Week 5 Integral Polyhedra

Advertisement
Similar documents
Markov Chains, part I

Good luck, veel succes!

10. Graph Matrices Incidence Matrix

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:

3. Linear Programming and Polyhedral Combinatorics

max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

1 Determinants. Definition 1

Cofactor Expansion: Cramer s Rule

Lecture 3: Linear Programming Relaxations and Rounding

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

Definition of a Linear Program

Determinants. Dr. Doreen De Leon Math 152, Fall 2015

MATHEMATICAL BACKGROUND

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013

1 Polyhedra and Linear Programming

Notes on Determinant

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

2.5 Elementary Row Operations and the Determinant

Minimally Infeasible Set Partitioning Problems with Balanced Constraints

THEORY OF SIMPLEX METHOD

Min-cost flow problems and network simplex algorithm

Matrix Inverse and Determinants

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Similarity and Diagonalization. Similar Matrices

An important class of codes are linear codes in the vector space Fq n, where F q is a finite field of order q.

DETERMINANTS. b 2. x 2

Chapter 8. Matrices II: inverses. 8.1 What is an inverse?

Chapter 4: Binary Operations and Relations

Geometry of Linear Programming

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

4.6 Linear Programming duality

Math 315: Linear Algebra Solutions to Midterm Exam I

Diagonal, Symmetric and Triangular Matrices

T ( a i x i ) = a i T (x i ).

Section Notes 4. Duality, Sensitivity, Dual Simplex, Complementary Slackness. Applied Math 121. Week of February 28, 2011

Lecture Notes: Matrix Inverse. 1 Inverse Definition

Introduction to Linear Programming.

2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors

10.1 Integer Programming and LP relaxation

Lecture 7: Approximation via Randomized Rounding

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.

Lecture 6: Approximation via LP Rounding

Permutation Betting Markets: Singleton Betting with Extra Information

Approximation Algorithms

Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai

THE DIMENSION OF A VECTOR SPACE

MATH 304 Linear Algebra Lecture 16: Basis and dimension.

Theory of Linear Programming

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

Review: Vector space

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

= [a ij ] 2 3. Square matrix A square matrix is one that has equal number of rows and columns, that is n = m. Some examples of square matrices are

Lecture 4: Partitioned Matrices and Determinants

Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses

Chapter 15 Introduction to Linear Programming

Lecture 3: Finding integer solutions to systems of linear equations

Unit 18 Determinants

DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH

Partitioning edge-coloured complete graphs into monochromatic cycles and paths

MATH36001 Background Material 2015

MATH 240 Fall, Chapter 1: Linear Equations and Matrices

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = i.

Mathematics Course 111: Algebra I Part IV: Vector Spaces

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition.

160 CHAPTER 4. VECTOR SPACES

Discrete (and Continuous) Optimization Solutions of Exercises 1 WI4 131

Basic solutions in standard form polyhedra

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC

Solutions to Exercises 8

Mathematics of Cryptography

Discrete Optimization

MATH10212 Linear Algebra B Homework 7

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

Counting spanning trees

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Derivatives of Matrix Functions and their Norms.

Relations Graphical View

1 Unrelated Parallel Machine Scheduling

Summary of week 8 (Lectures 22, 23 and 24)

v 1. v n R n we have for each 1 j n that v j v n max 1 j n v j. i=1

Notes on Linear Recurrence Sequences

The tree-number and determinant expansions (Biggs 6-7)

1 Sets and Set Notation.

Name: Section Registered In:

APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A.

2.3 Scheduling jobs on identical parallel machines

MATH2210 Notebook 1 Fall Semester 2016/ MATH2210 Notebook Solving Systems of Linear Equations... 3

GRA6035 Mathematics. Eivind Eriksen and Trond S. Gustavsen. Department of Economics

Continued Fractions and the Euclidean Algorithm

3 Does the Simplex Algorithm Work?

Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ Question 2. Let A = (a) Calculate the nullspace of the matrix A.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

Advertisement
Transcription:

Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory of integral polyhedra that explains the integrality of these example by a simple property of the constraint matrix of these programs. 1 We have proved this for maximum weight bipartite matching, minimum vertex cover, and the minimum cut problems. 5.1 Totally Unimodular Matrices Consider the integer program minimize c x Ax = b x Z n + (IP) where A Z m n and b Z m. We would like to know what are the properties that A and b must have such that the linear relaxation minimize c x Ax = b x 0 (LP) always has an integral solution. Recall that if the linear program has bounded objective, there must a basic feasible solution x that is optimal. Let be a basis defining x. Then x = A 1 b, while all non-basic variables must be 0. It follows that if A 1 is an integral matrix then x must be integral as well. It turns out, as we shall prove shortly, that a sufficient condition for the integrality of A 1 is det(a ) 1, 1}. This motivates the following definition. Definition 5.1. We say a matrix A Z m n with full row rank is unimodular if the determinant of each basis of A is 1 or 1. First we will show that if the program (LP) is alway integral whenever A is unimodular, and that a weaker form of the converse also holds. Copyright 2015 Julián Mestre. This work is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike 4.0 International License. For the most recent version of these notes, please visit the class webpage.

