A New 128-bit Key Stream Cipher LEX
|
|
|
- Valerie Day
- 10 years ago
- Views:
Transcription
1 A New 128-it Key Stream Cipher LEX Alex Biryukov Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC, Kasteelpark Arenerg 10, B 3001 Heverlee, Belgium Astract. A proposal for a simple AES-ased stream cipher which is at least 2.5 times faster than AES oth in software and in hardware. 1 Introduction In this paper we suggest a simple notion of a leak extraction from a lock cipher. The idea is to extract parts of the internal state at certain rounds and give them as the output key stream (possily after passing an additional filter function). This idea applies to any lock cipher ut a careful study y cryptanalyst is required in each particular case in order to decide which parts of the internal state may e given as output and at what frequency. This mainly depends on the strength of the cipher s round function and on the strength of the cipher s key-schedule. For example, ciphers with good diffusion might allow to output larger parts of the internal state at each round than ciphers with weak diffusion. 2 Description of LEX In this section we descrie a 128-it key stream cipher LEX (which stands for Leak EXtraction, and is pronounced leks ). The design is simple and is using AES in a natural way: at each AES round output certain four ytes from the intermediate variale. The AES with all three different key lengths (128, 192, 256) can e used. The difference with AES is that the attacker never sees the full 128-it ciphertext ut only portions of the intermediate state. Similar principle can e applied to any other lock-cipher. In Fig. 1 we show how the cipher is initialized and chained. First a standard AES key-schedule for some secret 128-it key K is performed. Then a given 128-it IV is encrypted y a single AES invocation: S = AES K (IV ). The 128- it result S together with the secret key K constitute a 256-it secret state of the stream cipher. 1 S is changed y a round function of AES every round and K is kept unchanged (or in a more secure variant is changing every 500 AES encryptions). The most crucial part of this design is the exact locations of the four ytes of the internal state that are given as output as well as the frequency of outputs 1 In fact the K part is expanded y the key-schedule into ten 128-it sukeys.
2 128 it 128 it 128 it 128 it K K K K IV 128 it AES AES AES AES 320 it 320 it 320 it Output stream Fig. 1. Initialization and stream generation. (every round, every second round, etc.). So far we suggest to use the ytes, 2,0, 0,2, 2,2 at every odd round and the ytes 0,1, 2,1, 0,3, 2,3 at every even round. We note that the order of ytes is not relevant for security ut is relevant for fast software implementation. The order of ytes as given aove allows to extract a 32-it value from two 32-it row variales t 0, t 2 in just four steps (that can e pipelined): out32 = ((t 0 &0xFF00FF) << 8) (t 2 &0xFF00FF), while each round of AES uses aout 40 steps. Here t i is a row of four ytes: t i = ( i,0, i,1, i,2, i,3 ). So far we do not propose to use any filter function and output the ytes as they are. The choice of the output yte locations (see also 1,0 0,1 0,2 0,3 1,1 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3 1,0 2,0 2,2 0,1 0,2 0,3 1,1 1,3 2,1 2,3 3,0 3,1 3,2 3,3 Odd rounds 1,0 0,1 0,2 0,3 1,1 1,3 2,0 2,1 2,2 2,3 3,0 3,1 3,2 3,3 Even rounds Fig.2. The positions of the leak in the even and in the odd rounds. Fig. 2) is motivated y the following: oth sets constitute an invariant suset of
3 the ShiftRows operation (the first row is not shifted and the third is rotated y two ytes). By alternating the two susets in even and odd rounds we ensure that the attacker does not see input and output ytes that are related y a single SuBytes and a single MixColumn. This choice ensures that the attacker will have to analyze two consecutive rounds. The two rounds of AES have full diffusion thus limiting divide-and-conquer capailities of the attacker. The speed of this cipher is exactly 2.5 times faster than AES up to a cost of extraction of four ytes at each round. 3 Analysis of LEX In this section we analyze resistance of LEX to various attacks. 3.1 Period of the Output Sequence The way we use AES is essentially an Output Feedack Mode (OFB), in which instead of using the ciphertexts as a key-stream we use the leaks from the intermediate rounds as a key-stream. The output stream will eventually cycle when we traverse the full cycle of the AES-generated permutation. If one assumes that AES is indistinguishale from a random permutation for any fixed key, one would expect the cycle size to e of the order O(2 128 ) since the proaility of falling into one of the short cycles is negligile 2. If the output stream is produced y following a cycle of a random permutation it is easily distinguished from random after oserving asence of 128-it collisions in a stream of 2 64 outputs. In our case since we output only part of the state at each round, the mapping from internal state to the output is not 1-1 and thus such collisions would occur. 