Meson cloud effects in the electromagnetic hadron structure

Size: px
Start display at page:

Download "Meson cloud effects in the electromagnetic hadron structure"

Transcription

1 Meson cloud effects in the electromagnetic hadron structure Daniel Kupelwieser Thesis supervisor: Wolfgang Schweiger Collaborators: Elmar Biernat, Regina Kleinhappel Universität Graz Graz Jena monitoring workshop, Graz, October 2012 D. Kupelwieser (Graz) Meson cloud effects 1 / 23

2 Contents 1 Basic Definitions and Motivation 2 Hadronic level 3 Quark level 4 Outlook D. Kupelwieser (Graz) Meson cloud effects 2 / 23

3 Electron nucleon scattering Basic setting: k N k N Electron nucleon scattering via photon exchange Constituent quark model, M N = M qqq V conf Point form of relativistic quantum mechanics Time-ordered diagrams Photon nucleon vertex dressed with single-pion exchange D. Kupelwieser (Graz) Meson cloud effects 3 / 23

4 Form factors Electromagnetic interaction Lagrangian: L int = J µ N A µ To account for inner electromagnetic nucleon structure, modify nucleon current: J µ N (, µ N,, µ N ) = e u µ N ( ) (F 1 (q 2 ) γ µ F 2 (q 2 ) i q ν σ µν 2m N F 1 (q 2 )... Dirac form factor, F 1 (0) = 1 F 2 (q 2 )... Pauli form factor, F 2 (0) = 0 σ µν := i 2 [γµ, γ ν ] ) u µ N ( k N ) D. Kupelwieser (Graz) Meson cloud effects 4 / 23

5 Point form Point form of relativistic dynamics: Quantization surface: Spacetime hyperboloid x 2 t 2 x 2 = τ 2 = const. (Spacelike hypersurface, invariant under Lorentz group) Intrinsic Lorentz covariance Dynamic (interaction-dependent) Poincaré generators: only P µ Kinematic generators: { K, J} (Lorentz group, nice!) D. Kupelwieser (Graz) Meson cloud effects 5 / 23

6 Bakamjian Thomas construction Given: n-particle system with overall 4-momentum P µ. Bakamjian Thomas construction: P µ = P µ 0 Pµ int = (M 0 M int ) V µ 0, (P2 = M 2 ) M int has to commute with V µ, K and J (like P µ does). Overall velocity conserved at vertices Advantage: Interactions may be instantaneous, system stays covariant! D. Kupelwieser (Graz) Meson cloud effects 6 / 23

7 Velocity states Useful basis (V := V 0 ): Velocity states { p i, σ i } V ; { k i, µ i } with n ki = 0 i=1 Behavior under Lorentz-transformation Λ: U(Λ) V ; { k i, µ i } = ΛV ; {R(ΛV )k i, µ i} D 1 2 µ i µ i (R(ΛV )) {µ i } i (Spins get transformed with same Wigner rotation!) D. Kupelwieser (Graz) Meson cloud effects 7 / 23

8 Eigenvalue equation Coupled-channel approach: M Ne K γ K π 0 K γ M Neγ 0 K π K π 0 M Nπe K γ 0 K π K γ M Nπeγ Ne Neγ Nπe Nπeγ = m Ne Neγ Nπe Nπeγ M... : Relativistic energies of particles in each channel K... ( ) : Particle creation/ annihilation operators ( L int ) m: Mass eigenvalue of the whole system. D. Kupelwieser (Graz) Meson cloud effects 8 / 23

9 Feshbach reduction & Optical potential After Feshbach reduction neglecting self-energy contributions and double loops, with P... := (m M... ) 1 : (m M Ne ) Ne = = K γ P Neγ K γ Ne K γ P Neγ K π P Nπeγ K γ P Nπe K π Ne K π P Nπe K γ P Nπeγ K π P Neγ K γ Ne K π P Nπe K γ P Nπeγ K γ P Nπe K π Ne =: V opt Ne V opt... optical potential D. Kupelwieser (Graz) Meson cloud effects 9 / 23

10 Contents 1 Basic Definitions and Motivation 2 Hadronic level 3 Quark level 4 Outlook D. Kupelwieser (Graz) Meson cloud effects 10 / 23

11 Hadronic unity operators Insert hadronic unity operators, e.g. I Neγ = (ω N ω e ω γ ) 3 DV D D ( g µγµγ ) VNeγ VNeγ 2ω e For example, framed line becomes K γ P Neγ I Neγ K π P Nπeγ I Nπeγ K γ P Nπe I Nπe K π Propagators P... assume eigenvalues Get matrix elements of vertex operators K ( )... (sum over emitting/absorbing particles) Ne D. Kupelwieser (Graz) Meson cloud effects 11 / 23

