ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES"

Transcription

1 16TH WRF USER WORKSHOP, BOULDER, JUNE 2015 ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES Clara Arbizu-Barrena, David Pozo-Vázquez, José A. Ruiz-Arias, Joaquín Tovar-Pescador SOLAR RADIATION AND ATMOSPHERE MODELLING GROUP (MATRAS) DEPARTMENT OF PHYSICS UNIVERSITY OF JAEN SPAIN University of Jaén Spain

2 Mo#va#ons of this work Ø Improvement of solar radiation forecasting reliability: a key issue for solar energy grid integration Ø Reliability of the cloud forecasts is the most important factor that limits this accuracy Ø Scarce works evaluating the reliability of the WRF cloud estimates at high temporal and spatial resolution (i.e. site locations), needed in solar energy applications Ø Evaluation studies are important to improve cloud representation in the WRF 2

3 Motivations of this work Evaluation of the cloud representation reliability in the WRF model: a complex task Ø Clouds are characterized by microscopic and macroscopic parameters Ø Different types of clouds an cloud-related processes Ø Clouds parameters difficult to measure Ø Discrete nature of clouds: double penalty effect Ø The evaluation of the cloud representation in WRF involves the analysis of the role of: Microphysics, cumulus and PBL parameterizations Cloud fraction models Cloud overlapping approaches Spatial and temporal scales 3

4 Aims of this work In this work we aim to evaluate the role of the: Ø Microphysics parameterizations Ø Cloud fraction models Ø Cloud overlapping approaches Ø Spatial and temporal scales..in the reliability of the WRF model cloud macroscopic characteristics representation, i.e.: Ø Cloud occurrence Ø CBH and CTH Ø Cloud fraction 4

5 Evalua#on loca#on and data UNIV. JAEN METEO STATION: Ceilometer (Jenoptik 15k-Nimbus) Ø CBH and CTH estimates based on LIDAR technique Ø Up to 5 cloud layers simultaneously Ø Accuracy of ±5 m, range 5 m to 15 km Ø Measurement every 15 seconds: 5 minutes average TSI-880 Sky camera Ø Hemispheric cloud cover measurements every 30 seconds Study period: 21 days along 2013 Ø Different types of sky conditions 5

6 WRF set up 1. GFS initial and boundary conditions vertical levels hours spin-up 4. outputs saved every 5 minutes 5. 4 nested domains 34, 12, 4 and 1.3 km (evaluated) 6

7 6 Microphysics parameteriza#ons evaluated Acronym Microphysics Scheme Reference WSM6 WRF Single- Moment 6- class scheme [Hong and Lim, 2006] THOM New Thompson et al. scheme [Thompson et al., 2008] MILB Milbrandt- Yau Double- Moment 7- class scheme [Milbrandt and Yau, 2005] MORR Morrison double- moment scheme [Morrison et al., 2009] SBLI Stony Brook University (Y. Lin) scheme [Lin and Colle, 2011] NSSL NSSL 2- moment scheme [Mansell et al., 2010] Other physics prescribed for all the simulations: YSU PBL (Hong et al., 2006), RRTMG short- and long-wave radiation (Iacono et al., 2008), Noah land surface parameterization (Tewari et al., 2004). The parameterization for the cumulus scheme was disabled

8 WRF modeled cloud fraction, cloud occurrence, CBH, CTH and cloud cover Cloud-fraction (CF) is used to verify cloud structures simulated by the WRF against ground observations (ceilometer and sky camera). Two CF parameterizations have been evaluated: 1: Binary CF (BCF), based on a threshold over the cloud liquid water and ice mixing ratios. Only values 0 and 1 are allowed 2: Xu and Randall [1996] CF (XCF), continuous CF value between 0 and 1 are allowed.

9 WRF modeled cloud fraction, cloud occurrence, CBH, CTH and cloud cover Cloud occurrence in the model is here considered whenever the modeled CF >0 The WRF-modeled CBH (CTH) estimates are derived from the height of the lowest (highest) model layer with CF>0 Modeled cloud cover is derived from the CF values using a cloud overlapping scheme. Here, we have evaluated 3: 1. maximum overlap, 2. random overlap, 3. maximum-random overlap.