3.2 Tradeoff Attacks For a stream cipher to e secure against time-memory and time-memory-data tradeoff attacks [1, 5, 2] the following conditions are necessary: K = IV = State /2. This ensures that the est tradeoff attack has complexity roughly the same as the exhaustive key-search. The IV s may e pulic, ut it is very important that full-entropy IV s are used to avoid tradeoff-resynchronization attacks [6]. In the case of LEX K = IV = Block = 128 its, where Block denotes an intermediate state of the plaintext lock during the encryption. Internal state is the pair (IV, K) at the start and (Block, Key) during the stream generation, and thus K + IV = K + S = 256 its which is enough to avoid the tradeoff attacks. Note that if one uses LEX construction with larger key variants of AES this might e a prolem. For example for 192-it key AES the state would consist of 128-it internal variale and the 192-it key. This would 2 A random permutation over n-it integers typically consists of only aout n cycles, the largest of them spanning aout 62% of the space.
4 allow to apply a time-memory-data tradeoff attack with roughly stream, memory and time. Such attack is asolutely impractical ut may e viewed as a certificational weakness. 3.3 Algeraic Attacks Algeraic attacks on stream ciphers [4] are a recent and a very powerful type of attack. Applicaility of these to LEX is to e carefully investigated. If one could write a non-linear equation in terms of the outputs and the key that could lead to an attack. Re-keying every 500 AES encryptions may help to avoid such attacks y limiting the numer of samples the attacker might otain while targeting a specific sukey. We expect that after the re-keying the system of nonlinear equations collected y the attacker would ecome osolete. Shifting from AES key-schedule to a more roust one might e another precaution against these attacks. Note also that unlike in LFSR-ased stream ciphers we expect that there do not exist simple relations that connect internal variales at distances of 10 or more steps. Such relations if they would exist would e useful in cryptanalysis of AES itself. 3.4 Differential, Linear or Multiset Resynchronization Attacks If mixing of IV and the key is weak the cipher might e prone to chosen or known IV attacks similar to the chosen plaintext attacks on the lock-ciphers. However in our case this mixing is performed via a single AES encryption. Since AES is designed to withstand such differential, linear or multiset attacks we elieve that such attacks pose no prolem for our scheme either. Slide-resynchronization attacks [3] should also not e a prolem due to different round constants in the key-schedule which reak the self-similarity of the AES. 3.5 Potential Weakness AES Key-schedule There is a simple way to overcome weaknesses in AES key-schedule (which is almost linear) and which might e crucial for our construction. The idea might e to use ten consecutive encryptions of the IV as sukeys, prior to starting the encryption. This method will however loose in key agility, since key-schedule time will e 11 AES encryptions instead of one. If etter key-agility is required a faster dedicated key-schedule may e designed. If ulk encryption is required then it might e advisale to replace static key y slowly time-varying key. One possiility would e to perform additional 10 AES encryptions every 500 AES encryptions and to use the 10 results as sukeys. This method quite efficient in software might not e suitale for small hardware (Profile 2) due to the requirement to store 1280 its (160 ytes) of the sukeys. The overhead of such key-change is only 2% slowdown, while it might stop potential attacks which require more than 500 samples gathered for a specific sukey. This method quite efficient in software might not e suitale for
5 small hardware (Profile 2) due to the requirement to store 1280 its (160 ytes) of the sukeys. An alternative more gate-efficient solution would e to perform single AES encryption every 100 steps without revealing the intermediate values and use the result as a new 128-it key. Then use the keyschedule of AES to generate the sukeys. Note, that previously y iterating AES with the same key we explored a single cycle of AES, which was likely to e of length O(2 128 ) due to the cipher eing a permutation of values. However y doing intermediate key-changes we are now in a random mapping scenario. Since state size of our random mapping is 256 its (key + internal state), one would expect to get into a short cycle in aout O(2 128 ) steps, which is the same as in the previous case and poses no security prolem. 