week 5 integral polyhedra discrete optimization 2 Theorem 5.1. A full row rank matrix A Z m n is unimodular if and only if the polyhedron x R n : Ax = b, x 0} is integral for all b Z m. Proof. We first prove the forward direction. Let x be an extreme point and be a basis of x. Our goal is to show that x is integral. From Cramer s rules 2 we know that A 1 = Adj(A ) det(a ), where Adj(A ) is the adjugate 3 of A. Since A is integral, it follows that Adj(A ) must be integral as well. Together with the fact that det(a ) 1, 1}, this implies the integrality of A 1 and, therefore, that of x. The backward direction is surprisingly easy. Let be a basis of A. Our goal is to show that det(a ) = 1. Let b = A z + e i where e i is the unit vector with a single 1 in its ith coordinate and zeros elsewhere, i is an arbitrary index in 1,... m}, and z is a suitable integral vector such that x = A 1 b = z + A 1 e i 0. This ensures that the basic solution induced by is feasible. Since (LP) is integral it follows that the ith column of of A 1 must be integral. ecause i is arbitrary, it follows that every column of A 1 is integral. Therefore it must be that det(a ) and det(a 1 ) are integral. Together with the relation 2 Cramer s rule, Wikipedia. 3 The exact definition of the adjugate of a matrix is not important. The only thing you need to know is that the entries of the adjugate are defined in terms of determinants of submatrices of the orginal matrix. Just for completeness, the adjugate of A is defined as the transpose of its cofactor matrix, Adj(A ) = C T, where c ij is the (i, j)-cofactor of A, which is defined a ( 1) i+j times the determinant of the submatrix of A that results from removing its ith row and its jth column. det(a ) det(a 1 ) = 1, we conclude that det(a ) = det(a 1 ) = 1. This theorem can be generalized to linear programs that are not in standard form by refining the the property we require from the constraint matrix. Definition 5.2. We say a matrix A is totally unimodular if every square submatrix of A has determinate 0, 1, or 1. Theorem 5.2. A matrix A Z m n is totally unimodular if and only if the polyhedron x R n : Ax b, x 0} is integral for all b Z m. Proof sketch. For simplicity, here we assume b 0, but a similar argument holds for general b Z m. The forward direction is similar as Theorem 5.1. For the other direction, [ it suffices to argue that A is totally unimodular if and only if A I is unimodular, and that the extreme points of the polyhedron x R n : Ax b, x 0} are integral if and only if the extreme points of the polyhedron (x, z) R n+m : Ax + z = b, x 0, z 0 } are integral. Now that we have established the importance of these matrices, we shall explore some of their properties and alternative ways of proving that a given matrix is totally unimodular. Here are some example to clarify our definitions so far. The following matrix is unimodular [ 1 0 1 0 1 1, but the following matrix is not [ 1 1 1. 1 0 1 The following matrix is totally unimodular 1 0 1 0 1 1, 1 0 1 but the following matrix is not 1 1 1 1 0 1 1 0 1 ([ ) 1 1 since det = 2. 1 1

week 5 integral polyhedra discrete optimization 3 5.2 Properties of Totally Unimodular Matrices Let A be a totally unimodular matrix. There are a few observations we can make about these matrices: i) The entries of A must be either 0, 1, or 1. ii) The transpose of A is also totally unimodular. [ A iii) The matrix is also totally unimodular. I [ A iv) The matrix is also totally unimodular. A A neat corollary 4 of the these properties is that if A is totally unimodular then the polyhedron x R n + : a Ax b, l x u } is integral for all integral vector a, b, l, and u. Another corollary is that if c and b are integral and A is totally unimodular then both the primal program min c x : Ax b, x 0} and the dual program max b y : A T y c, y 0 } are integral. 4 This corollary is a bit surprising. It means that if P R n + is a polyhedron defined by a totally unimodular matrix, and Q = [l 1, u 1 [l n, u n then P Q is also an integral. In general, this is not the case. 5.3 Alternative Characterization While Definition 5.2 is well suited to prove the integrality of the polyhedron associated with a constraint matrix A, it is not always straightforward to prove that a particular matrix A is totally unimodular. In this section we introduce an alternative characterization of totally unimodular matrices that is easier to work with. A bi-coloring of a matrix M is a partition of its columns into red and blue columns. We say the bi-coloring equitable if for every row of M the sum of its red entries differs from the sum of its blue entries by at most 1. Theorem 5.3. A matrix A is totally unimodular if and only every column-induced submatrix of A admits an equitable bi-coloring. The proof of this theorem is beyond the scope of this class. Here we will just make use of the theorem to prove that certain matrices are totally unimodular. Lemma 5.1. The constraint matrix associated with the bipartite matching problem polyhedron x R E + : } e δ(u) x e 1 u V Notice that because A is totally unimodular if and only if A T is totally unimodular, we have the equivalent condition that any row induced submatrix of A admits a row bi-coloring such that for every column the sum of the red entries differs from the sum of the blue entries by at most 1. is totally unimodular. Proof. Let A be the constraint matrix associated with the polyhedron. Each row of A is associated with a vertex u in our bipartite

