2015.8.2.02 Efficient and Enhanced Load Balancing Algorithms in Cloud Computing Prabhjot Kaur and Dr. Pankaj Deep Kaur M. Tech, CSE P.H.D [email protected],