10 March km 4km 1.3 km Sky camera image ceilometer 10

11 CBH 4 km 12 km

12 Evaluation procedure Cloud occurrence: contingency table Frequency bias: FB= A+B/A+C Cloud occurrences predicted by WRF divided by the total number of cloud occurrences reported by the ceilometer. Perfect model FB=1. WRF Ceilometer Y N Y A B N C D CBH, CTH and cloud cover 12

13 Evaluation procedure 3 spatial resolutions: 12, 4 and 1.3 km 1. Cloud occurrence 2. CBH 3. CTH 4. Cloud cover Temporal resolution: aggregations starting at 5 minutes to 6 hours. 6 microphysics parameterization 2 cloud fraction models 3 cloud overlapping methods

14 RESULTS: WRF CLOUD OCCURRENCE PREDICTION SKILL 5 minutes samples. XCF WRF over-predict the number of observed cloud occurrence events, except for low level clouds at 4 and 1 km FB values for high-level clouds are considerably higher than for middleand low-level clouds. All MPs performs similarly, except WSM6, that shows the best FB. FB slightly better for the 4 and 1.3 km resolutions, caused by the low levels clouds

15 RESULTS: CBH AND CTH PREDICION SKILL 5 minutes samples. XCF Overall, scarce dependence of the results on MPs, except for the BIAS Spa\al resolu\on only important for low level clouds BIAS Model tends to yield too low CBHs and too high CTHs, irrespec\vely of the cloud level considered. Thus, it tends to produce thicker clouds than the observed ones.

16 RESULTS: CBH and CTH prediction skill 5 minutes samples. XCF High level clouds Model systematically underestimates the CBH of high-level clouds by 1100 m, regardless MP and the domain spatial resolution (model locates cloud bases below observed values) Contrarily, CTH of high-level clouds are overestimated ( 700 m ) As a consequence, the WRF-modeled high-level clouds appear thicker

17 RESULTS: CBH AND CTH PREDICTION SKILL 5 minutes samples. XCF Low level clouds Low-level clouds shows lower BIAS and RMSE values for both CBH and CTH compared to high and middle level clouds (vertical resolution!!) Significant dependence of the BIAS on the spatial resolution. CBH RMSE lower for 4 and 1.3 km Scarce role of the MPs choice

18 RESULTS: WRF CLOUD COVER PREDICTION SKILL Evalua\on carried out in an area of km centered at the sta\on loca\on WRF tend to over-predict cloud fraction, positive bias In general, 4 and 1 km experiments, more reliable cloud cover estimates. XCF: WSM6/NSSL MPs best/worst estimates BCF: lower RMSE values, MORR the best performing MPs Differences in RMSE values are lower than 10% There is little dependence on the choice of CF overlapping scheme

19 RESULTS: WRF CLOUD COVER PREDICTION SKILL Time aggrega\on experiment The modeled and observed cloud covers are averaged for aggrega\ng \me intervals in the range from 5 minutes to ~5 hours, by 5 minutes \me increments For shorter averaging time intervals, the experiments with finer spatial resolutions provide lower RMSE values. As the averaging time interval increases, RMSE decreases at a rate of 0.03 cloud cover unit per hour. For averaging time intervals longer than 4 hours, the RMSE decreasing rate slows down and RMSE does not appear to depend on the spatial resolution anymore BCF lower RMSE values than XCF.

20 SUMMARY Cloud occurrence 1. WRF over predicts cloud occurrence of high-level clouds while tends to under-predict the cloud occurrence of low-level clouds for the domains with 4 and 1 km cell spacing. 2. Better prediction skill of the 4 and 1.3 km experiments specially for low level clouds 3. Scarce role of the MPs and the cloud fraction parameterization CBH and CTH 1. Model tends to yield too low CBHs and too high CTHs, irrespectively of the cloud level considered. Thus, it tends to produce thicker clouds than the observed ones. 2. The role of the domain spatial resolution has proven to be only important for low-level clouds, with decreasing CBH error for increasing spatial resolution. 3. The choice of MPs has little influence in the model performance, except for high-level clouds.