12 Spectator conditions & Nucleon current Spectator conditions: When two particles interact, others stay unaffected, e.g.: V N e γ K Nγ VNe = VV ee ( 1) M 3 Neγ MNe 3 VN γ K Nγ VN with (J µ N VN γ K Nγ VN = JNν (, µ N,, µ N ) ɛν µ ( k γ γ)... nucleon current, contains form factors!) D. Kupelwieser (Graz) Meson cloud effects 12 / 23

13 Photon coupling to bare nucleon Finally, we get the following 10 time-ordered diagrams: V N e V opt VNe = k N k N 1 m 3 VV Jν N (, µ N, k N, µ N ) g νλ q 2 Jλ e (, µ e,, µ e)... D. Kupelwieser (Graz) Meson cloud effects 13 / 23

14 Photon coupling to dressed nucleon VV g νλ 4 m 3 q 2 k π k N α N α N απ k π k N Dk π 1 ω N ω N k π k N k k π (m M N πe) 1 (m M N πe) 1 Q 5 π(n, N ) J ν N (N, N ) J λ e (e, e ) Q 5 π(n, N ) N D. Kupelwieser (Graz) Meson cloud effects 14 / 23

15 Photon coupling to pion... k π k N k π k N k π k N k π k N... VV g νλ 4 m 3 q 2 α N α N απ ( ω N ω N ω π 1 ( Dk π ω ω N ω N ω N ω 1 π) N ) 1 J λ e (e, e ) Qπ(N, 5 N ) Jπ(π ν, π ) Qπ(N 5, N) D. Kupelwieser (Graz) Meson cloud effects 15 / 23

16 Hadronic diagrams i.e., V N e V opt VNe =... k N k π k N k π k N D. Kupelwieser (Graz) Meson cloud effects 16 / 23

17 Contents 1 Basic Definitions and Motivation 2 Hadronic level 3 Quark level 4 Outlook D. Kupelwieser (Graz) Meson cloud effects 17 / 23

18 Quark-level unity operators Insert quark-level unity operators, e.g. I qqqe = (ω q1 ω q2 ω q3 ω e ) 3 DV D Dk q2 Dk q3 Vqqqe Vqqqe 2ω q1 Photon coupling to bare nucleon now 6 diagrams: V N e V 0 opt VNe = V N e K eγ P Neγ I Neγ I qqqeγ K q 1 γi qqqe VNe V N e K eγ P Neγ I Neγ I qqqeγ K q 2 γi qqqe VNe V N e K eγ P Neγ I Neγ I qqqeγ K q 3 γi qqqe VNe V N e Iqqqe K q1 γi qqqeγ I Neγ P Neγ K eγ VNe V N e Iqqqe K q2 γi qqqeγ I Neγ P Neγ K eγ VNe V N e I qqqe K q3 γi qqqeγ I Neγ P Neγ K eγ VNe D. Kupelwieser (Graz) Meson cloud effects 18 / 23

19 Spectator conditions & Quark current Spectator condition for single struck quark : V q q q e γ K q 1 γ Vqqqe = = VV ee q2 q 2 q 3 q 3 ( 1) M 3 qqqeγ Mqqqe 3 Vq 1 γ K q 1 γ Vq 1 (etc.) with electromagnetic interaction (pointlike quark!) Vq 1 γ K q 1 γ Vq 1 = e Qq1 [u µq1 ( k q1 ) γ ν u µ q1 ( ] k q 1 ) ɛ ν µ ( k γ γ) The I qqqeγ I Neγ give rise to three-quark wave functions V 3q e γ VNeγ = N Neγ3q VV ee γγ 3q N D. Kupelwieser (Graz) Meson cloud effects 19 / 23

20 Quark-level diagrams Have to treat following diagrams: V N e V opt VNe = = 3 I I k N k π k N 3 I I k N k π D. Kupelwieser (Graz) Meson cloud effects 20 / 23