week 5 integral polyhedra discrete optimization 4 graph. If u is in the left shore of the graph, then we color the corresponding row red. If u is in the right shore of the graph, then we color the corresponding row blue. Each column of A is associated with an edge (u, v) E, and it has a 1 in each of the rows associated with u and v, and 0 elsewhere. It is easy to see that the bi-coloring is equitable for all row induced matrices of M. Therefore the matrix is totally unimodular. Lemma 5.2. The constraint matrix associated with the circulation problem polyhedron f R E + : e δ in (u) f e = } e δ out (u) f e u V is totally unimodular. Proof. Let A be the constraint matrix associated with the polyhedron. Each row of A is associated with a vertex u V. We color red all rows. Each column of A is associated with an edge (u, v) E, and has a 1 in the row associated with u and a 1 in the row associated with v, and 0 elsewhere. It is easy to see that the bi-coloring is equitable for all row induced matrices of M. Therefore the matrix is totally unimodular. To get a formulation for the maximum s-t flow problem we just need to add the edge capacity constraints, which do not affect the total unimodularity of the constraint matrix, and maximize the linear objective f ts. Furthermore, since the transpose of the resulting matrix is also totally unimodular, it follows that the dual is also integral, which, as we saw last week, corresponds to the minimum s-t cut problem. 5.4 Subset Systems We now turn our attention to a broad class of subset selection problems. These problems are defined by a pair (U, I), where U is a universal set of elements and I 2 U is a collection of feasible 5 subsets of U. The pair (U, I) is called a subset system if for any S T U it holds that T I implies S I. Given a cost function c : U R +, the canonical optimization problem associated with (U, I) is maximize c(s) S I Many natural problems 6 fit under this framework. Some of them are hard and some, easy. We would like to identify the properties of I that make the corresponding optimization problem easy. Definition 5.3. The rank function r : 2 U Z + of the system (U, I) is defined as follows r(s) = max T. T S:T I It is easy to show that the following is an integer formulation for the canonical problem. maximize j U c jx j j S x j r(s) x j 0, 1} S U j U (IP-IS) 5 In the optimization literature feasible sets are some times also called independent sets. Originally, a particular type of subset system was developed as an abstraction of linear independence: U = collection of vectors, and } vectors in S are I = S U :. linearly independent 6 For example, maximum weight spanning tree, maximum matching, and maximum weight independent set in graphs.

week 5 integral polyhedra discrete optimization 5 As we shall prove shortly, the following property is key in arguing that the linear relaxation of (IP-IS) is integral. Definition 5.4. The subset system (U, I) is called a matroid if for any two subsets S, T I such that S < T the following is true x T \ S : S + x I (5.1) Equation 5.1 is referred to as the matroid exchange axiom. Theorem 5.4. Let (U, I) be a matroid, then the following polyhedron is integral } x R U + : x(s) r(s) S U. Proof. Let x be a vertex of the polyhedron. Our goal is to show that x is integral. Let c be the cost vector that make x the unique optimal solution of the linear program maximize j U c jx j j S x j r(s) x j 0 S U j U The matroid exchange axiom: S x T S < T Not every problem has the matroid exchange property. For example, consider the subset system (U, I) defined by the matching problem on the following graph T S T oth S, T I and S < T but it is not possible to add an edge from T \ S to S and remain feasible. The dual program is given by minimize S U r(s) y S S:j S y S c j y S 0 j U S U Let us re-number the elements of our universal set U = 1,..., U } so that c j c j+1 for j = 1,..., U 1. We define a sequence of sets = S (0) S (1) S ( U ) = U as follows S (j) = 1,..., j} for j = 0,..., U. ased on these sets we create a pair of primal and dual solutions x j = r(s (j) ) r(s (j 1) ) for j = 1,..., U, and c j c j+1 S = S (j) and j = 0,..., U 1, y S = c U S = S ( U ), 0 otherwise. To show that x is integral, we will argue that x = x. We will do this by proving the following properties: i) j U c jx j = S U r(s)y S ii) y is a feasible solution for the dual program iii) x is a feasible solution for the primal program