21 Cloud cover SUMMARY 1. The model tends to over-predict cloud cover and produce estimates with RMSE values of 0.5 cloud cover unit km and 1 km experiments higher reliability 3. Better performance of the WSM6 MPs 4. Scarce role of the cloud overlapping schemes 5. Temporal aggregation analysis has shown a nearly linear decrease of RMSE as the size of the averaging window increases. 6. Maximum WRF reliability has been observed for averaging time intervals longer than 4 hours. RMSE reduces from about 0.48 to Arbizu- Barrena et al., Under review J. Geophys. Res. Atmospheres.

22 16 TH WRF USER WORKSHOP, BOULDER, JUNE 2015 ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES Arbizu- Barrena et al., Under review J. Geophys. Res. Atmos. Clara Arbizu- Barrena, David Pozo- Vázquez, José A. Ruiz- Arias, Joaquín Tovar- Pescador SOLAR RADIATION AND ATMOSPHERE MODELLING GROUP (MATRAS) DEPARTMENT OF PHYSICS UNIVERSITY OF JAEN SPAIN University of Jaén Spain

ASR CRM Intercomparison Study on Deep Convective Clouds and Aerosol Impacts

ASR CRM Intercomparison Study on Deep Convective Clouds and Aerosol Impacts ASR CRM Intercomparison Study on Deep Convective Clouds and Aerosol Impacts J. FAN, B. HAN, PNNL H. MORRISON, A. VARBLE, S. COLLIS, X. DONG, S. GIANGRANDE, M. JENSEN, P. KOLLIAS, E. MANSELL, T. TOTO April

More information

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,

More information

Very High Resolution Arctic System Reanalysis for 2000-2011

Very High Resolution Arctic System Reanalysis for 2000-2011 Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University

More information

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners

More information

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and

More information

Towards an NWP-testbed

Towards an NWP-testbed Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:

More information

Titelmasterformat durch Klicken. bearbeiten

Titelmasterformat durch Klicken. bearbeiten Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully

More information

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective

More information

Cloud Correction and its Impact on Air Quality Simulations

Cloud Correction and its Impact on Air Quality Simulations Cloud Correction and its Impact on Air Quality Simulations Arastoo Pour Biazar 1, Richard T. McNider 1, Andrew White 1, Bright Dornblaser 3, Kevin Doty 1, Maudood Khan 2 1. University of Alabama in Huntsville

More information

A glance at compensating errors between low-level cloud fraction and cloud optical properties using satellite retrievals

A glance at compensating errors between low-level cloud fraction and cloud optical properties using satellite retrievals A glance at compensating errors between low-level cloud fraction and cloud optical properties using satellite retrievals Christine Nam & Sandrine Bony Laboratoire de Météorologie Dynamique Structure Overview

More information

Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers

Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus

More information

Performance Analysis and Application of Ensemble Air Quality Forecast System in Shanghai

Performance Analysis and Application of Ensemble Air Quality Forecast System in Shanghai Performance Analysis and Application of Ensemble Air Quality Forecast System in Shanghai Qian Wang 1, Qingyan Fu 1, Ping Liu 2, Zifa Wang 3, Tijian Wang 4 1.Shanghai environmental monitoring center 2.Shanghai

More information

A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA

A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA Romanian Reports in Physics, Vol. 66, No. 3, P. 812 822, 2014 ATMOSPHERE PHYSICS A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA S. STEFAN, I. UNGUREANU, C. GRIGORAS

More information

An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models

An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National

More information

Can latent heat release have a negative effect on polar low intensity?

