CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics

Size: px
Start display at page:

Download "CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics"

Transcription

1 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics

2 Session map Session1 Session 2 Introduction The new focus on customer loyalty CRM and Business Intelligence CRM Marketing initiatives Session 3 Session 4 Understanding and integratingcrm with the business process Tools for CRM Choosing the CRM tool Putting the CRM to work CRM in e-business Partner relationship management Planning CRM programme Preparing CRM business plan CRM through new product development Channel management and CRM Catalytic measures to improve CRM Best practices in outsourcing CRM

3 Session 3 1. Recap sessions1and 2 2. CRM implementation 3. PFD overview (OMG BPMN) 4. Blue print 5. Case study CRM implementation 6. Technology 7. CRM S/W modules 8. CRM Software - Demo 9. Data mining 10. CRM people

4 Session Summary Customer relationship programmes should result in customer acquisition, retention and enhancement to retailers. Programme design, people, processes and automation are key components for successful customer outcomes. Multi-dimensional views and deeper insights into consumer data are critical for good programme design.

5 Session summary To become customer centric, firms should shift focus from product to customer Customer segmentation helps in identifying profitable segments and deliver high value Enterprises can gradually move up in CRM maturity levels Customer satisfaction does not guarantee loyalty Continuous efforts a necessary to refocus on customer needs to be successful and profitable in competitive market

6 CRM implementation Steps Define purpose Define processes Create blue print Use technology Identify and train people Execute customer centric programmes Areas to focus Customer acquisition, retention, enhancement Use process mapping tools (Ex. BPMN) Blue print provides simple view of integrated process and data flow across the enterprise Evaluate based on current industry standards (Process management, workflow management, data warehousing and data mining) Attitude towards customers and process orientation Design and redesign marketing programmes based on insights gained through customer data mining

7 Process flow diagram notations For details refer OMG document circulated to you

8 Example: PFD

9 It s like your home A team work Team A ERP Enterprise systems Team C CRM Enterprise Architect team Team B SCM

10 Suppliers Customers Blue print reduces complexity ERP SCM CRM BI (DW/DM) Cost Response Product / Service / Cash / Information flows Response Cost

11 The technology factor -Web enabled -Workflow, integrated process management, role based views, dash boards and reports -Centralized database -Secured transactions -High speed processing Integrated enterprise systems (Open source Vs Proprietary) Enterprise resource planning for intra business efficiency Supply chain management and Customer relationship management for inter business efficiency Data warehousing and data mining for business intelligence, supplier intelligence and customer intelligence

12 CRM software modules overview Customer management Prospect Management Loyalty management Call center management Service management Promotions management Marketing analytics and reports Manage existing customer data Manage prospective customer data Manage rewards and cards Manage inbound / outbound voice and non-voice requests Manage customer service requests Plan and execute targeted promotions via SMS/ /Phone/Post Customer data mining and reporting

13 Data mining Five types of customer data analyses Determine purpose of data analysis Classification Regression Decide orientation - Predictive or descriptive Use appropriate algorithm Link analysis Deviation detection Segmentation

14 Query examples Database Find all credit applicants with last name of Smith Identify customers who have purchased more than $10,000 in the last month. Find all customers who have purchased milk Data Mining Find all credit applicants who are poor credit risks. (classification) Identify customers with similar buying habits. (Clustering) Find all items which are frequently purchased with milk. (association rules)

15 Types of data analyses Classification Class A / B / C products, Low / Med / High spend customers Regression analysis (Predict using dependent and independent variables Bi-variate / multivariate) 2009 Diwali sales INR 30Mn in Delhi because of TV promotions costing INR 3Mn, What would be 2010 Diwali sales? Link analysis or Correlation analysis Directly related or inversely related, strong connection or weak connection between variables to understand trends and patterns Market basket analysis customer buys product A, B, C may also buy D Segmentation or Cluster analysis Identify customers with similar buying habits (Monthly provisions and personal care items together) Deviation detection Sales volume Vs Stock outs 2008 Q Q3

16 Data mining models

17 In simple terms Data mining tools Summarization (Tables and measures of dispersion) Visualization (Graphs) Modeling (Predictive and descriptive algorithms) RFM, Association rules, Time series, Regression, Decision trees, Case based reasoning, clustering

18 The CRM people characteristics Corporate team Focus on business objectives Focus on full customer experience Analyze data Plan marketing strategy Resolve escalated conflicts Evaluate performance of Field and Support teams Adapt to changing demand Field team Support team Discipline Proactive in understanding customer needs Focus only on In store customer experience Focus only on Presales and Post sales Customer experience Collect complete data Validate, enter and process data Effective execution of offers Plan and execute targeted promotions Conflict resolution Preventive approach to conflict resolution Coordination with support team Coordination with field team

Overview, Goals, & Introductions

Overview, Goals, & Introductions Improving the Retail Experience with Predictive Analytics www.spss.com/perspectives Overview, Goals, & Introductions Goal: To present the Retail Business Maturity Model Equip you with a plan of attack

More information

Shell CRM 2020. October 2014

Shell CRM 2020. October 2014 Shell CRM 2020 October 2014 MOST CONFIDENTIAL 2 2 THE SITE OF THE FUTURE RETAIL VISION Experience Role in Retail Strategy BEST FUELS RETAILER IN THE WORLD Accelerate Future Heartlands Defend and Grow the

More information

Business Analytics and Data Mining for CRM Business Analytics and Data Mining for CRM: Jumpstart workshop