21 Bare photon nucleon vertex Results for first diagram: Hadron picture (as before): V N e Vopt VNe = VV m 3 q 2 J eν(, µ e,, µ e) J ν N (, µ N, k N, µ N ) Quark picture:... V N e V 0 opt VNe = VV m 3 q 2 J eν(, µ e,, µ e)... 2 ω N ω N 1 ω q i ω qi 3 i=1 (µ q1,µ q2,µ q3,µ q ) j i i ( ) d 3 k qj ω qj ( ) ( ) ω q1 ω q2 ω q3 ω qk ω q1 ω q2 ω q3 ωqk ( ω qk ) ( ωqk ) N q i {q j i } q 1 q 2 q 3 N J ν q i ( k qi, µ qi, k q i, µ q i ) D. Kupelwieser (Graz) Meson cloud effects 21 / 23

22 Contents 1 Basic Definitions and Motivation 2 Hadronic level 3 Quark level 4 Outlook D. Kupelwieser (Graz) Meson cloud effects 22 / 23

23 Outlook Finally, what s left to do: Insertion of three-quark wave functions from sophisticated constituent quark model (e.g. XCQM) Extract electromagnetic form factors (also for diagrams with pion loop) Use these form factors in hadronic diagrams Pion form factors from analog procedure (R. Kleinhappel) Sum over all hadronic diagrams yields overall form factors for entire problem Thank you! D. Kupelwieser (Graz) Meson cloud effects 23 / 23

Feynman diagrams. 1 Aim of the game 2

Feynman diagrams. 1 Aim of the game 2 Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

More information

Recent developments in Electromagnetic Hadron Form Factors

Recent developments in Electromagnetic Hadron Form Factors Recent developments in Electromagnetic Hadron Form Factors (JOH7RPDVL*XVWDIVVRQ '$31,$63K16DFOD\ :KDW are Form Factors? :K\ to measure? +RZ to measure? :KDWLVQHZ" Consequences, Conclusions 6SRNHSHUVR QV

More information

Time Ordered Perturbation Theory

Time Ordered Perturbation Theory Michael Dine Department of Physics University of California, Santa Cruz October 2013 Quantization of the Free Electromagnetic Field We have so far quantized the free scalar field and the free Dirac field.

More information

SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY

SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY New College of Florida, 5700 Tamiami Trail, Sarasota, FL 34243, USA E-mail: colladay@sar.usf.edu To date, a significant effort has been made

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009 Three Pictures of Quantum Mechanics Thomas R. Shafer April 17, 2009 Outline of the Talk Brief review of (or introduction to) quantum mechanics. 3 different viewpoints on calculation. Schrödinger, Heisenberg,

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Nucleon Resonances: Study of Their Properties through Photo Pion Production

Nucleon Resonances: Study of Their Properties through Photo Pion Production Nucleon Resonances: Study of Their Properties through Photo Pion Production C. Fernández-Ramírez 1,2, E. Moya de Guerra 1,3,andJ.M.Udías 3 1 Instituto de Estructura de la Materia, CSIC. Serrano 123, E-28006

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Examples of The questions are roughly ordered by chapter but are often connected across the different chapters. Ordering is as in

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde AMPLIFIATION OF ATOMI WAVES BY STIMULATED EMISSION OF ATOMS hristian J. Borde Laboratoire de Physique des Lasers, NRS/URA 8, Universite Paris-Nord, Villetaneuse, France. INTRODUTION: The recent development

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

The physical meaning of scattering matrix singularities in coupled-channel formalisms

The physical meaning of scattering matrix singularities in coupled-channel formalisms Eur. Phys. J. A 35, 53 66 (008) DOI: 0.40/epja/i007-0576- The physical meaning of scattering matrix singularities in coupled-channel formalisms S. Capstick, A. Švarc, L. Tiator, J. Gegelia, M.M. Giannini,

More information

The Standard Model of Particle Physics - II

The Standard Model of Particle Physics - II The Standard Model of Particle Physics II Lecture 4 Gauge Theory and Symmetries Quantum Chromodynamics Neutrinos Eram Rizvi Royal Institution London 6 th March 2012 Outline A Century of Particle Scattering

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

Gravity and running coupling constants

Gravity and running coupling constants Gravity and running coupling constants 1) Motivation and history 2) Brief review of running couplings 3) Gravity as an effective field theory 4) Running couplings in effective field theory 5) Summary 6)

More information

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

More information

Throughout the twentieth century, physicists have been trying to unify. gravity with the Standard Model (SM). A vague statement about quantum

Throughout the twentieth century, physicists have been trying to unify. gravity with the Standard Model (SM). A vague statement about quantum Elko Fields Andrew Lopez Throughout the twentieth century, physicists have been trying to unify gravity with the Standard Model (SM). A vague statement about quantum gravity is that it induces non-locality.