3.6 No Weak Keys Since there are no weak keys known for the underlying AES cipher we elieve that weak keys pose no prolem for this design either. This is especially important since we suggest frequent rekeying to make the design more roust against other cryptanalytic attacks. 3.7 Dedicated Attacks An ovious line of attack would e to concentrate on every 10th round, since it reuses the same sukey, and thus if the attacker guesses parts of this sukey he still can reuse this information 10t, t = 1, 2,... rounds later. Note however that unlike in LFSR or LFSM ased stream ciphers the other parts of the intermediate state have hopelessly changed in a complex non-linear manner and any guesses spent for those are wasted (unless there is some weakness in a full 10-round AES). 4 Implementation We elieve that LEX would e ale to run aout 2.5 times faster than AES in oth hardware and software. Since LEX could reuse existing AES implementations it might provide a simple and cheap speedup option in addition to the already existing ase AES encryption. For example, if one uses a fast software AES implementation which runs at clocks per yte we may expect LEX to e running at aout 5-6 clocks per yte. The same leak extraction principle naturally applies to 192 and 256-it AES resulting in LEX-192 and LEX-256. LEX-192 should e 3 times faster than AES-192, and LEX-256 is 3.5 times faster than AES-256. Note that unlike in AES the speed penalty for using larger key versions is much smaller in LEX (a slight slowdown for a longer keyschedule, i.e. resynchronization ut not for the stream generation).
6 5 Strong Points of the Design Here we list some enefits of using this design: AES hardware/software implementations can e reused with few simple modifications. The implementors may use all their favorite AES implementation tricks. The cipher is at least 2.5 times faster than AES. In order to get an idea of the speed of LEX divide performance figures of AES y a factor 2.5. The speed of key and IV setup is equal to the speed of AES keyschedule followed y a single AES encryption. In hardware the area and gate count figures are essentially those of the AES. Unlike in the AES the key-setup for encryption and decryption in LEX are the same. The cipher may e used as a speedup alternative to the existing AES implementation and with only minor changes to the existing software or hardware. Security analysis enefits from existing literature on AES. The speed/cost ratio of the design is even etter than for the AES and thus it makes this design attractive for oth fast software and fast hardware implementations (Profile 1). The design will also perform reasonaly well in restricted resource environments (Profile 2). Since this design comes with explicit specification of IV size and resynchronization mechanism it is secure against time-memory-data tradeoff attacks. This is not the case for the AES in ECB mode or for the AES with IV s shorter than 128-its. Side-channel attack countermeasures developed for the AES will e useful for this design as well. 6 Summary In this paper we have descried efficient extensions of AES into the world of stream ciphers. We expect that (if no serious weaknesses of this approach would e found) it may provide a very useful speed up option to the existing ase implementations of AES. We hope that there are no attacks on this design faster than O(2 128 ) steps. The design is rather old and of course requires further study. However so far there are no weaknesses known to the designers as well as there are no hidden weaknesses inserted y the designers. 7 Acknowledgement This paper is a result of several inspiring discussions with Adi Shamir. We would also like to thank Christophe De Cannière, Joseph Lano, Ingrid Verauwhede and other cosix for the exchange of views on the stream cipher design.
7 References [1] S. Baage, Improved exhaustive search attacks on stream ciphers, in ECOS 95 (European Convention on Security and Detection), no. 408 in IEE Conference Pulication, May [2] A. Biryukov and A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, in Proceedings of Asiacrypt 00 (T. Okamoto, ed.), no in Lecture Notes in Computer Science, pp. 1 13, Springer-Verlag, [3] A. Biryukov and D. Wagner, Slide attacks, in Proceedings of Fast Software Encryption FSE 99 (L. R. Knudsen, ed.), no in Lecture Notes in Computer Science, pp , Springer-Verlag, [4] N. T. Courtois and W. Meier, Algeraic attacks on stream ciphers with linear feedack, in Advances in Cryptology EUROCRYPT 2003 (E. Biham, ed.), Lecture Notes in Computer Science, pp , Springer-Verlag, [5] J. D. Golic, Cryptanalysis of alleged A5 stream cipher, in Advances in Cryptology EUROCRYPT 97 (W. Fumy, ed.), vol of Lecture Notes in Computer Science, pp , Springer-Verlag, [6] J. Hong and P. Sarkar, Rediscovery of time memory tradeoffs, http: //eprint.iacr.org/2005/090.
