Predictive Analytics and Risk Models to Prevent Sepsis, Patient Falls, and Readmissions

Size: px
Start display at page:

Download "Predictive Analytics and Risk Models to Prevent Sepsis, Patient Falls, and Readmissions"

Transcription

1 Predictive Analytics and Risk Models to Prevent Sepsis, Patient Falls, and Readmissions

2 Today s Agenda: Provide an overview of Mount Sinai s end-to-end informatics and clinical data analytics approach for quality initiatives. Purpose Solutions Approach Delivery Within our end-to-end framework we will illustrate how we: Leverage risk models and best practice alerts in the electronic health record to identify patients at risk for events. Use phenotypic modeling and informatics-enabled registries to identify and select patient cohorts. Use data trusts and data aggregation for unit level and service area scorecards, to measure hospital performance for QI initiatives. Leverage data for systemized and measurable operational change.

3 Mount Sinai Health System, Who We Are 7 hospital campuses and the Icahn School of Medicine Some facts: 3,535 beds and 135 operating rooms 169,532 inpatient admissions 2,600,000 outpatient visits 489,508 emergency department visits 18,000 babies delivered a year 6,200 physicians, including general practitioners and specialists 2,000+ residents and fellows 36,000 employees

4 Mount Sinai Hospital Office For Excellence in Patent Care Advancing Quality, Safety and Service across the Mount Sinai Health System We intend to produce the safest care, the best outcomes, the highest satisfaction, and the best value of any health system or provider in the New York Metropolitan area Chief Medical Officer Big Data HIT Forum Clinical Data Analytics Team Ken McCardle Senior Director Data Analytics Quality Initiatives Allison Glasser Director Operations Patient Safety

5 Purpose Solutions Approach Delivery Provide an overview of Mount Sinai s end-to-end informatics and clinical data analytics approach for quality and safety initiatives. Purpose in our context is Quality Initiatives

6 Quality Improvement (QI) Model Dimensions add further definition to the model: RN & MD Dyads Service Area Units / Wards Disease Audience etc. External Reporting Monitor and Measure Identify Patient Cohorts Optimize Care Processes Improve Patient Outcomes Take Away: QI is built around the patient experience and patient satisfaction

7 Cohort Identification What patient population do I want to impact? Adult vs. Pediatrics Disease specific (e.g. transplant surgery, sepsis, diabetes, etc..) Financial class (e.g. Medicare, Medicaid, ACO, etc ) Who are our high risk patients? Morbidity and mortality Readmissions Surgical site infections Inpatient falls Take Away: Quality initiatives require a clear definition of who you want to impact Where are the patient s being treated? Emergency department Inpatient ICUs Outpatient (e.g. clinics, faculty practices, etc )

8 Optimize Care Processes Electronic Healthcare Records (EHR) Patient Flags Care Guidelines Clinical Decision Support Risk Models Predictive Analytics Take Away: An EHR is a tool to support clinical processes and does not replace clinical judgment

9 Improve Patient Outcomes Decrease morbidity: e.g. falls, hospital acquired infections, unexpected ICU admissions, etc Decrease mortality: In-hospital, 30-day, raw vs. risk adjusted Improve patient satisfaction: Communications, discharge information, hospital quietness, staff responsiveness, etc Take Away: QI involves making, systemized operational changes that can be measured along with impact to outcomes Decrease readmissions: 7-day, 14-day, 30-day Decrease avoidable admissions

10 Monitor & Measure Monitoring Quality and Outcomes Assessment Using Clinical Data: More timely than hospital billing data (billing data available ~15-30 days after discharge) Used for predictive analytics, risk adjustment, decision support systems, and clinical registries Useful and more usable to clinicians for monitoring care protocols and adherence to guidelines Most often used for evidence-based care, translational research Take Away: Monitoring Measuring Measuring Using Administrative / Billing Data: Used for reimbursement policies and pay-for-performance metrics and is useful for measuring hospitals Large, national datasets made available for health service research

11 External Reporting Who is measuring our performance? CMS / Core Measures Department of Health NQF US News and World Report Registries & Data Consortiums (e.g. Premier, UHC, etc ) What are they measuring? Which patient cohort and how are they defining the cohort? Which outcomes? What processes? What data do I need to report? Administrative vs. clinical data Data dictionary requirements Take Away: External reporting requirements do not typically align with QI initiatives

12 QI Data Challenges Alignment of standard definitions across stakeholders Reconciliation of clinical data and hospital billing/administrative data Data quality assurance, mapping, nomenclatures, data standards, governance EHR Data discrete data elements vs. free text Getting the right data in the right format at the right time in the right hands

13 Purpose Solutions Approach Delivery Provide an overview of Mount Sinai s end-to-end informatics and clinical data analytics approach for quality and safety initiatives. Delivery of portfolio of products for purposes of Quality Initiatives

14 Putting QI Concepts into Action 1. Readmissions: How can we identify and inform clinicians that a patient is a high risk for readmission? How can we prevent avoidable admissions? 2. Sepsis: What is the adherence rates to our stop sepsis bundle? How do our internal metrics compare to the NYS Department of Health metrics? 3. Patient Falls: What units have the highest rates of patient falls? Why are the rates higher on these units? 4. Outcomes: What are the post-operative ventilator failure rates in the cardiac surgery patients?

15 Sepsis Pathway

16 Readmissions Using predictive analytics, clinical and demographic variables determine a risk score to flag patients at risk for readmissions Very high risk High risk Not at risk Clinical decision support in the EHR, calculates the score and flags the patient

17 Readmissions Targeted interventions are employed throughout the hospital and upon discharge Upon discharge, patients with very high and high risk flags are monitored by RNs, regarding follow-up on outpatient appointments Reports are used to track appointments: Date & time With whom and location Appointment status

18 Readmissions Patient Encounter List Emergency Room Tracking Board Once a patient is determined to be at risk to be readmitted, a flag appears in the EHR for all clinicians regardless of patient encounter type Outpatient / Clinics Emergency Department Inpatient Header in Patient Record

19 Sepsis Nursing Clinical Decision Support in the EHR alerts nurses that a patient is at risk for sepsis Nurse Managers receive daily reports to monitor timely completion of sepsis screenings and identify patients at risk

20 Sepsis - Clinical Case Confirmation For patients identified as at risk for Severe Sepsis, clinical reports and scorecards for components of the sepsis bundle are generated and distributed for clinical review Clinical dyad teams confirm diagnosis and provide feedback on each case via an intranet portal

21 Sepsis Internal Monitoring & Measuring Monthly internal report cards are generated with: Outcomes Process metric adherence rates Report cards include results by: All hospital Service area Patient level Distributed to: Hospital leadership Service area leadership Program leaders Program champions

22 Sepsis - External Reporting About 70 data elements are submitted to the NYS DOH quarterly, and the issues reports back to Mount Sinai, benchmarking us to the entire State

23 Purpose Solutions Approach Delivery Continue overview of Mount Sinai s end-to-end informatics and clinical data analytics approach for quality and safety initiatives. Solutions in our context is how to be an effective data support team for purposes of Quality Initiatives

24 Solution Sets Care Process Predictive Models Study Design Cohort Identification Patient Registry Inclusion/Exclusion Reporting Scorecard (metrics) Algebra Outcomes Studies Risk Adjustment (measures) Statistics Business Need Leveraging clinical data for patient quality initiatives, hospital safety improvement, and cohort outcomes assessment.