Can latent heat release have a negative effect on polar low intensity? Can latent heat release have a negative effect on polar low intensity? Ivan Føre, Jon Egill Kristjansson, Erik W. Kolstad, Thomas J. Bracegirdle and Øyvind Sætra Polar lows: are intense mesoscale cyclones

More information

The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models

The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models R. T. Cederwall and D. J. Rodriguez Atmospheric Science Division Lawrence Livermore National Laboratory Livermore, California

More information

Simulation of low clouds from the CAM and the regional WRF with multiple nested resolutions

Simulation of low clouds from the CAM and the regional WRF with multiple nested resolutions Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L08813, doi:10.1029/2008gl037088, 2009 Simulation of low clouds from the CAM and the regional WRF with multiple nested resolutions Wuyin

More information

Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4

Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Jingbo Wu and Minghua Zhang Institute for Terrestrial and Planetary Atmospheres

More information

Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models

Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics

More information

Recent efforts to improve GFS physics. Hua-Lu Pan and Jongil Han EMC, NCEP 2010

Recent efforts to improve GFS physics. Hua-Lu Pan and Jongil Han EMC, NCEP 2010 Recent efforts to improve GFS physics Hua-Lu Pan and Jongil Han EMC, NCEP 2010 Proposed Changes Resolution and ESMF Eulerian T574L64 for fcst1 (0-192hr) and T190L64 for fcst2 (192-384 hr). fcst2 step with

More information

Developing sub-domain verification methods based on Geographic Information System (GIS) tools

Developing sub-domain verification methods based on Geographic Information System (GIS) tools APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED U.S. Army Research, Development and Engineering Command Developing sub-domain verification methods based on Geographic Information System (GIS) tools

More information

Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework

Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira

More information

Cloud/Radiation parameterization issues in high resolution NWP

Cloud/Radiation parameterization issues in high resolution NWP Cloud/Radiation parameterization issues in high resolution NWP Bent H Sass Danish Meteorological Institute 10 June 2009 As the horizontal grid size in atmospheric models is reduced the assumptions made

More information

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute

More information

Use of numerical weather forecast predictions in soil moisture modelling

Use of numerical weather forecast predictions in soil moisture modelling Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research ari.venalainen@fmi.fi OBJECTIVE The weather forecast models

More information

Development of a. Solar Generation Forecast System

Development of a. Solar Generation Forecast System ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,

More information

Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology

Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L03803, doi:10.1029/2006gl027314, 2007 Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud

More information

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational

More information

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,

More information

MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION

MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION Blake J. Allen National Weather Center Research Experience For Undergraduates, Norman, Oklahoma and Pittsburg State University, Pittsburg,

More information

Improving Cloud Impacts on Photolysis Rates in Off-Line AQMs

Improving Cloud Impacts on Photolysis Rates in Off-Line AQMs Improving Cloud Impacts on Photolysis Rates in Off-Line AQMs Chris Emery ENVIRON Corporation June 24, 2009 Acknowledgements: K. Baker, B. Timin, EPA/OAQPS Introduction Photochemistry is strongly influenced

More information

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF 3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ

More information

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA M.Derrien 1, H.Le Gléau 1, Jean-François Daloze 2, Martial Haeffelin 2 1 Météo-France / DP / Centre de Météorologie Spatiale. BP 50747.

More information

Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product

Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)

More information

Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS

Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS Joel Norris (SIO/UCSD) Cloud Assessment Workshop April 5, 2005 Outline brief satellite data description upper-level

More information

A new positive cloud feedback?

A new positive cloud feedback? A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly

More information

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang

More information

Validation of SEVIRI cloud-top height retrievals from A-Train data

Validation of SEVIRI cloud-top height retrievals from A-Train data Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary

More information

Description of zero-buoyancy entraining plume model

Description of zero-buoyancy entraining plume model Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more

More information

A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields

A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D13, 4376, doi:10.1029/2002jd003322, 2003 A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields Robert Pincus

More information

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín

More information

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low

More information

Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility

Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric

More information

A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations

A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd009790, 2009 A comparison of simulated cloud radar output from the multiscale modeling framework global climate