F3 Symmetric Encryption
F3 Symmetric Encryption Cryptographic Algorithms: Overview During this course two main applications of cryptographic algorithms are of principal interest: Encryption of data: transforms plaintext data
The Stream Cipher HC-128
The Stream Cipher HC-128 Hongjun Wu Katholieke Universiteit Leuven, ESAT/SCD-COSIC Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium [email protected] Statement 1. HC-128 supports 128-bit
Cryptanalysis of Grain using Time / Memory / Data Tradeoffs
Cryptanalysis of Grain using Time / Memory / Data Tradeoffs v1.0 / 2008-02-25 T.E. Bjørstad The Selmer Center, Department of Informatics, University of Bergen, Pb. 7800, N-5020 Bergen, Norway. Email :
Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I. Sourav Mukhopadhyay
Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Attacks on Cryptosystems Up to this point, we have mainly seen how ciphers are implemented. We
WINTER SCHOOL ON COMPUTER SECURITY. Prof. Eli Biham
WINTR SCHOOL ON COMPUTR SCURITY Prof. li Biham Computer Science Department Technion, Haifa 3200003, Israel January 27, 2014 c li Biham c li Biham - January 27, 2014 1 Cryptanalysis of Modes of Operation
1 Data Encryption Algorithm
Date: Monday, September 23, 2002 Prof.: Dr Jean-Yves Chouinard Design of Secure Computer Systems CSI4138/CEG4394 Notes on the Data Encryption Standard (DES) The Data Encryption Standard (DES) has been
Network Security. Chapter 3 Symmetric Cryptography. Symmetric Encryption. Modes of Encryption. Symmetric Block Ciphers - Modes of Encryption ECB (1)
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 3 Symmetric Cryptography General Description Modes of ion Data ion Standard (DES)
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Secret Key Cryptography (I) 1 Introductory Remarks Roadmap Feistel Cipher DES AES Introduction
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide
Error oracle attacks and CBC encryption. Chris Mitchell ISG, RHUL http://www.isg.rhul.ac.uk/~cjm
Error oracle attacks and CBC encryption Chris Mitchell ISG, RHUL http://www.isg.rhul.ac.uk/~cjm Agenda 1. Introduction 2. CBC mode 3. Error oracles 4. Example 1 5. Example 2 6. Example 3 7. Stream ciphers
Lecture 4 Data Encryption Standard (DES)
Lecture 4 Data Encryption Standard (DES) 1 Block Ciphers Map n-bit plaintext blocks to n-bit ciphertext blocks (n = block length). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption
Analysis of Non-fortuitous Predictive States of the RC4 Keystream Generator
Analysis of Non-fortuitous Predictive States of the RC4 Keystream Generator Souradyuti Paul and Bart Preneel Katholieke Universiteit Leuven, Dept. ESAT/COSIC, Kasteelpark Arenberg 10, B 3001 Leuven-Heverlee,
Split Based Encryption in Secure File Transfer
Split Based Encryption in Secure File Transfer Parul Rathor, Rohit Sehgal Assistant Professor, Dept. of CSE, IET, Nagpur University, India Assistant Professor, Dept. of CSE, IET, Alwar, Rajasthan Technical
How To Encrypt With A 64 Bit Block Cipher
The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmetric or secret key cryptography and asymmetric or public key cryptography. Symmetric
The Advanced Encryption Standard: Four Years On
The Advanced Encryption Standard: Four Years On Matt Robshaw Reader in Information Security Information Security Group Royal Holloway University of London September 21, 2004 The State of the AES 1 The
Table of Contents. Bibliografische Informationen http://d-nb.info/996514864. digitalisiert durch
1 Introduction to Cryptography and Data Security 1 1.1 Overview of Cryptology (and This Book) 2 1.2 Symmetric Cryptography 4 1.2.1 Basics 4 1.2.2 Simple Symmetric Encryption: The Substitution Cipher...