week 5 integral polyhedra discrete optimization 6 These properties imply that x is optimal, and since there is a unique optimal x = x. It is clear that x is integral, so the theorem follows. Let us start with the first property U ) c j x j = c j (r(s (j) ) r(s (j 1) ) j U = j=1 U 1 (c j c j+1 )r(s (j) ) + c U r(s ( U ) ) j=1 U = y S (j)r(s (j) ) j=1 = S U y S r(s) For the second property we note that for all j U S:j S U y S = y S (i) = i=j U 1 (c i c i+1 ) + c U = c j. i=j For the third property we let S be an arbitrary subset of U. Choose T to be a maximum cardinality feasible subset of S, and set R = j S : x j = 1 }. We would like to to argue that R T. For the sake of contradiction, suppose that was not the case. Then, by the matroid exchange axiom (5.1), we know that there exists j R \ T S such that T + j I, contradicting the fact that T is a maximum cardinality feasible subset of S. Notice that we have not used anything about the subset system to prove the first and the second properties. For the last property we need to make use the matroid exchange axiom. Exercises 1. [ Argue that the matrix A is totally unimodular if and only if A I is unimodular. 2. Let A Z m n and b Z m +. Argue that the polyhedron x R n : Ax b, x 0} is integral if and only if the polyhedron (x, z) R n+m : Ax + z = b, x 0, z 0 } is integral. 3. Let I 1,..., I n be a collection of open intervals of the real line. Each interval I has associated a profit p(i). The objective is to pick a maximum profit subset of intervals such that no two intervals overlap. Consider the following program: maximize I p(i)x I I:p I x I 1 x I 0, 1} p R I = I 1,..., I n This is not a proper integer linear program, as it contains an infinite number of constraint. Show that there is a set Q of cardinality 2n 1 such that for any q R there is p Q such that the constraints generated by p and q are equivalent.

week 5 integral polyhedra discrete optimization 7 Then show that the linear relaxation maximize I p(i)x I I:p I x I 1 x I [0, 1 p Q I = I 1,..., I n has a totally unimodular constraint matrix. 4. Prove that the subset system associated with the interval selection problem described in the previous exercise does not have the matroid property. 5. Let r be the rank function of a matroid (U, I). Prove that for any S, T U we must have r(s T) + r(s T) r(s) + r(t). 6. Let (U, I) be the subset system defined by a set of vector U and the collection of linearly independent subsets of U. Prove that the system is a matroid. 7. Let (U, I) be a matroid and r be its rank function. Argue that the following linear program 7 is integral. minimize j U c jx j x(s) r(s) x(u) = r(u) x j 0 S U 7 Notice that for a matroid whose feasible sets correspond to acyclic subset of edges, the program corresponds to finding a minimum weight spanning tree.

week 5 integral polyhedra discrete optimization 8 Solutions of selected exercises 1. [ Argue that the matrix A is totally unimodular if and only if A I is unimodular. Solution. We show that that for every [ square submatrix of A there is a column-induced submatrix of A I having the same determinant up to a sign change. Let M be the square submatrix of A induced by the rows R 1,..., m} and the columns [ C 1,..., n}. Let T be the the columninduced submatrix of A I defined by the columns of A indexed by C and the columns of I indexed by 1,..., m} \ R. Notice that the relation is reversible starting from T, we can construct M. At this point, it should be easy to see that det(m) = ± det(t). Indeed, we can compute det(t) by first expanding the determinant along the columns that come from I until we are left with M. It follows that the determinant of every square submatrix of A is in 1, 0, 1} if [ and only if the determinant of every column-induced submatrix of A I is in 1, 0, 1}. 2. Let A Z m n and b Z m +. Argue that the polyhedron x R n : Ax b, x 0} is integral if and only if the polyhedron (x, z) R n+m : Ax + Iz = b, x 0, z 0 } is integral. Solution. We establish a one-to-one integrality-preserving correspondence between the extreme points of the two polyhedra. Let us denote the two polyhedra with P 1 and P 2 respectively. Let x R n and z = b Ax. Clearly, x P 1 if and only if (x, z) P 2. Furthermore, because A and b are integral, we know that x is integral if and only if (x, z) is integral. It only remains to how that x is a basic feasible solution of P 1 if and only if (x, z) is a feasible solution of P 2. Suppose x is a basic feasible solution of P 1. Consider a maximal set of linearly independent tight constraints at x. Let R 1,..., m} be the indices of these constraints than come from the systems Ax b and C 1,..., n} be the indices of these constraints that come from x 0. Recall that because x is basic, we know that it is the only solution that meets those constraints with equality. Consider the basis formed by taking the columns of I indexed by R and the columns of A indexed by 1,..., n} \ C. It is not hard to see that (x, z) is the basic feasible solution induced by the basis. Using a similar argument, we can justify the reverse direction: If (x, z) is a basic feasible solution of P 2 then x must be a basic feasible solution of P 1.