25 Care Process How can we identify and inform clinicians that a patient is a high risk for readmission? How can we prevent avoidable admissions?

26 Predictive Models Solutions for Quality Improvement Using administrative/claims/ehr data Predictive risk of readmission Using EHR data from nursing documentation MORSE model for falls prevention Using EHR/clinical data Improve c statistics on MORSE model Sequential, mulit-variate modeling (eg. medmed, labs, ICU monitoring, etc) CDIFF, MEWS+ Unexpected ICU admissions/bouncebacks Take Away: Clinical phenotyping helps to identify patient cohorts for care process, care interventions, disease registries, and outcomes studies.

27 % hospitalizations w/ falls Predictive Models Diagnostic characteristics of Morse Score (predictive model for Patient Falls) Sensitivity (ability to identify a condition correctly) 76.3% Specificity (ability to exclude a condition correctly) 69.0% Positive Predictive Value (precision, poor at confirming the fall) 3.8% Negative Predictive Value 99.5% Accuracy (correct classification rate) 69% C-statistic ,000 hospitalizations ~30% patients have high MORSE Take Away: Using baseline data (nursing assessment) from EHR at time of admission is good but can it be improved using big data?

28 Predictive Models Improving MORSE: Additional clinical data variables Hospital Characteristics Bed units, room locations Patient Characteristics Nursing assessment At time of admission (age, BMI, previous hospitalization and OP visits, labs and meds at time of admission, etc) Using EHR/clinical data that are sensitive to hourly/daily patient assessment Med administration sequencing Med-Med combinations and side effects Active monitoring lab results Take Away: Using baseline data (nursing assessment) from EHR at time of admission is good but can it be improved using big data?

29 Cohort Identification What is the adherence rates to our stop sepsis bundle? How do our internal metrics compare to the New York State Department of Health metrics?

30 Cohort Identification Oh, here s the problem. He s got a doohickey on his thingamabob.

31 Cohort Identification Sepsis Incidence: 6 months data, ,080 cases Dombrovskiy model for sepsis and severe sepsis (incidence rate methodology using ICD-9 codes for septicemia and organ dysfunction) ,501 cases possible inclusion criteria as sepsis and severe sepsis (NQF) using or cases possible severe sepsis (Mount Sinai Hospital) using EHR predictive model Take Away: Different definitions yield different cohorts. Concurrent patient identification allows opportunity for improvement at the point of care.

32 Patient Registries Solutions for Quality Improvement Coding terminology versus Clinical ontology Regulatory data registries, meaningful use, and public reporting typically identify patients through admin/claims ICD-9 coding. CMS/JC measures, NQF Society-based patient data registries typically use clinical ontologies for case ascertainment. Evidence-based practices, P4P measures Allows opportunity for improvement at the point of care. Take Away: Clinical data registries include case adjudication and data reconciliation process. (At MSH, weekly patient lists also double as data QA process)

33 Reporting What units have the highest rates of patient falls? Why are the rates higher on these units?

34 Reporting Solutions for Quality Improvement Data registries allow for conformed dimensions to meet the needs of care monitoring and quality measuring Registries combined with additional data sources to develop data marts (eg. procedures, episodes) Analytics tables for dimensions, calculations Risk adjustment: empirical and MSH cohort Outcomes Studies Data Analytics Data Quality Clinical Data Registries Data Stewardship Clinical Informatics Phenotypic Modeling Take Away: Clinical data registries become conformed dimensions with data marts built for agile analytics, reporting, and ad-hoc queries.

35 Outcomes Studies What is the respiratory failure rate in the cardiac surgery patient? Is respirator failure defined by prolonged ventilator times > 24 hours? What is ventilator times for CT ICU excluding OR ventilator period? Maybe we need to exclude transplant and VAD cases? Does this ventilator time include re-intubation periods? Are bounce-back CT ICU patients included in these counts? Maybe we need to exclude those patients with trach? Do you have risk adjustment model for prolonged ventilation? What is the correlation of surgeon clamp time to CT ICU ventilator? Is there a difference in patients returning from OR after 5pm? Is there a difference in patients extubated on weekend? In the CT ICU we changes our Attending staff model in October 2013, did ventilator times drop after this with statistical significance?

36 Outcomes Studies Solutions for Quality Improvement Electronic Health Record Patient Cohort Clinical Data Registries Data Dictionary Enterprise Data Warehouse Data Mart Take Away: Outcomes studies and statistical data analysis used for quality measures, risk adjustment, and assessment of rules-based clinical pathways. Statisticians use same data sets for data mining and charting.

37 Purpose Solutions Approach Delivery Continue overview of Mount Sinai s end-to-end informatics and clinical data analytics approach for quality and safety initiatives. Approach is implementation of data management best practices in alignment to purpose and delivery of Quality Initiatives.

38 Team Approach Team Roles Knowledge Sharing Data Stewardship Agile Approach The goal is to provide routine data monitoring and implementation of data management best practices to increase and optimize the value of clinical data. Solution Sets Care Process Cohort Identification Reporting Outcomes Studies

39 Team Roles RN Clinical Data Coordinators Clinical Data Managers Result Quality Data Quality Data Management Analysts Information Quality Data Analysts Statisticians Take Away: The people and work effort behind tools, logic, and databases are most important assets in making useful and usable clinical data for QAPI initiatives. QAPI Managers Decision Quality Data Scientists

40 Knowledge Sharing Solutions for Quality Improvement Data dictionary Clinical definitions Measures catalog Data stewardship OPs manual STS_Ver STS_Short_Nam Measure_Name Measure_Description STS_Section sion e Indicates whether the patient was alive or dead at discharge from the hospitalization in which surgery occurred. Includes patients who died after transfer to another acute InHosMort care hospital. Q. Mortality 2.73 MtDCStat Indicates whether the patient was alive or dead at 30 days post surgery (whether in 30DMort hospital or not). Q. Mortality 2.73 Mt30Stat Operative Mortality includes: (1) all deaths, regardless of cause, occurring during the hospitalization in which the operation was performed, even if after 30 days (including patients transferred to other acute care facilities); and (2) all deaths, regardless of cause, occurring after discharge from the hospital, but before the end of the thirtieth OpMort postoperative day Q. Mortality 2.73 MtOpD Number of patients undergoing isolated CABG who require return to the operating room for mediastinal bleeding with or without tamponade, graft occlusion, valve AnyReopNQF dysfunction, or other cardiac reason P. Postoperative Events 2.73 COpReBld Number of patients undergoing isolated CABG who require return to the operating room for mediastinal bleeding with or without tamponade, graft occlusion, valve AnyReopNQF dysfunction, or other cardiac reason P. Postoperative Events 2.73 COpReVlv Number of patients undergoing isolated CABG who require return to the operating room for mediastinal bleeding with or without tamponade, graft occlusion, valve AnyReopNQF dysfunction, or other cardiac reason P. Postoperative Events 2.73 COpReGft Number of patients undergoing isolated CABG who require return to the operating room for mediastinal bleeding with or without tamponade, graft occlusion, valve AnyReopNQF dysfunction, or other cardiac reason P. Postoperative Events 2.73 COpReOth Indicate whether a deep sternal wound infection or mediastinitis was diagnosed DeStWoInf within 30 days of the procedure or any time during the hospitalization for surgery. P. Postoperative Events 2.73 CIStDeep Take Away: Staff share in clinical and knowledge discovery process through common data dictionaries and better assist in data wrangling activities.