More information

Verification of cloud simulation in HARMONIE AROME

Verification of cloud simulation in HARMONIE AROME METCOOP MEMO No. 01, 2013 Verification of cloud simulation in HARMONIE AROME A closer look at cloud cover, cloud base and fog in AROME Karl-Ivar Ivarsson, Morten Køltzow, Solfrid Agersten Front: Low fog

More information

Parameterizing the difference in cloud fraction defined by area and. by volume as observed with radar and lidar

Parameterizing the difference in cloud fraction defined by area and. by volume as observed with radar and lidar Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar MALCOLM E. BROOKS 1 2, ROBIN J. HOGAN, AND ANTHONY J. ILLINGWORTH Department of Meteorology,

More information

Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals

Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation

More information

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University

More information

EVALUATION OF OPERATIONAL MODEL CLOUD REPRESENTATION USING ROUTINE RADAR/LIDAR MEASUREMENTS

EVALUATION OF OPERATIONAL MODEL CLOUD REPRESENTATION USING ROUTINE RADAR/LIDAR MEASUREMENTS 6A.3 EVALUATION OF OPERATIONAL MODEL CLOUD REPRESENTATION USING ROUTINE RADAR/LIDAR MEASUREMENTS Dominique Bouniol GAME/CNRM, CNRS/Météo-France, Toulouse, France Alain Protat CETP, CNRS, Vélizy, Paris

More information

Turbulence-microphysics interactions in boundary layer clouds

Turbulence-microphysics interactions in boundary layer clouds Turbulence-microphysics interactions in boundary layer clouds Wojciech W. Grabowski 1 with contributions from D. Jarecka 2, H. Morrison 1, H. Pawlowska 2, J.Slawinska 3, L.-P. Wang 4 A. A. Wyszogrodzki

More information

Operational Mesoscale NWP at the Japan Meteorological Agency. Tabito HARA Numerical Prediction Division Japan Meteorological Agency

Operational Mesoscale NWP at the Japan Meteorological Agency. Tabito HARA Numerical Prediction Division Japan Meteorological Agency Operational Mesoscale NWP at the Japan Meteorological Agency Tabito HARA Numerical Prediction Division Japan Meteorological Agency NWP at JMA JMA has been operating two NWP models. GSM (Global Spectral

More information

Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements

Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College

More information

Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar

Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar 2248 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62 Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar MALCOLM E. BROOKS,*

More information

1.24 APPLICATION AND DEVELOPMENT OF THE OFIS MODEL WITHIN THE FRAMEWORK OF CITYDELTA

1.24 APPLICATION AND DEVELOPMENT OF THE OFIS MODEL WITHIN THE FRAMEWORK OF CITYDELTA 1.24 APPLICATION AND DEVELOPMENT OF THE MODEL WITHIN THE FRAMEWORK OF CITYDELTA Nicolas Moussiopoulos and Ioannis Douros Laboratory of Heat Transfer and Environmental Engineering, Aristotle University

More information

Near Real Time Blended Surface Winds

Near Real Time Blended Surface Winds Near Real Time Blended Surface Winds I. Summary To enhance the spatial and temporal resolutions of surface wind, the remotely sensed retrievals are blended to the operational ECMWF wind analyses over the

More information

Benefits accruing from GRUAN

Benefits accruing from GRUAN Benefits accruing from GRUAN Greg Bodeker, Peter Thorne and Ruud Dirksen Presented at the GRUAN/GCOS/WIGOS meeting, Geneva, 17 and 18 November 2015 Providing reference quality data GRUAN is designed to

More information

GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency

GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional

More information

Clouds and Convection

Clouds and Convection Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection

More information

Partnership to Improve Solar Power Forecasting

Partnership to Improve Solar Power Forecasting Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office

More information

Science Goals for the ARM Recovery Act Radars

Science Goals for the ARM Recovery Act Radars DOE/SC-ARM-12-010 Science Goals for the ARM Recovery Act Radars JH Mather May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States

More information

Marko Markovic Department of Earth and Atmospheric Sciences. University of Quebec at Montreal