A Practical Attack on Broadcast RC4
A Practical Attack on Broadcast RC4 Itsik Mantin and Adi Shamir Computer Science Department, The Weizmann Institute, Rehovot 76100, Israel. {itsik,shamir}@wisdom.weizmann.ac.il Abstract. RC4is the most
Bounds for Balanced and Generalized Feistel Constructions
Bounds for Balanced and Generalized Feistel Constructions Andrey Bogdanov Katholieke Universiteit Leuven, Belgium ECRYPT II SymLab Bounds 2010 Outline Feistel Constructions Efficiency Metrics Bounds for
Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key
Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Julia Juremi Ramlan Mahmod Salasiah Sulaiman Jazrin Ramli Faculty of Computer Science and Information Technology, Universiti Putra
Cryptography and Network Security Chapter 3
Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 3 Block Ciphers and the Data Encryption Standard All the afternoon
On the Security of Double and 2-key Triple Modes of Operation
On the Security of Double and 2-key Triple Modes of Operation [Published in L. Knudsen, d., Fast Software ncryption, vol. 1636 of Lecture Notes in Computer Science, pp. 215 230, Springer-Verlag, 1999.]
The Misuse of RC4 in Microsoft Word and Excel
The Misuse of RC4 in Microsoft Word and Excel Hongjun Wu Institute for Infocomm Research, Singapore [email protected] Abstract. In this report, we point out a serious security flaw in Microsoft
Cryptography and Network Security Block Cipher
Cryptography and Network Security Block Cipher Xiang-Yang Li Modern Private Key Ciphers Stream ciphers The most famous: Vernam cipher Invented by Vernam, ( AT&T, in 1917) Process the message bit by bit
The Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) Conception - Why A New Cipher? Conception - Why A New Cipher? DES had outlived its usefulness Vulnerabilities were becoming known 56-bit key was too small Too slow
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard
lundi 1 octobre 2012 In a set of N elements, by picking at random N elements, we have with high probability a collision two elements are equal
Symmetric Crypto Pierre-Alain Fouque Birthday Paradox In a set of N elements, by picking at random N elements, we have with high probability a collision two elements are equal N=365, about 23 people are
A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR
A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR William Stallings Copyright 20010 H.1 THE ORIGINS OF AES...2 H.2 AES EVALUATION...3 Supplement to Cryptography and Network Security, Fifth Edition
Modes of Operation of Block Ciphers
Chapter 3 Modes of Operation of Block Ciphers A bitblock encryption function f: F n 2 Fn 2 is primarily defined on blocks of fixed length n To encrypt longer (or shorter) bit sequences the sender must
Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010
CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Introduction to Cryptography What is cryptography?
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
Sosemanuk, a fast software-oriented stream cipher
Sosemanuk, a fast software-oriented stream cipher C. Berbain 1, O. Billet 1, A. Canteaut 2, N. Courtois 3, H. Gilbert 1, L. Goubin 4, A. Gouget 5, L. Granboulan 6, C. Lauradoux 2, M. Minier 2, T. Pornin
Salsa20/8 and Salsa20/12
Salsa20/8 and Salsa20/12 Daniel J. Bernstein Department of Mathematics, Statistics, and Computer Science (M/C 249) The University of Illinois at Chicago Chicago, IL 60607 7045 [email protected] Introduction.
Statistical weakness in Spritz against VMPC-R: in search for the RC4 replacement
Statistical weakness in Spritz against VMPC-R: in search for the RC4 replacement Bartosz Zoltak www.vmpcfunction.com [email protected] Abstract. We found a statistical weakness in the Spritz algorithm
Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015
CS-4920: Lecture 7 Secret key cryptography Reading Chapter 3 (pp. 59-75, 92-93) Today s Outcomes Discuss block and key length issues related to secret key cryptography Define several terms related to secret
Masao KASAHARA. Public Key Cryptosystem, Error-Correcting Code, Reed-Solomon code, CBPKC, McEliece PKC.