41 Data Stewardship Solutions for Quality Improvement The value of clinical data as used for quality improvement and data analytics are defined through key attributes and contributing factors: Purposeful Timeliness Reconciliation Data Quality Accessible Informative Result Quality Data Quality Information Quality Take Away: Clinical data registries in data stewardship program have support model, staff productivity metrics, and data quality assurance measures. Decision Quality

42 Agile Approach Solutions for Quality Improvement Agile approach promotes iterative process and team interaction Internal teams work off of JIRA (issue tracking product) Internal documentation through sharepoint and wiki pages Collaborative teams share files through Box.com (account through Mount Sinai) Take Away: Perfect is the enemy of good is an aphorism commonly attributed to Voltaire. (also can be said, Perfect is the enemy of done. )

43 Concluding Thoughts Impacting operational change in clinical settings requires systemization, focus, team approach, and agile responsiveness. Throughout our presentation, we shared a few takeaways with you. In summary: Systemization knowing where/when/why in the care processes Focus - there is complexity of working with large clinical datasets: fraught with multiple paths (project creep, changing measures, etc.) Team approach communication across clinical and technical and front-end and back-end is essential Agile responsiveness quality improvement methodology requires an iterative design and adaptation to dynamic environment

44 Ken McCardle Allison Glasser Mount Sinai Health System

45 Appendix

46 Delivery: Sepsis - Providers Providers receive an alert on their patient list when a patient meets criteria for risk of sepsis. Guidelines, order sets and documentation templates are in the EHR Service Area Leaders receive daily reports to monitor timely completion of provider documentation

For trauma, there are some additional attributes that are unique and complex:

For trauma, there are some additional attributes that are unique and complex: Saving Lives, Reducing Costs of Trauma Care Trauma Center Association of America Model of Value Based Trauma Care to Evaluate, Test and Pilot July 25, 2013 Unique Nature of Trauma Injury and Treatment:

More information

Leadership Summit for Hospital and Post-Acute Long Term Care Providers May 12, 2015

Leadership Summit for Hospital and Post-Acute Long Term Care Providers May 12, 2015 Leveraging the Continuum to Avoid Unnecessary Utilization While Improving Quality Leadership Summit for Hospital and Post-Acute Long Term Care Providers May 12, 2015 Karim A. Habibi, FHFMA, MPH, MS Senior

More information

Predicting What Matters Using Predictive Analytics to Reduce Suffering, Save Lives, and Optimize the Cost of Care

Predicting What Matters Using Predictive Analytics to Reduce Suffering, Save Lives, and Optimize the Cost of Care Predicting What Matters Using Predictive Analytics to Reduce Suffering, Save Lives, and Optimize the Cost of Care Predictive Analytics for Population Health Management NCHICA Learning Objectives By the

More information

Clintegrity 360 QualityAnalytics

Clintegrity 360 QualityAnalytics WHITE PAPER Clintegrity 360 QualityAnalytics Bridging Clinical Documentation and Quality of Care HEALTHCARE EXECUTIVE SUMMARY The US Healthcare system is undergoing a gradual, but steady transformation.

More information

FROM DATA TO KNOWLEDGE: INTEGRATING ELECTRONIC HEALTH RECORDS MEANINGFULLY INTO OUR NURSING PRACTICE

FROM DATA TO KNOWLEDGE: INTEGRATING ELECTRONIC HEALTH RECORDS MEANINGFULLY INTO OUR NURSING PRACTICE FROM DATA TO KNOWLEDGE: INTEGRATING ELECTRONIC HEALTH RECORDS MEANINGFULLY INTO OUR NURSING PRACTICE Rayne Soriano MS, RN Manager of Nursing Informatics and Clinical Transformation Program Kaiser Permanente

More information

WHITE PAPER. QualityAnalytics. Bridging Clinical Documentation and Quality of Care

WHITE PAPER. QualityAnalytics. Bridging Clinical Documentation and Quality of Care WHITE PAPER QualityAnalytics Bridging Clinical Documentation and Quality of Care 2 EXECUTIVE SUMMARY The US Healthcare system is undergoing a gradual, but steady transformation. At the center of this transformation

More information

Toward Meaningful Use of HIT

Toward Meaningful Use of HIT Toward Meaningful Use of HIT Fred D Rachman, MD Health and Medicine Policy Research Group HIE Forum March 24, 2010 Why are we talking about technology? To improve the quality of the care we provide and

More information

Title: An Organized Strategic Focus to Achieve National Patient Safety Goals (NSPGs) Augmented by an Electronic Medical Record (EMR)

Title: An Organized Strategic Focus to Achieve National Patient Safety Goals (NSPGs) Augmented by an Electronic Medical Record (EMR) Title: An Organized Strategic Focus to Achieve National Patient Safety Goals (NSPGs) Augmented by an Electronic Medical Record (EMR) Authors: Stephen T. Lawless, MD, MBA, Vice President, Quality and Safety

More information

Big Data Analytics in Healthcare In pursuit of the Triple Aim with Analytics. David Wiggin, Director, Industry Marketing, Teradata 20 November, 2014

Big Data Analytics in Healthcare In pursuit of the Triple Aim with Analytics. David Wiggin, Director, Industry Marketing, Teradata 20 November, 2014 Big Data Analytics in Healthcare In pursuit of the Triple Aim with Analytics David Wiggin, Director, Industry Marketing, Teradata 20 November, 2014 Agenda The Triple Aim Population Health in Russia The

More information

Empowering Value-Based Healthcare

Empowering Value-Based Healthcare Empowering Value-Based Healthcare Episode Connect, Remedy s proprietary suite of software applications, is a powerful platform for managing value-based payment programs. Delivered via the web or mobile

More information

June 25, 2012. Dear Acting Administrator Tavenner,

June 25, 2012. Dear Acting Administrator Tavenner, June 25, 2012 Marilyn B. Tavenner, RN, Acting Administrator Centers for Medicare and Medicaid Services Department of Health and Human Services Attention: CMS-1588-P P.O. Box 8011 Baltimore, MD 21244-1850

More information

AMERICAN BURN ASSOCIATION BURN CENTER VERIFICATION REVIEW PROGRAM Verificatoin Criterea EFFECTIVE JANUARY 1, 2015. Criterion. Level (1 or 2) Number