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination

More information

PoS(Baldin ISHEPP XXII)026

PoS(Baldin ISHEPP XXII)026 On the modified Yamaguchi-type functions for the Bethe-Salpeter equation Joint Institute for Nuclear Research, Dubna, Russia E-mail: bondarenko@jinr.ru V. V. Burov Joint Institute for Nuclear Research,

More information

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7 Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle

More information

Quark Confinement and the Hadron Spectrum III

Quark Confinement and the Hadron Spectrum III Quark Confinement and the Hadron Spectrum III Newport News, Virginia, USA 7-12 June 1998 Editor Nathan Isgur Jefferson Laboratory, USA 1lhWorld Scientific.,., Singapore - New Jersey- London -Hong Kong

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Student Book page 831 Concept Check Since neutrons have no charge, they do not create ions when passing through the liquid in a bubble

More information

Advanced Topics in Physics: Special Relativity Course Syllabus

Advanced Topics in Physics: Special Relativity Course Syllabus Advanced Topics in Physics: Special Relativity Course Syllabus Day Period What How 1. Introduction 2. Course Information 3. Math Pre-Assessment Day 1. Morning 1. Physics Pre-Assessment 2. Coordinate Systems

More information

PX408: Relativistic Quantum Mechanics

PX408: Relativistic Quantum Mechanics January 2016 PX408: Relativistic Quantum Mechanics Tim Gershon (T.J.Gershon@warwick.ac.uk) Handout 1: Revision & Notation Relativistic quantum mechanics, as its name implies, can be thought of as the bringing

More information

Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

THREE QUARKS: u, d, s. Precursor 2: Eightfold Way, Discovery of Ω - Quark Model: first three quarks and three colors

THREE QUARKS: u, d, s. Precursor 2: Eightfold Way, Discovery of Ω - Quark Model: first three quarks and three colors Introduction to Elementary Particle Physics. Note 20 Page 1 of 17 THREE QUARKS: u, d, s Precursor 1: Sakata Model Precursor 2: Eightfold Way, Discovery of Ω - Quark Model: first three quarks and three

More information

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas

More information

Prerequisite: High School Chemistry.

Prerequisite: High School Chemistry. ACT 101 Financial Accounting The course will provide the student with a fundamental understanding of accounting as a means for decision making by integrating preparation of financial information and written

More information

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom kw@mssl.ucl.ac.uk

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment

Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment Marc Beckmann FAKULTÄT FÜR PHYSIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG Extraction of Polarised

More information

arxiv:physics/9902008v1 [physics.class-ph] 2 Feb 1999

arxiv:physics/9902008v1 [physics.class-ph] 2 Feb 1999 arxiv:physics/9902008v1 [physics.class-ph] 2 Feb 1999 The energy conservation law in classical electrodynamics E.G.Bessonov Abstract In the framework of the classical Maxwell-Lorentz electrodynamics the

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

How To Find The Higgs Boson

How To Find The Higgs Boson Dezső Horváth: Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 p. 1/25 Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 Dezső Horváth MTA KFKI Research

More information

Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs

Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs Introduction: what is a quantum graph? Areas of application of quantum graphs Motivation of our experiment Experimental

More information

5. Quantizing the Dirac Field

5. Quantizing the Dirac Field 5. Quantizing the Dirac Field We would now like to quantize the Dirac Lagrangian, L = ψ(x) ( i m ) ψ(x) (5.1) We will proceed naively and treat ψ as we did the scalar field. But we ll see that things go

More information

Transverse Spin Structure of the Proton Studied in Semi inclusive DIS

Transverse Spin Structure of the Proton Studied in Semi inclusive DIS Faculteit Wetenschappen Vakgroep Subatomaire en Stralingsfysica Academiejaar 25 26 Transverse Spin Structure of the Proton Studied in Semi inclusive DIS Transversale Spinstructuur van het Proton bestudeerd

More information

Why the high lying glueball does not mix with the neighbouring f 0. Abstract

Why the high lying glueball does not mix with the neighbouring f 0. Abstract Why the high lying glueball does not mix with the neighbouring f 0. L. Ya. Glozman Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-800 Graz, Austria Abstract Chiral symmetry

More information

Quantum Mechanics and Representation Theory

Quantum Mechanics and Representation Theory Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

DOCTOR OF PHILOSOPHY IN PHYSICS

DOCTOR OF PHILOSOPHY IN PHYSICS DOCTOR OF PHILOSOPHY IN PHYSICS The Doctor of Philosophy in Physics program is designed to provide students with advanced graduate training in physics, which will prepare them for scientific careers in

More information

Polarization Observables in Virtual Compton Scattering

Polarization Observables in Virtual Compton Scattering Polarization Observables in Virtual Compton Scattering DISSERTATION zur Erlangung des Grades Doktor der Naturwissenschaften am Fachbereich Physik, Mathematik und Informatik der Johannes Gutenberg-Universität

More information

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model.