A New Class of Public Key Cryptosystems Constructed Based on Reed-Solomon Codes, K(XII)SEPKC. Along with a presentation of K(XII)SEPKC over the extension field F 2 8 extensively used for present day various
Cryptography & Network Security. Introduction. Chester Rebeiro IIT Madras
Cryptography & Network Security Introduction Chester Rebeiro IIT Madras The Connected World 2 Information Storage 3 Increased Security Breaches 81% more in 2015 http://www.pwc.co.uk/assets/pdf/2015-isbs-executive-summary-02.pdf
A VHDL Implemetation of the Advanced Encryption Standard-Rijndael Algorithm. Rajender Manteena
A VHDL Implemetation of the Advanced Encryption Standard-Rijndael Algorithm y Rajender Manteena A thesis sumitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical
A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION
A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION Auday H. Al-Wattar 1, Ramlan Mahmod 2, Zuriati Ahmad Zukarnain3, and Nur Izura Udzir4, 1 Faculty of Computer Science and Information
Application of cube attack to block and stream ciphers
Application of cube attack to block and stream ciphers Janusz Szmidt joint work with Piotr Mroczkowski Military University of Technology Military Telecommunication Institute Poland 23 czerwca 2009 1. Papers
MAC. SKE in Practice. Lecture 5
MAC. SKE in Practice. Lecture 5 Active Adversary Active Adversary An active adversary can inject messages into the channel Active Adversary An active adversary can inject messages into the channel Eve
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur Lecture No. #06 Cryptanalysis of Classical Ciphers (Refer
Serpent: A Proposal for the Advanced Encryption Standard
Serpent: A Proposal for the Advanced Encryption Standard Ross Anderson 1 Eli Biham 2 Lars Knudsen 3 1 Cambridge University, England; email [email protected] 2 Technion, Haifa, Israel; email [email protected]
Helix. Fast Encryption and Authentication in a Single Cryptographic Primitive
Helix Fast Encryption and Authentication in a Single Cryptographic Primitive Niels Ferguson 1, Doug Whiting 2, Bruce Schneier 3, John Kelsey 4, Stefan Lucks 5, and Tadayoshi Kohno 6 1 MacFergus, [email protected]
Introduction. Where Is The Threat? Encryption Methods for Protecting Data. BOSaNOVA, Inc. Phone: 866-865-5250 Email: [email protected] Web: www.theq3.
Introduction Within the last ten years, there has been a vast increase in the accumulation and communication of digital computer data in both the private and public sectors. Much of this information has
Secure Large-Scale Bingo
Secure Large-Scale Bingo Antoni Martínez-Ballesté, Francesc Sebé and Josep Domingo-Ferrer Universitat Rovira i Virgili, Dept. of Computer Engineering and Maths, Av. Països Catalans 26, E-43007 Tarragona,
Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards
White Paper Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards By Dr. Wen-Ping Ying, Director of Software Development, February 2002 Introduction Wireless LAN networking allows the
Cryptography: Motivation. Data Structures and Algorithms Cryptography. Secret Writing Methods. Many areas have sensitive information, e.g.
Cryptography: Motivation Many areas have sensitive information, e.g. Data Structures and Algorithms Cryptography Goodrich & Tamassia Sections 3.1.3 & 3.1.4 Introduction Simple Methods Asymmetric methods:
QoS Provisioning in Mobile Internet Environment
QoS Provisioning in Moile Internet Environment Salem Lepaja ([email protected]), Reinhard Fleck, Nguyen Nam Hoang Vienna University of Technology, Institute of Communication Networks, Favoritenstrasse
The Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) All of the cryptographic algorithms we have looked at so far have some problem. The earlier ciphers can be broken with ease on modern computation systems. The DES
Hardware Implementation of AES Encryption and Decryption System Based on FPGA
Send Orders for Reprints to [email protected] The Open Cybernetics & Systemics Journal, 2015, 9, 1373-1377 1373 Open Access Hardware Implementation of AES Encryption and Decryption System Based
IJESRT. [Padama, 2(5): May, 2013] ISSN: 2277-9655
IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Verification of VLSI Based AES Crypto Core Processor Using Verilog HDL Dr.K.Padama Priya *1, N. Deepthi Priya 2 *1,2
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer
Network Security. Modes of Operation. Steven M. Bellovin February 3, 2009 1
Modes of Operation Steven M. Bellovin February 3, 2009 1 Using Cryptography As we ve already seen, using cryptography properly is not easy Many pitfalls! Errors in use can lead to very easy attacks You