AMERICAN BURN ASSOCIATION BURN CENTER VERIFICATION REVIEW PROGRAM Verificatoin Criterea EFFECTIVE JANUARY 1, 2015. Criterion. Level (1 or 2) Number Criterion AMERICAN BURN ASSOCIATION BURN CENTER VERIFICATION REVIEW PROGRAM Criterion Level (1 or 2) Number Criterion BURN CENTER ADMINISTRATION 1. The burn center hospital is currently accredited by The

More information

Accountable Care Organization

Accountable Care Organization Accountable Care Organization April 13, 2011 The Indianapolis Association of Health Underwriters Drivers of Payment Reform Increased attention to regional variation in costs and quality Payment for care

More information

Find the signal in the noise

Find the signal in the noise Find the signal in the noise Electronic Health Records: The challenge The adoption of Electronic Health Records (EHRs) in the USA is rapidly increasing, due to the Health Information Technology and Clinical

More information

Using Predictive Analytics to Improve Sepsis Outcomes 4/23/2014

Using Predictive Analytics to Improve Sepsis Outcomes 4/23/2014 Using Predictive Analytics to Improve Sepsis Outcomes 4/23/2014 Ryan Arnold, MD Department of Emergency Medicine and Value Institute Christiana Care Health System, Newark, DE Susan Niemeier, RN Chief Nursing

More information

IDENTIFYING CLINICAL RESEARCH QUESTIONS THAT FIT PRACTICE PRIORITIES. Module I: Identifying Good Questions

IDENTIFYING CLINICAL RESEARCH QUESTIONS THAT FIT PRACTICE PRIORITIES. Module I: Identifying Good Questions 1 IDENTIFYING CLINICAL RESEARCH QUESTIONS THAT FIT PRACTICE PRIORITIES Module I: Identifying Good Questions Objective Describe how to find good clinical questions for research. 2 ntifying good clinical

More information

1a-b. Title: Clinical Decision Support Helps Memorial Healthcare System Achieve 97 Percent Compliance With Pediatric Asthma Core Quality Measures

1a-b. Title: Clinical Decision Support Helps Memorial Healthcare System Achieve 97 Percent Compliance With Pediatric Asthma Core Quality Measures 1a-b. Title: Clinical Decision Support Helps Memorial Healthcare System Achieve 97 Percent Compliance With Pediatric Asthma Core Quality Measures 2. Background Knowledge: Asthma is one of the most prevalent

More information

Transformational Data-Driven Solutions for Healthcare

Transformational Data-Driven Solutions for Healthcare Transformational Data-Driven Solutions for Healthcare Transformational Data-Driven Solutions for Healthcare Today s healthcare providers face increasing pressure to improve operational performance while

More information

THE ROLE OF LONG TERM ACUTE CARE HOSPITALS IN THE ACUTE CARE CONTINUUM. Wednesday, June 02, 2010

THE ROLE OF LONG TERM ACUTE CARE HOSPITALS IN THE ACUTE CARE CONTINUUM. Wednesday, June 02, 2010 THE ROLE OF LONG TERM ACUTE CARE HOSPITALS IN THE ACUTE CARE CONTINUUM Wednesday, June 02, 2010 As A Provider Of Continuing Nursing Education, Triumph Healthcare Is Required By Texas Nurses Association

More information

Empowering Value-Based Healthcare

Empowering Value-Based Healthcare Empowering Value-Based Healthcare Episode Connect, Remedy s proprietary suite of software applications, is a powerful platform for managing value based payment programs. Delivered via the web or mobile

More information

Using Predictive Analytics to Reduce COPD Readmissions

Using Predictive Analytics to Reduce COPD Readmissions Using Predictive Analytics to Reduce COPD Readmissions Agenda Information about PinnacleHealth Today s Environment PinnacleHealth Case Study Questions? PinnacleHealth System Non-profit, community teaching

More information

The State of U.S. Hospitals Relative to Achieving Meaningful Use Measurements. By Michael W. Davis Executive Vice President HIMSS Analytics

The State of U.S. Hospitals Relative to Achieving Meaningful Use Measurements. By Michael W. Davis Executive Vice President HIMSS Analytics The State of U.S. Hospitals Relative to Achieving Meaningful Use Measurements By Michael W. Davis Executive Vice President HIMSS Analytics Table of Contents 1 2 3 9 15 18 Executive Summary Study Methodology

More information

Predictive Analytics in Action: Tackling Readmissions

Predictive Analytics in Action: Tackling Readmissions Predictive Analytics in Action: Tackling Readmissions Jason Haupt Sr. Statistician & Manager of Clinical Analysis July 17, 2013 Agenda Background Lifecycle Current status Discussion 2 Goals for today Describe

More information

Meaningful Use. Medicare and Medicaid EHR Incentive Programs

Meaningful Use. Medicare and Medicaid EHR Incentive Programs Meaningful Use Medicare and Medicaid Table of Contents What is Meaningful Use?... 1 Table 1: Patient Benefits... 2 What is an EP?... 4 How are Registration and Attestation Being Handled?... 5 What are

More information

2.b.vii Implementing the INTERACT Project (Inpatient Transfer Avoidance Program for SNF)

2.b.vii Implementing the INTERACT Project (Inpatient Transfer Avoidance Program for SNF) 2.b.vii Implementing the INTERACT Project (Inpatient Transfer Avoidance Program for SNF) Project Objective: Skilled nursing facilities (SNFs) will implement the evidence based INTERACT program developed

More information

DSRIP QUARTERLY REVIEW PROCESS: Project Requirement - Timeframe. Project Requirement - Unit Level Reporting

DSRIP QUARTERLY REVIEW PROCESS: Project Requirement - Timeframe. Project Requirement - Unit Level Reporting DSRIP QUARTERLY REVIEW PROCESS: PPSs will submit a quarterly report to the Independent Assessor throughout the DSRIP program via the automated MAPP tool which includes Domain 1 DSRIP Requirement Milestone

More information

HIMSS Electronic Health Record Definitional Model Version 1.0

HIMSS Electronic Health Record Definitional Model Version 1.0 HIMSS Electronic Health Record Definitional Model Version 1.0 Prepared by HIMSS Electronic Health Record Committee Thomas Handler, MD. Research Director, Gartner Rick Holtmeier, President, Berdy Systems

More information

Online Supplement to Clinical Peer Review Programs Impact on Quality and Safety in U.S. Hospitals, by Marc T. Edwards, MD

Online Supplement to Clinical Peer Review Programs Impact on Quality and Safety in U.S. Hospitals, by Marc T. Edwards, MD Online Supplement to Clinical Peer Review Programs Impact on Quality and Safety in U.S. Hospitals, by Marc T. Edwards, MD Journal of Healthcare Management 58(5), September/October 2013 Tabulated Survey

More information

CMS Quality Measurement and Value Based Purchasing Programs Kate Goodrich, MD MHS Director, Quality Measurement and Health Assessment Group, CMS