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model. Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model Carlos Alfonso Ballon Bayona, Durham University In collaboration with H. Boschi-Filho, N. R. F. Braga, M. Ihl and M. Torres. arxiv:0911.0023,

More information

Mathematicians look at particle physics. Matilde Marcolli

Mathematicians look at particle physics. Matilde Marcolli Mathematicians look at particle physics Matilde Marcolli Year of Mathematics talk July 2008 We do not do these things because they are easy. We do them because they are hard. (J.F.Kennedy Sept. 12, 1962)

More information

The Radiation Theories of Tomonaga, Schwinger, and Feynman

The Radiation Theories of Tomonaga, Schwinger, and Feynman F. J. Dyson, Phys. Rev. 75, 486 1949 The Radiation Theories of Tomonaga, Schwinger, and Feynman F.J. Dyson Institute for Advanced Study, Princeton, New Jersey (Received October 6, 1948) Reprinted in Quantum

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding

More information

The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction.

The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction. 2. Free Fields The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction. Sidney Coleman 2.1 Canonical Quantization In quantum mechanics,

More information

Introduction to Quantum Field Theory. Matthew Schwartz Harvard University

Introduction to Quantum Field Theory. Matthew Schwartz Harvard University Introduction to Quantum Field Theory Matthew Schwartz Harvard University Fall 008 Table of contents The Microscopic Theory of Radiation..................................... 9. Blackbody Radiation..................................................

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Hints on the quadrupole deformation of the (1232)

Hints on the quadrupole deformation of the (1232) RAPID COMMUNICATIONS PHYSICAL REVIEW C 73, 042201(R) (2006) Hints on the quadrupole deformation of the (1232) C. Fernández-Ramírez, 1,2, E. Moya de Guerra, 1,3 and J. M. Udías 3 1 Instituto de Estructura

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Nanoelectronics. Chapter 2 Classical Particles, Classical Waves, and Quantum Particles. Q.Li@Physics.WHU@2015.3

Nanoelectronics. Chapter 2 Classical Particles, Classical Waves, and Quantum Particles. Q.Li@Physics.WHU@2015.3 Nanoelectronics Chapter 2 Classical Particles, Classical Waves, and Quantum Particles Q.Li@Physics.WHU@2015.3 1 Electron Double-Slit Experiment Q.Li@Physics.WHU@2015.3 2 2.1 Comparison of Classical and

More information

3. Open Strings and D-Branes

3. Open Strings and D-Branes 3. Open Strings and D-Branes In this section we discuss the dynamics of open strings. Clearly their distinguishing feature is the existence of two end points. Our goal is to understand the effect of these

More information

Physics 111 Homework Solutions Week #9 - Tuesday

Physics 111 Homework Solutions Week #9 - Tuesday Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we

More information

College of Arts and Sciences

College of Arts and Sciences Note: It is assumed that all prerequisites include, in addition to any specific course listed, the phrase or equivalent, or consent of instructor. 105 SICS AND ASTRONOMY TODAY. (1) This course is intended

More information

Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

More information

Till now, almost all attention has been focussed on discussing the state of a quantum system.

Till now, almost all attention has been focussed on discussing the state of a quantum system. Chapter 13 Observables and Measurements in Quantum Mechanics Till now, almost all attention has been focussed on discussing the state of a quantum system. As we have seen, this is most succinctly done

More information

Quark Model. Quark Model

Quark Model. Quark Model Quark odel Outline Hadrons Isosin Strangeness Quark odel Flavours u d s esons Pseudoscalar and vector mesons Baryons Deculet octet Hadron asses Sin-sin couling Heavy Quarks Charm bottom Heavy quark esons

More information

Special Theory of Relativity

Special Theory of Relativity Special Theory of Relativity In ~1895, used simple Galilean Transformations x = x - vt t = t But observed that the speed of light, c, is always measured to travel at the same speed even if seen from different,

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

Does Quantum Mechanics Make Sense? Size

Does Quantum Mechanics Make Sense? Size Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why