Password-based encryption in ZIP files
Password-based encryption in ZIP files Dmitri Gabbasov December 15, 2015 Abstract In this report we give an overview of the encryption schemes used in the ZIP file format. We first give an overview of
Implementation of Full -Parallelism AES Encryption and Decryption
Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption
HASH CODE BASED SECURITY IN CLOUD COMPUTING
ABSTRACT HASH CODE BASED SECURITY IN CLOUD COMPUTING Kaleem Ur Rehman M.Tech student (CSE), College of Engineering, TMU Moradabad (India) The Hash functions describe as a phenomenon of information security
Common Pitfalls in Cryptography for Software Developers. OWASP AppSec Israel July 2006. The OWASP Foundation http://www.owasp.org/
Common Pitfalls in Cryptography for Software Developers OWASP AppSec Israel July 2006 Shay Zalalichin, CISSP AppSec Division Manager, Comsec Consulting [email protected] Copyright 2006 - The OWASP
Security Evaluation of the SPECTR-128. Block Cipher
pplied Mathematical Sciences, ol. 7,, no. 4, 6945-696 HIKI td, www.m-hikari.com http://dx.doi.org/.988/ams..584 Security Evaluation of the SPECT-8 Block Cipher Manh Tuan Pham, am T. u Posts and Telecommunications
Symmetric Key cryptosystem
SFWR C03: Computer Networks and Computer Security Mar 8-11 200 Lecturer: Kartik Krishnan Lectures 22-2 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single
Network Security - ISA 656 Introduction to Cryptography
Network Security - ISA 656 Angelos Stavrou September 18, 2007 Codes vs. K = {0, 1} l P = {0, 1} m C = {0, 1} n, C C E : P K C D : C K P p P, k K : D(E(p, k), k) = p It is infeasible to find F : P C K Let
Authentication requirement Authentication function MAC Hash function Security of
UNIT 3 AUTHENTICATION Authentication requirement Authentication function MAC Hash function Security of hash function and MAC SHA HMAC CMAC Digital signature and authentication protocols DSS Slides Courtesy
Efficient Software Implementation of AES on 32-bit Platforms
Efficient Software Implementation of AES on 32-bit Platforms Guido Bertoni, Luca Breveglieri Politecnico di Milano, Milano - Italy Pasqualina Lilli Lilli Fragneto AST-LAB of ST Microelectronics, Agrate
AES-COPA v.2. Designers/Submitters: Elena Andreeva 1,2, Andrey Bogdanov 3, Atul Luykx 1,2, Bart Mennink 1,2, Elmar Tischhauser 3, and Kan Yasuda 1,4
Submission to the CAESAR competition AES-COPA v.2 Designers/Submitters: Elena Andreeva 1,2, Andrey Bogdanov 3, Atul Luykx 1,2, Bart Mennink 1,2, Elmar Tischhauser 3, and Kan Yasuda 1,4 Affiliation: 1 Dept.
802.11 Security (WEP, WPA\WPA2) 19/05/2009. Giulio Rossetti Unipi [email protected]
802.11 Security (WEP, WPA\WPA2) 19/05/2009 Giulio Rossetti Unipi [email protected] 802.11 Security Standard: WEP Wired Equivalent Privacy The packets are encrypted, before sent, with a Secret Key
Algebraic Attacks on Stream Ciphers with Linear Feedback
Algebraic Attacks on Stream Ciphers with Linear Feedback Nicolas T. Courtois 1 and Willi Meier 2 1 Cryptography Research, Schlumberger Smart Cards, 36-38 rue de la Princesse, BP 45, F-78430 Louveciennes
The 128-bit Blockcipher CLEFIA Design Rationale
The 128-bit Blockcipher CLEFIA Design Rationale Revision 1.0 June 1, 2007 Sony Corporation NOTICE THIS DOCUMENT IS PROVIDED AS IS, WITH NO WARRANTIES WHATSOVER, INCLUDING ANY WARRANTY OF MERCHANTABIL-
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay
Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Introduction
Message Authentication
Message Authentication message authentication is concerned with: protecting the integrity of a message validating identity of originator non-repudiation of origin (dispute resolution) will consider the
SAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK
SAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION September 2010 (reviewed September 2014) ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK NETWORK SECURITY
Vulnerabilities in WEP Christopher Hoffman Cryptography 2 2011-3
Vulnerabilities in WEP Christopher Hoffman Cryptography 2 2011-3 1. Abstract Wired Equivalent Privacy (WEP) was the first encryption scheme used for protecting wireless traffic. It consisted of a private
How To Attack A Block Cipher With A Key Key (Dk) And A Key (K) On A 2Dns) On An Ipa (Ipa) On The Ipa 2Ds (Ipb) On Pcode)
Cryptography and Network Security Chapter 6 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 6 Block Cipher Operation Many savages at the present day regard
A Comparative Study Of Two Symmetric Encryption Algorithms Across Different Platforms.