CMS Quality Measurement and Value Based Purchasing Programs Kate Goodrich, MD MHS Director, Quality Measurement and Health Assessment Group, CMS CMS Quality Measurement and Value Based Purchasing Programs Kate Goodrich, MD MHS Director, Quality Measurement and Health Assessment Group, CMS American Urological Association Quality Improvement Summit

More information

I n t e r S y S t e m S W h I t e P a P e r F O R H E A L T H C A R E IT E X E C U T I V E S. In accountable care

I n t e r S y S t e m S W h I t e P a P e r F O R H E A L T H C A R E IT E X E C U T I V E S. In accountable care I n t e r S y S t e m S W h I t e P a P e r F O R H E A L T H C A R E IT E X E C U T I V E S The Role of healthcare InfoRmaTIcs In accountable care I n t e r S y S t e m S W h I t e P a P e r F OR H E

More information

Improving Health with Healthcare Intelligence

Improving Health with Healthcare Intelligence 1 Improving Health with Healthcare Intelligence iht2 Health IT Summit Seattle Thursday, 23 August 2012 Dick Gibson MD PhD Chief Healthcare Intelligence Officer Providence Health & Services Renton WA Agenda

More information

Collaborative Intelligence: Unlocking the Power of Narrative Documentation

Collaborative Intelligence: Unlocking the Power of Narrative Documentation M*Modal White Paper WP CI Collaborative Intelligence: Unlocking the Power of Narrative Documentation See us at HIMSS booth 5725 WP CI Page 2 Current Situation The healthcare industry is currently undergoing

More information

Understanding Diagnosis Assignment from Billing Systems Relative to Electronic Health Records for Clinical Research Cohort Identification

Understanding Diagnosis Assignment from Billing Systems Relative to Electronic Health Records for Clinical Research Cohort Identification Understanding Diagnosis Assignment from Billing Systems Relative to Electronic Health Records for Clinical Research Cohort Identification Russ Waitman Kelly Gerard Daniel W. Connolly Gregory A. Ator Division

More information

Journey to Excellence

Journey to Excellence Journey to Excellence Kevin W. Sowers, MSN, RN, FAAN President, Duke University Hospital 2 Agenda Introduction to Duke Medicine Call to Action: The Jesica Santillan Story Duke University Hospital s Journey

More information

State HAI Template Utah. 1. Develop or Enhance HAI program infrastructure

State HAI Template Utah. 1. Develop or Enhance HAI program infrastructure State HAI Template Utah 1. Develop or Enhance HAI program infrastructure Successful HAI prevention requires close integration and collaboration with state and local infection prevention activities and

More information

Guidelines for the Operation of Burn Centers

Guidelines for the Operation of Burn Centers C h a p t e r 1 4 Guidelines for the Operation of Burn Centers............................................................. Each year in the United States, burn injuries result in more than 500,000 hospital

More information

The use of EHR data in quality improvement reports and clinical automatic calculators in ICU

The use of EHR data in quality improvement reports and clinical automatic calculators in ICU The use of EHR data in quality improvement reports and clinical automatic calculators in ICU Jun 2014 Vitaly Herasevich, MD, PhD, MSs Assistant Professor of Medicine and Anesthesiology, Department of Anesthesiology,

More information

MSH Quality Improvement Plans (QIP): Progress Report for 2013/14 QIP

MSH Quality Improvement Plans (QIP): Progress Report for 2013/14 QIP Excellent Care for All Act, (ECFAA) MSH Quality Improvement Plans (QIP): Report for QIP The following template has been provided to assist with completion of reporting on the progress of your organization

More information

New York ehealth Collaborative. Health Information Exchange and Interoperability April 2012

New York ehealth Collaborative. Health Information Exchange and Interoperability April 2012 New York ehealth Collaborative Health Information Exchange and Interoperability April 2012 1 Introductions Information exchange patient, information, care team How is Health information exchanged Value

More information

Improving Outcomes and Saving Lives in Real Time: How Hospitals Can Use Predictive Analytics Across the Care Continuum Essential Hospitals Engagement

Improving Outcomes and Saving Lives in Real Time: How Hospitals Can Use Predictive Analytics Across the Care Continuum Essential Hospitals Engagement Improving Outcomes and Saving Lives in Real Time: How Hospitals Can Use Predictive Analytics Across the Care Continuum Essential Hospitals Engagement Network February 18, 2015 CHAT FEATURE The chat tool

More information

Home Health Care Today: Higher Acuity Level of Patients Highly skilled Professionals Costeffective Uses of Technology Innovative Care Techniques

Home Health Care Today: Higher Acuity Level of Patients Highly skilled Professionals Costeffective Uses of Technology Innovative Care Techniques Comprehensive EHR Infrastructure Across the Health Care System The goal of the Administration and the Department of Health and Human Services to achieve an infrastructure for interoperable electronic health

More information

See page 331 of HEDIS 2013 Tech Specs Vol 2. HEDIS specs apply to plans. RARE applies to hospitals. Plan All-Cause Readmissions (PCR) *++

See page 331 of HEDIS 2013 Tech Specs Vol 2. HEDIS specs apply to plans. RARE applies to hospitals. Plan All-Cause Readmissions (PCR) *++ Hospitalizations Inpatient Utilization General Hospital/Acute Care (IPU) * This measure summarizes utilization of acute inpatient care and services in the following categories: Total inpatient. Medicine.

More information

Accountable Care: Implications for Managing Health Information. Quality Healthcare Through Quality Information

Accountable Care: Implications for Managing Health Information. Quality Healthcare Through Quality Information Accountable Care: Implications for Managing Health Information Quality Healthcare Through Quality Information Introduction Healthcare is currently experiencing a critical shift: away from the current the

More information

High Rehospitalization Rates: Evaluation and Impact

High Rehospitalization Rates: Evaluation and Impact High Rehospitalization Rates: Evaluation and Impact May 29, 2009 Denise Remus, PhD, RN Chief Quality Officer, BayCare Health System BayCare Health System BayCare is the largest full-service, community-based

More information

Interconnectivity Respiratory Therapy and the Electronic Health Record

Interconnectivity Respiratory Therapy and the Electronic Health Record Interconnectivity Respiratory Therapy and the Electronic Health Record A non-geeks understanding Prepared for the ISRC state conference June 2011 Speaker: Patti Baltisberger RRT (turquoise rhinestone alien)

More information

Technology and Analytics Roadmap Positioning for the Future

Technology and Analytics Roadmap Positioning for the Future Technology and Analytics Roadmap Positioning for the Future ASU Summer Institute July 15, 2015 Suzanne Rabideau, Rabideau Consulting Brian Jung, MSS Technologies www.msstech.com Introductions Background

More information

Enterprise Analytics Strategic Planning

Enterprise Analytics Strategic Planning Enterprise Analytics Strategic Planning June 5, 2013 1 "The first question a data driven organization needs to ask itself is not "what do we think?" but rather "what do we know? Big Data: The Management