More information

THE MEANING OF THE FINE STRUCTURE CONSTANT

THE MEANING OF THE FINE STRUCTURE CONSTANT THE MEANING OF THE FINE STRUCTURE CONSTANT Robert L. Oldershaw Amherst College Amherst, MA 01002 USA rloldershaw@amherst.edu Abstract: A possible explanation is offered for the longstanding mystery surrounding

More information

Chiral Dynamics of Baryons in the Perturbative Chiral Quark Model

Chiral Dynamics of Baryons in the Perturbative Chiral Quark Model Chiral Dynamics of Baryons in the Perturbative Chiral Quark Model DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Mathematik und Physik der Eberhard-Karls-Universität

More information

MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

More information

Principles of special relativity

Principles of special relativity Principles of special relativity Introduction. Here we shall discuss very succintly the basic principles of special relativity. There are two reasons for doing this. First, when introducing optical devices,

More information

arxiv:hep-ph/0410120v2 2 Nov 2004

arxiv:hep-ph/0410120v2 2 Nov 2004 Photon deflection by a Coulomb field in noncommutative QED C. A. de S. Pires Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-970, João Pessoa - PB, Brazil. Abstract arxiv:hep-ph/0410120v2

More information

It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2

It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2 It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2 by Peter Galison The Einstein Equation of General Relativity

More information

Online Courses for High School Students 1-888-972-6237

Online Courses for High School Students 1-888-972-6237 Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,

More information

Low- and high-energy neutrinos from gamma-ray bursts

Low- and high-energy neutrinos from gamma-ray bursts Low- and high-energy neutrinos from gamma-ray bursts Hylke B.J. Koers Low- and high-energy neutrinos from gamma-ray bursts Hylke B.J. Koers HK and Ralph Wijers, MNRAS 364 (2005), 934 (astro-ph/0505533)

More information

Springer-Verlag Berlin Heidelberg GmbH

Springer-Verlag Berlin Heidelberg GmbH W. Greiner 1. Reinhardt FIELD QUANTIZATION Springer-Verlag Berlin Heidelberg GmbH Greiner Quantum Mechanics An Introduction 3rd Edition Greiner Quantum Mechanics Special Chapters Greiner. MUller Quantum

More information

Lecture 5 Motion of a charged particle in a magnetic field

Lecture 5 Motion of a charged particle in a magnetic field Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a

More information

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions Maya SHIMOMURA Brookhaven National Laboratory, Upton, NY, 11973, U.S.A. PROFILE I am an experimentalist working for high-energy heavy ion at Iowa State University as a postdoctoral research associate.

More information

University of Cambridge Part III Mathematical Tripos

University of Cambridge Part III Mathematical Tripos Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2006 and 2007 Quantum Field Theory University of Cambridge Part III Mathematical Tripos Dr David Tong Department of Applied Mathematics and

More information

Meson spectroscopy and pion cloud effect on baryon masses

Meson spectroscopy and pion cloud effect on baryon masses Meson spectroscopy and pion cloud effect on baryon masses Stanislav Kubrak, Christian Fischer, Helios Sanchis-Alepuz, Richard Williams Justus-Liebig-University, Giessen 13.06.2014 SK, C. Fischer, H. Sanchis-Alepuz,

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

Scuola Raimondo Anni Electro-weak probes in Nuclear Physics. Electron scattering. (a general introduction) Antonio M. Lallena. Universidad de Granada

Scuola Raimondo Anni Electro-weak probes in Nuclear Physics. Electron scattering. (a general introduction) Antonio M. Lallena. Universidad de Granada Scuola Raimondo Anni Electro-weak probes in Nuclear Physics Electron scattering (a general introduction) Antonio M. Lallena Universidad de Granada Otranto, 2013 Outline i. A very short history of electron

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

Specific Intensity. I ν =

Specific Intensity. I ν = Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-directed

More information

Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries

Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries I. Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

More information

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by

More information

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013 A Note on the IR Finiteness of Fermion Loop Diagrams Ambresh Shivaji Harish-Chandra Research Initute, Chhatnag Road, Junsi, Allahabad-09, India arxiv:008.479v hep-ph] 0 Jun 03 Abract We show that the mo

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt Copyright 2008 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

A Guide to Detectors Particle Physics Masterclass. M. van Dijk

A Guide to Detectors Particle Physics Masterclass. M. van Dijk A Guide to Particle Physics Masterclass M. van Dijk 16/04/2013 How detectors work Scintillation Ionization Particle identification Tracking Calorimetry Data Analysis W & Z bosons 2 Reconstructing collisions

More information