Marko Markovic Department of Earth and Atmospheric Sciences. University of Quebec at Montreal An Evaluation of the Surface Radiation Budget Over North America for a Suite of Regional Climate Models and Reanalysis Data, Part 1: Comparison to Surface Stations Observations Marko Markovic Department

More information

Sub-grid cloud parametrization issues in Met Office Unified Model

Sub-grid cloud parametrization issues in Met Office Unified Model Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of

More information

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France

More information

Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4

Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4 Center for Information Services and High Performance Computing (ZIH) Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4 PARA 2010, June 9, Reykjavík, Iceland Matthias

More information

Cloud Model Verification at the Air Force Weather Agency

Cloud Model Verification at the Air Force Weather Agency 2d Weather Group Cloud Model Verification at the Air Force Weather Agency Matthew Sittel UCAR Visiting Scientist Air Force Weather Agency Offutt AFB, NE Template: 28 Feb 06 Overview Cloud Models Ground

More information

User Perspectives on Project Feasibility Data

User Perspectives on Project Feasibility Data User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia marcel.suri@geomodel.eu http://geomodelsolar.eu http://solargis.info Solar Resources

More information

A process oriented descrip-on of oceanic clouds derived from A- train observa-ons, for climate model evalua-on

A process oriented descrip-on of oceanic clouds derived from A- train observa-ons, for climate model evalua-on A process oriented descrip-on of oceanic clouds derived from A- train observa-ons, for climate model evalua-on D. Konsta, H. Chepfer, JL Dufresne, G. Cesana, S. Bony LMD/IPSL Konsta D. et al : A process

More information

MM5/COSMO-DE Model Inter-Comparison and Model Validation

MM5/COSMO-DE Model Inter-Comparison and Model Validation MM5/COSMO-DE Model Inter-Comparison and Model Validation Klaus Dengler and Christian Keil DLR, Institute of Atmospheric Physics Assessment of forecast quality using observations of the FRA airport campaign

More information

Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP

Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.

More information

A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event

A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016447, 2012 A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event Ping Zhu, 1 Jim Dudhia,

More information

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,

More information

The formation of wider and deeper clouds through cold-pool dynamics

The formation of wider and deeper clouds through cold-pool dynamics The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations

More information

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu

More information

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University

More information

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington

More information

Research Objective 4: Develop improved parameterizations of boundary-layer clouds and turbulence for use in MMFs and GCRMs

Research Objective 4: Develop improved parameterizations of boundary-layer clouds and turbulence for use in MMFs and GCRMs Research Objective 4: Develop improved parameterizations of boundary-layer clouds and turbulence for use in MMFs and GCRMs Steve Krueger and Chin-Hoh Moeng CMMAP Site Review 31 May 2007 Scales of Atmospheric

More information

Meteorological Forecasting of DNI, clouds and aerosols

Meteorological Forecasting of DNI, clouds and aerosols Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What

More information

Comparison of visual observations and automated ceilometer cloud reports at Blindern, Oslo. Anette Lauen Borg Remote sensing MET-Norway

Comparison of visual observations and automated ceilometer cloud reports at Blindern, Oslo. Anette Lauen Borg Remote sensing MET-Norway Comparison of visual observations and automated ceilometer cloud reports at Blindern, Oslo Anette Lauen Borg Remote sensing MET-Norway A test of our ceilometer data To fully exploit our new ceilometer

More information

On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds

On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds Lewis D. Grasso (1) Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado Don Hillger NOAA/NESDIS/STAR/RAMMB,

More information

A MODEL PERFORMANCE EVALUATION SOFTWARE: DESCRIPTION AND APPLICATION TO REGIONAL HAZE MODELING

A MODEL PERFORMANCE EVALUATION SOFTWARE: DESCRIPTION AND APPLICATION TO REGIONAL HAZE MODELING A MODEL PERFORMANCE EVALUATION SOFTWARE: DESCRIPTION AND APPLICATION TO REGIONAL HAZE MODELING Betty Pun, Kristen Lohman, Shiang-Yuh Wu, Shu-Yun Chen and Christian Seigneur Atmospheric and Environmental

More information

Iden%fying CESM cloud and surface biases at Summit, Greenland

Iden%fying CESM cloud and surface biases at Summit, Greenland Iden%fying CESM cloud and surface biases at Summit, Greenland Nathaniel Miller (CU- ATOC, CIRES) MaEhew Shupe, Andrew GeEleman, Jennifer Kay, Line Bourdages CESM Ice Sheet Surface Biases Cross Working

More information

Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect

Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo

More information

Forecaster comments to the ORTECH Report

Forecaster comments to the ORTECH Report Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.