More information

Presenters. How to Maximize Technology to Improve Care and Reduce Cost 9/17/2015

Presenters. How to Maximize Technology to Improve Care and Reduce Cost 9/17/2015 How to Maximize Technology to Improve Care and Reduce Cost Presenters Justin Miller Director of Synergy Jordan Health services Dallas, TX jmiller@jhsi.com Justine Garcia Director of Software Solutions

More information

Re: Comments on 2015 Interoperability Standards Advisory Best Available Standards and Implementation Specifications

Re: Comments on 2015 Interoperability Standards Advisory Best Available Standards and Implementation Specifications April 29, 2015 Karen DeSalvo, MD, MPH, MSc National Coordinator Office of National Coordinator for Health IT Department of Health and Human Services 200 Independence Ave, SW Washington, DC 20201 Re: Comments

More information

Unified Communication Strategy Improves Patient Experience, Outcomes

Unified Communication Strategy Improves Patient Experience, Outcomes Unified Communication Strategy Improves Patient Experience, Outcomes Sue Murphy, RN BSN MS Chief Experience and Innovation Officer Sunitha K. Sastry, MPH Director, Experience Improvement and Innovation

More information

Avoiding Rehospitalizations in LTC Chris Osterberg, RN BSN Pathway Health Services

Avoiding Rehospitalizations in LTC Chris Osterberg, RN BSN Pathway Health Services Avoiding Rehospitalizations in LTC Chris Osterberg, RN BSN Pathway Health Services Objectives Understand the new consequences to hospitals for discharged clients being re-admitted within selected time

More information

Application of Engineering Principles to Patient Flow & Healthcare Delivery

Application of Engineering Principles to Patient Flow & Healthcare Delivery Application of Engineering Principles to Patient Flow & Healthcare Delivery Jeanne M Huddleston, MD, MS Medical Director, Health Care Systems Engineering Mayo Clinic 2013 MFMER slide-1 2013 MFMER slide-2

More information

Defining the Core Clinical Documentation Set

Defining the Core Clinical Documentation Set Defining the Core Clinical Documentation Set for Coding Compliance Quality Healthcare Through Quality Information It is time to examine coding compliance policy and test it against the upcoming challenges

More information

CMS Innovation Center Improving Care for Complex Patients

CMS Innovation Center Improving Care for Complex Patients CMS Innovation Center Improving Care for Complex Patients ECRI Institute Dr. Patrick Conway, M.D., MSc CMS Chief Medical Officer and Deputy Administrator for Innovation and Quality Director, Center for

More information

Readmissions as an Enterprise Priority. Presenters 4/17/2014

Readmissions as an Enterprise Priority. Presenters 4/17/2014 Readmissions as an Enterprise Priority April 24, 2014 Presenters Vincent A. Maniscalco, MPA, LNHA Administrator Middletown Park Rehabilitation and Health Care Center Vmaniscalco@parkmanorrehab.com Eileen

More information

Population Health Solutions for Employers MEDIA RESOURCES

Population Health Solutions for Employers MEDIA RESOURCES Population Health Solutions for Employers MEDIA RESOURCES ABOUT MISSIONPOINT MissionPoint s mission is to make healthcare more affordable, accessible and improve the quality of care for our members. MissionPoint

More information

ADVANCING MEASUREMENT OF PATIENT- CENTERED OUTCOMES AND QUALITY METRICS WITH ELECTRONIC HEALTH RECORDS

ADVANCING MEASUREMENT OF PATIENT- CENTERED OUTCOMES AND QUALITY METRICS WITH ELECTRONIC HEALTH RECORDS ADVANCING MEASUREMENT OF PATIENT- CENTERED OUTCOMES AND QUALITY METRICS WITH ELECTRONIC HEALTH RECORDS Tina Hernandez-Boussard, PhD, MPH, MS Director, Surgical Health Services Research Unit Assistant Professor

More information

Leveraging EHR to Improve Patient Safety: A Davies Story

Leveraging EHR to Improve Patient Safety: A Davies Story Leveraging EHR to Improve Patient Safety: A Davies Story Claudia Colgan, Vice President of Quality Initiatives Bruce Darrow, MD, PhD, Interim Chief Medical Information Officer Jill Kalman, MD, Director

More information

Using Medicare Hospitalization Information and the MedPAR. Beth Virnig, Ph.D. Associate Dean for Research and Professor University of Minnesota

Using Medicare Hospitalization Information and the MedPAR. Beth Virnig, Ph.D. Associate Dean for Research and Professor University of Minnesota Using Medicare Hospitalization Information and the MedPAR Beth Virnig, Ph.D. Associate Dean for Research and Professor University of Minnesota MedPAR Medicare Provider Analysis and Review Includes information

More information

ACCOUNTABLE CARE ANALYTICS: DEVELOPING A TRUSTED 360 DEGREE VIEW OF THE PATIENT

ACCOUNTABLE CARE ANALYTICS: DEVELOPING A TRUSTED 360 DEGREE VIEW OF THE PATIENT ACCOUNTABLE CARE ANALYTICS: DEVELOPING A TRUSTED 360 DEGREE VIEW OF THE PATIENT Accountable Care Analytics: Developing a Trusted 360 Degree View of the Patient Introduction Recent federal regulations have

More information

Ruchika D. Husa, MD, MS Assistant t Professor of Medicine in the Division of Cardiology The Ohio State University Wexner Medical Center

Ruchika D. Husa, MD, MS Assistant t Professor of Medicine in the Division of Cardiology The Ohio State University Wexner Medical Center Modified Early Warning Score (MEWS) Ruchika D. Husa, MD, MS Assistant t Professor of Medicine i in the Division of Cardiology The Ohio State University Wexner Medical Center MEWS Simple physiological scoring

More information

Concurrent Session 2.3. Building an ACO Framework: Opportunities and Challenges for Providers and Hospitals. Dr. Edward G.

Concurrent Session 2.3. Building an ACO Framework: Opportunities and Challenges for Providers and Hospitals. Dr. Edward G. Concurrent Session 2.3 Building an ACO Framework: Opportunities and Challenges for Providers and Hospitals Dr. Edward G. Murphy Chairman Amin Neghabat SVP, Business Development 1 Introduction Sound Physicians,

More information

HAI LEADERSHIP PARTNERING FOR ACCOUNTABLE CARE

HAI LEADERSHIP PARTNERING FOR ACCOUNTABLE CARE HAI LEADERSHIP PARTNERING FOR ACCOUNTABLE CARE Cepheid s Government Affairs Department Advocating for Patient Access to Molecular Diagnostics in the Era of Healthcare Reform A TEAM APPROACH Legislative

More information

ENGAGING PHYSICIANS FOR ICD-10: ALL ABOARD Engaging Physicians for ICD-10: All Aboard

ENGAGING PHYSICIANS FOR ICD-10: ALL ABOARD Engaging Physicians for ICD-10: All Aboard ENGAGING PHYSICIANS FOR ICD-10: ALL ABOARD Engaging Physicians for ICD-10: All Aboard ICD-10 Lisa Kozakoff Principal Consultant Siemens Healthcare Lisa Kozakoff Principal Consultant Agenda Introduction

More information

7/25/2015. Disclosure(s) Prescription for the Future: Pharmacists Influencing Positive Health Outcomes. Clinical Practice.