A Comparative Study Of Two Symmetric Algorithms Across Different Platforms. Dr. S.A.M Rizvi 1,Dr. Syed Zeeshan Hussain 2 and Neeta Wadhwa 3 Deptt. of Computer Science, Jamia Millia Islamia, New Delhi,
Overview of Symmetric Encryption
CS 361S Overview of Symmetric Encryption Vitaly Shmatikov Reading Assignment Read Kaufman 2.1-4 and 4.2 slide 2 Basic Problem ----- ----- -----? Given: both parties already know the same secret Goal: send
A low-cost Alternative for OAEP
A low-cost Alternative for OAEP Peter Schartner University of Klagenfurt Computer Science System Security [email protected] Technical Report TR-syssec-11-02 Abstract When encryption messages by use
SD12 REPLACES: N19780
ISO/IEC JTC 1/SC 27 N13432 ISO/IEC JTC 1/SC 27 Information technology - Security techniques Secretariat: DIN, Germany SD12 REPLACES: N19780 DOC TYPE: TITLE: Standing document ISO/IEC JTC 1/SC 27 Standing
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 02 Overview on Modern Cryptography
Network Security: Cryptography CS/SS G513 S.K. Sahay
Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information
Counter Expertise Review on the TNO Security Analysis of the Dutch OV-Chipkaart. OV-Chipkaart Security Issues Tutorial for Non-Expert Readers
Counter Expertise Review on the TNO Security Analysis of the Dutch OV-Chipkaart OV-Chipkaart Security Issues Tutorial for Non-Expert Readers The current debate concerning the OV-Chipkaart security was
Multi-Layered Cryptographic Processor for Network Security
International Journal of Scientific and Research Publications, Volume 2, Issue 10, October 2012 1 Multi-Layered Cryptographic Processor for Network Security Pushp Lata *, V. Anitha ** * M.tech Student,
AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES
HYBRID RSA-AES ENCRYPTION FOR WEB SERVICES AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES Kalyani Ganesh
QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE
MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write
IronKey Data Encryption Methods
IronKey Data Encryption Methods An IronKey Technical Brief November 2007 Information Depth:Technical Introduction IronKey is dedicated to building the world s most secure fl ash drives. Our dedication
Fault attack on the DVB Common Scrambling Algorithm
Fault attack on the DVB Common Scrambling Algorithm Kai Wirt Technical University Darmstadt Department of Computer Science Darmstadt, Germany [email protected] Abstract. The Common Scrambling
AES Cipher Modes with EFM32
AES Cipher Modes with EFM32 AN0033 - Application Note Introduction This application note describes how to implement several cryptographic cipher modes with the Advanced ion Standard (AES) on the EFM32
SECURE AND EFFICIENT PRIVACY-PRESERVING PUBLIC AUDITING SCHEME FOR CLOUD STORAGE
International Journal of Computer Network and Security(IJCNS) Vol 7. No.1 2015 Pp. 1-8 gopalax Journals, Singapore available at : www.ijcns.com ISSN: 0975-8283 ----------------------------------------------------------------------------------------------------------------------------------------------------------
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION INTRODUCTION GANESH ESWAR KUMAR. P Dr. M.G.R University, Maduravoyal, Chennai. Email: [email protected] Every day, millions of people
Linux Access Point and IPSec Bridge
Tamkang Journal of Science and Engineering, Vol. 6, No. 2, pp. 121-126 (2003) 121 Linux Access Point and IPSec Bridge T. H. Tseng and F. Ye Department of Electrical Engineering Tamkang University Tamsui,