More information

Improving Representation of Turbulence and Clouds In Coarse-Grid CRMs

Improving Representation of Turbulence and Clouds In Coarse-Grid CRMs Improving Representation of Turbulence and Clouds In CoarseGrid CRMs Peter A. Bogenschutz and Steven K. Krueger University of Utah, Salt Lake City, UT Motivation Embedded CRMs in MMF typically have horizontal

More information

REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL

REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics

More information

Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM

Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University

More information

CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons

CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons Shuguang Wang, Adam Sobel, Zhiming Kuang Zhiming & Kerry s workshop Harvard, March 2012 In tropical

More information

Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site

Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site V. Chakrapani, D. R. Doelling, and A. D. Rapp Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics

More information

Cloud Climatology for New Zealand and Implications for Radiation Fields

Cloud Climatology for New Zealand and Implications for Radiation Fields Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom

More information

Overview of BNL s Solar Energy Research Plans. March 2011

Overview of BNL s Solar Energy Research Plans. March 2011 Overview of BNL s Solar Energy Research Plans March 2011 Why Solar Energy Research at BNL? BNL s capabilities can advance solar energy In the Northeast World class facilities History of successful research

More information

Model predicted low-level cloud parameters Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns

Model predicted low-level cloud parameters Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns Atmospheric Research 82 (2006) 83 101 www.elsevier.com/locate/atmos Model predicted low-level cloud parameters Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns

More information

Solarstromprognosen für Übertragungsnetzbetreiber

Solarstromprognosen für Übertragungsnetzbetreiber Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview

More information

Cloud-Resolving Simulations of Convection during DYNAMO

Cloud-Resolving Simulations of Convection during DYNAMO Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.

More information

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:

More information

Turbulent mixing in clouds latent heat and cloud microphysics effects

Turbulent mixing in clouds latent heat and cloud microphysics effects Turbulent mixing in clouds latent heat and cloud microphysics effects Szymon P. Malinowski1*, Mirosław Andrejczuk2, Wojciech W. Grabowski3, Piotr Korczyk4, Tomasz A. Kowalewski4 and Piotr K. Smolarkiewicz3

More information

The Wind Integration National Dataset (WIND) toolkit

The Wind Integration National Dataset (WIND) toolkit The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department

More information

Improving Mesoscale Prediction of Cloud Regime Transitions in LES and NRL COAMPS

Improving Mesoscale Prediction of Cloud Regime Transitions in LES and NRL COAMPS DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Improving Mesoscale Prediction of Cloud Regime Transitions in LES and NRL COAMPS David B. Mechem Atmospheric Science Program,

More information

Various Implementations of a Statistical Cloud Scheme in COSMO model

Various Implementations of a Statistical Cloud Scheme in COSMO model 2 Working Group on Physical Aspects 61 Various Implementations of a Statistical Cloud Scheme in COSMO model Euripides Avgoustoglou Hellenic National Meteorological Service, El. Venizelou 14, Hellinikon,

More information

Wind resources map of Spain at mesoscale. Methodology and validation

Wind resources map of Spain at mesoscale. Methodology and validation Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:mgaston@cener.com

More information

Data assimilation over Northern polar region using WRF and WRFDA

Data assimilation over Northern polar region using WRF and WRFDA Data assimilation over Northern polar region using WRF and WRFDA Zhiquan Liu, Hui-Chuan Lin, and Ying-Hwa Kuo National Center for Atmospheric Research, Boulder, CO, USA David Bromwich and Lesheng Bai Ohio

More information