7/25/2015. Disclosure(s) Prescription for the Future: Pharmacists Influencing Positive Health Outcomes. Clinical Practice. 49th Annual Meeting Prescription for the Future: Pharmacists Influencing Positive Health Outcomes Daniel E. Buffington, PharmD, MBA, FAPhA Clinical Pharmacology Services, Inc Tampa, FL Disclosure(s) Daniel

More information

Benefit Design and ACOs: How Will Private Employers and Health Plans Proceed?

Benefit Design and ACOs: How Will Private Employers and Health Plans Proceed? Benefit Design and ACOs: How Will Private Employers and Health Plans Proceed? Accountable Care Organizations: Implications for Consumers October 14, 2010 Washington, DC Sam Nussbaum, M.D. Executive Vice

More information

Michael J. Tronolone, MD, MMM, Chief Medical Officer Michelle Matin, MD, FAAFP Associate Medical Director for Quality The Polyclinic Seattle, WA

Michael J. Tronolone, MD, MMM, Chief Medical Officer Michelle Matin, MD, FAAFP Associate Medical Director for Quality The Polyclinic Seattle, WA Succeed with Population Health Management in a Fee-for-Service Environment and Improve Clinical Quality Measures While Transitioning to Value- Based Care Michael J. Tronolone, MD, MMM, Chief Medical Officer

More information

Quick Turnaround with Administrative Health Data

Quick Turnaround with Administrative Health Data Quick Turnaround with Administrative Health Data Katherine Giuriceo, PhD Research and Rapid Cycle Evaluation Group Center for Medicare and Medicaid Innovation, CMS October 2, 2015 1 Overview Center for

More information

Case Study: Using Predictive Analytics to Reduce Sepsis Mortality

Case Study: Using Predictive Analytics to Reduce Sepsis Mortality Case Study: Using Predictive Analytics to Reduce Sepsis Mortality 1 Learning Objectives 1. Understand how an automated, real time IT intervention can help care teams recognize and intervene on critical,

More information

Realizing ACO Success with ICW Solutions

Realizing ACO Success with ICW Solutions Realizing ACO Success with ICW Solutions A Pathway to Collaborative Care Coordination and Care Management Decrease Healthcare Costs Improve Population Health Enhance Care for the Individual connect. manage.

More information

PCMH and Care Management: Where do we start?

PCMH and Care Management: Where do we start? PCMH and Care Management: Where do we start? Patricia Bohs, RN, BSN Quality Assurance Manager Kelly McCloughan QA Data Manager Wayne Memorial Community Health Centers Honesdale, PA Wayne Memorial Community

More information

Quality Metrics in Palliative Care

Quality Metrics in Palliative Care Quality Metrics in Palliative Care R. Sean Morrison, MD Director, National Palliative Care Research Center Director, Hertzberg Palliative Care Institute Hermann Merkin Professor of Palliative Care Professor,

More information

HIT Incentives: Issues of Concern to Hospitals in the CMS Proposed Meaningful Use Rule

HIT Incentives: Issues of Concern to Hospitals in the CMS Proposed Meaningful Use Rule HIT Incentives: Issues of Concern to Hospitals in the CMS Proposed Meaningful Use Rule Lori Mihalich-Levin, J.D. Senior Policy Analyst lmlevin@aamc.org; 202-828-0599 Jennifer Faerberg Director, Health

More information

Oils. Heart-Healthy CONFERENCE ISSUE. American Heart Month. The Newest Trends in the Dairy-Free Aisle. Plan Healthful Vegan Diets

Oils. Heart-Healthy CONFERENCE ISSUE. American Heart Month. The Newest Trends in the Dairy-Free Aisle. Plan Healthful Vegan Diets CONFERENCE ISSUE Vol. 17 No. 2 February 2015 The Magazine for Nutrition Professionals Heart-Healthy Oils Learn about the latest varieties and science on the healthful fats they contain. American Heart

More information

Decision. Advantage Suite Delivers Enriched Information For Improved Decision Making

Decision. Advantage Suite Delivers Enriched Information For Improved Decision Making Enterprise Decision Support Advantage Suite Delivers Enriched Information For Improved Decision Making For the past two years, the Patient Protection and Affordable Care Act (PPACA) has been at the center

More information

Not all NLP is Created Equal:

Not all NLP is Created Equal: Not all NLP is Created Equal: CAC Technology Underpinnings that Drive Accuracy, Experience and Overall Revenue Performance Page 1 Performance Perspectives Health care financial leaders and health information

More information

MDaudit Compliance made easy. MDaudit software automates and streamlines the auditing process to improve productivity and reduce compliance risk.

MDaudit Compliance made easy. MDaudit software automates and streamlines the auditing process to improve productivity and reduce compliance risk. MDaudit Compliance made easy MDaudit software automates and streamlines the auditing process to improve productivity and reduce compliance risk. MDaudit As healthcare compliance, auditing and coding professionals,

More information

PLAN OF CORRECTION. Provider's Plan of Correction (Each corrective action must be cross-referenced to the appropriate deficiency.)

PLAN OF CORRECTION. Provider's Plan of Correction (Each corrective action must be cross-referenced to the appropriate deficiency.) ID Prefix Tag (X4) R000 R200 Provider's Plan of Correction (Each corrective action must be cross-referenced to the appropriate deficiency.) Submission and implementation of this Plan of Correction does

More information

A Population Health Management Approach in the Home and Community-based Settings

A Population Health Management Approach in the Home and Community-based Settings A Population Health Management Approach in the Home and Community-based Settings Mark Emery Linda Schertzer Kyle Vice Charles Lagor Philips Home Monitoring Philips Healthcare 2 Executive Summary Philips

More information

Medicare and Medicaid Programs; EHR Incentive Programs

Medicare and Medicaid Programs; EHR Incentive Programs Medicare and Medicaid Programs; EHR Incentive Programs Background The American Recovery and Reinvestment Act of 2009 establishes incentive payments under the Medicare and Medicaid programs for certain

More information

Meaningful Use: Registration, Attestation, Workflow Tips and Tricks

Meaningful Use: Registration, Attestation, Workflow Tips and Tricks Meaningful Use: Registration, Attestation, Workflow Tips and Tricks Allison L. Weathers, MD Medical Director, Information Services Rush University Medical Center Gregory J. Esper, MD, MBA Vice Chair, Neurology

More information

BUNDLING ARE INPATIENT REHABILITATION FACILITIES PREPARED FOR THIS PAYMENT REFORM?

BUNDLING ARE INPATIENT REHABILITATION FACILITIES PREPARED FOR THIS PAYMENT REFORM? BUNDLING ARE INPATIENT REHABILITATION FACILITIES PREPARED FOR THIS PAYMENT REFORM? Uniform Data System for Medical Rehabilitation Annual Conference August 10, 2012 Presented by: Donna Cameron Rich Bajner

More information

Data Quality in Healthcare Comparative Databases. University HealthSystem Consortium

Data Quality in Healthcare Comparative Databases. University HealthSystem Consortium Data Quality in Healthcare Comparative Databases Steve Meurer PhD, MBA/MHS Vice President, Clinical Data & Informatics 1 2007 University HealthSystem Consortium University HealthSystem Consortium A member

More information

Project Database quality of nursing (Quali-NURS)

Project Database quality of nursing (Quali-NURS) Project Database quality of nursing (Quali-NURS) Summary Introduction. The literature provides considerable evidence of a correlation between nurse staffing and patient outcomes across hospitals and countries

More information

Innovations@Home. Home Health Initiatives Reduce Avoidable Readmissions by Leveraging Innovation

Innovations@Home. Home Health Initiatives Reduce Avoidable Readmissions by Leveraging Innovation How Does CMS Measure the Rate of Acute Care Hospitalization (ACH)? Until January 2013, CMS measured Acute Care Hospitalization (ACH) through the Outcomes Assessment and Information Set (OASIS) reporting

More information

Sustainable Growth Rate (SGR) Repeal and Replace: Comparison of 2014 and 2015 Legislation

Sustainable Growth Rate (SGR) Repeal and Replace: Comparison of 2014 and 2015 Legislation Sustainable Growth Rate (SGR) Repeal and Replace: Comparison of 2014 and 2015 Legislation Proposal 113 th Congress - - H.R.4015/S.2000 114 th Congress - - H.R.1470 SGR Repeal and Annual Updates General

More information

Advisory Panel for Health Care Advancing the Academic Health System for the Future: Profiles in Academic Health System Leadership.

Advisory Panel for Health Care Advancing the Academic Health System for the Future: Profiles in Academic Health System Leadership. Advisory Panel for Health Care Advancing the Academic Health System for the Future: Profiles in Academic Health System Leadership November, 2013 Project Focus and Methodology Project Focus This project

More information

Navigating CMS Incentive Programs for Eligible Professionals Why It Matters and What You Need to Know. Dr. Paul Mulhausen, CMO

Navigating CMS Incentive Programs for Eligible Professionals Why It Matters and What You Need to Know. Dr. Paul Mulhausen, CMO Navigating CMS Incentive Programs for Eligible Professionals Why It Matters and What You Need to Know Dr. Paul Mulhausen, CMO Objectives Better understand CMS Incentive Programs and payment adjustments

More information

Using Health Information Technology to Improve Quality of Care: Clinical Decision Support

Using Health Information Technology to Improve Quality of Care: Clinical Decision Support Using Health Information Technology to Improve Quality of Care: Clinical Decision Support Vince Fonseca, MD, MPH Director of Medical Informatics Intellica Corporation Objectives Describe the 5 health priorities

More information

Health Home Performance Enhancement through Novel Reuse of Syndromic Surveillance Data

Health Home Performance Enhancement through Novel Reuse of Syndromic Surveillance Data Health Home Performance Enhancement through Novel Reuse of Syndromic Surveillance Data Category: Fast Track Solutions Contact: Tim Robyn Chief Information Officer Office of Administration Information Technology

More information

CODE AUDITING RULES. SAMPLE Medical Policy Rationale

CODE AUDITING RULES. SAMPLE Medical Policy Rationale CODE AUDITING RULES As part of Coventry Health Care of Missouri, Inc s commitment to improve business processes, we are implemented a new payment policy program that applies to claims processed on August

More information

Delivery System Reform Incentive Pool Plan (DSRIP) One Hospital s Experience

Delivery System Reform Incentive Pool Plan (DSRIP) One Hospital s Experience Delivery System Reform Incentive Pool Plan (DSRIP) One Hospital s Experience Carolyn Brown, Director Quality and Safety Vickie Wilson, Manager - DSRIP ABOUT US Santa Clara Valley Hospital and Health System

More information

Nurse Credentialing: How to Impact Patient Outcomes in the Marketplace

Nurse Credentialing: How to Impact Patient Outcomes in the Marketplace Nurse Credentialing: How to Impact Patient Outcomes in the Marketplace Donna King, BSN, MBA, RN, NE-BC, FACHE Vice President, Clinical Operations/Chief Nurse Executive Overview... About Advocate Health

More information

Centers for Medicare & Medicaid Services Special Innovation Projects Overview. Sara Butterfield, RN, BSN, CPHQ October 2015

Centers for Medicare & Medicaid Services Special Innovation Projects Overview. Sara Butterfield, RN, BSN, CPHQ October 2015 Centers for Medicare & Medicaid Services Special Innovation Projects Overview Sara Butterfield, RN, BSN, CPHQ October 2015 Objectives Provide an overview of the CMS Special Innovation Project (SIP) Awards

More information

ESSENTIA HEALTH AS AN ACO (ACCOUNTABLE CARE ORGANIZATION)

ESSENTIA HEALTH AS AN ACO (ACCOUNTABLE CARE ORGANIZATION) ESSENTIA HEALTH AS AN ACO (ACCOUNTABLE CARE ORGANIZATION) Hello and welcome. Thank you for taking part in this presentation entitled "Essentia Health as an ACO or Accountable Care Organization -- What

More information

Data Management, Audit and Outcomes

Data Management, Audit and Outcomes Data Management, Audit and Outcomes Providing Accurate Outcomes and Activity Data The Trust has in place robust mechanisms for capturing and reporting on all oesophago-gastric cancer surgery activity and

More information

Welcome to the Model 4 CABG Bundled Payment

Welcome to the Model 4 CABG Bundled Payment Welcome to the Model 4 CABG Bundled Payment Presentation December 11, 2013 7:30 am Lance Auditorium Please sign in at the Registration table located at the back of the room. CMS BUNDLED PAYMENTS FOR CARE

More information

Measuring quality along care pathways

Measuring quality along care pathways Measuring quality along care pathways Sarah Jonas, Clinical Fellow, The King s Fund Veena Raleigh, Senior Fellow, The King s Fund Catherine Foot, Senior Fellow, The King s Fund James Mountford, Director

More information

8/14/2012 California Dual Demonstration DRAFT Quality Metrics

8/14/2012 California Dual Demonstration DRAFT Quality Metrics Stakeholder feedback is requested on the following: 1) metrics 69 through 94; and 2) withhold measures for years 1, 2, and 3. Steward/ 1 Antidepressant medication management Percentage of members 18 years

More information

SMD# 13-001 ACA #23. Re: Health Home Core Quality Measures. January 15, 2013. Dear State Medicaid Director:

SMD# 13-001 ACA #23. Re: Health Home Core Quality Measures. January 15, 2013. Dear State Medicaid Director: DEPARTMENT OF HEALTH & HUMAN SERVICES Centers for Medicare & Medicaid Services 7500 Security Boulevard, Mail Stop S2-26-12 Baltimore, Maryland 21244-1850 SMD# 13-001 ACA #23 Re: Health Home Core Quality

More information