Business Analytics and Data Mining for CRM Business Analytics and Data Mining for CRM: Jumpstart workshop : Jumpstart workshop Date and Place: Bangalore, Sep 1 st (Sat) and 2 nd (Sun) 2012 Registration Link: http://compegence.com/open-programs.php http://compegence.com/workshop-analytics-for-crm.php Audience:

More information

INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA

INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA POLITECNICO DI MILANO GRADUATE SCHOOL OF BUSINESS BABD INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA Courses Description A JOINT PROGRAM WITH POLITECNICO DI MILANO SCHOOL OF MANAGEMENT PRE-COURSES

More information

26/10/2015. Enterprise Information Systems. Learning Objectives. System Category Enterprise Systems. ACS-1803 Introduction to Information Systems

26/10/2015. Enterprise Information Systems. Learning Objectives. System Category Enterprise Systems. ACS-1803 Introduction to Information Systems ACS-1803 Introduction to Information Systems Instructor: Kerry Augustine Enterprise Information Systems Lecture Outline 6 ACS-1803 Introduction to Information Systems Learning Objectives 1. Explain how

More information

CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics

CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics Session map Session1 Session 2 Introduction The new focus on customer loyalty CRM and Business Intelligence CRM Marketing initiatives Session

More information

Chapter 5: Customer Relationship Management. Introduction

Chapter 5: Customer Relationship Management. Introduction Chapter 5: Customer Relationship Management Introduction Customer Relationship Management involves managing all aspects of a customer s relationship with an organization to increase customer loyalty and

More information

Federico Rajola. Customer Relationship. Management in the. Financial Industry. Organizational Processes and. Technology Innovation.

Federico Rajola. Customer Relationship. Management in the. Financial Industry. Organizational Processes and. Technology Innovation. Federico Rajola Customer Relationship Management in the Financial Industry Organizational Processes and Technology Innovation Second edition ^ Springer Contents 1 Introduction 1 1.1 Identification and

More information

Customer Relationship Management Lecture 1: Introduction - CRM Jargons, Value Systems and Value Chains. Mehran Rezaei

Customer Relationship Management Lecture 1: Introduction - CRM Jargons, Value Systems and Value Chains. Mehran Rezaei Customer Relationship Management Lecture 1: Introduction - CRM Jargons, Value Systems and Value Chains Mehran Rezaei سرفصل مطالب این جلسه ebiz و ecommerce آنچه مد نظر ماست از نقطه نظر گرایش تجارت الکترونیکی

More information

Session 10 : E-business models, Big Data, Data Mining, Cloud Computing

Session 10 : E-business models, Big Data, Data Mining, Cloud Computing INFORMATION STRATEGY Session 10 : E-business models, Big Data, Data Mining, Cloud Computing Tharaka Tennekoon B.Sc (Hons) Computing, MBA (PIM - USJ) POST GRADUATE DIPLOMA IN BUSINESS AND FINANCE 2014 Internet

More information

CRM. Best Practice Webinar. Next generation CRM for enhanced customer journeys: from leads to loyalty

CRM. Best Practice Webinar. Next generation CRM for enhanced customer journeys: from leads to loyalty CRM Best Practice Webinar Next generation CRM for enhanced customer journeys: from leads to loyalty Featured guest speaker Leslie Ament SVP Research and Principal Analyst at Hypatia Research Group and

More information

E-BUSINESS RELATIONSHIP MANAGEMENT

E-BUSINESS RELATIONSHIP MANAGEMENT I International Symposium Engineering Management And Competitiveness 2011 (EMC2011) June 24-25, 2011, Zrenjanin, Serbia E-BUSINESS RELATIONSHIP MANAGEMENT Danilo Obradović * Higher School of Professional

More information

Technology-Driven Demand and e- Customer Relationship Management e-crm

Technology-Driven Demand and e- Customer Relationship Management e-crm E-Banking and Payment System Technology-Driven Demand and e- Customer Relationship Management e-crm Sittikorn Direksoonthorn Assumption University 1/2004 E-Banking and Payment System Quick Win Agenda Data

More information

Customer Analytics. Turn Big Data into Big Value

Customer Analytics. Turn Big Data into Big Value Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data

More information

Cloud-based trading & financing ecosystem for global ecommerce

Cloud-based trading & financing ecosystem for global ecommerce Cloud-based trading & financing ecosystem for global ecommerce specializing in China inbound and outbound trade for small online retailers and social commerce players Our Motto MAKING BUY AND SELL EASY!

More information

CUSTOMER RELATIONSHIP MANAGEMENT CONCEPTS AND TECHNOLOGIES

CUSTOMER RELATIONSHIP MANAGEMENT CONCEPTS AND TECHNOLOGIES CUSTOMER RELATIONSHIP MANAGEMENT CONCEPTS AND TECHNOLOGIES Chapter 1: Introduction to CRM Selected definitions of CRM 1 CRM is an information industry term for methodologies, software, and usually Internet

More information

Outline. BI and Enterprise-wide decisions BI in different Business Areas BI Strategy, Architecture, and Perspectives

Outline. BI and Enterprise-wide decisions BI in different Business Areas BI Strategy, Architecture, and Perspectives 1. Introduction Outline BI and Enterprise-wide decisions BI in different Business Areas BI Strategy, Architecture, and Perspectives 2 Case study: Netflix and House of Cards Source: Andrew Stephen 3 Case

More information

TEXT ANALYTICS INTEGRATION

TEXT ANALYTICS INTEGRATION TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment

More information

CRM - Customer Relationship Management

CRM - Customer Relationship Management CRM - Customer Relationship Management 1 Customer power Consumer choices gains importance in the decision making process of companies and they feel the need to think like a customer than a producer. 2

More information

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Why is BehaviourForecast relevant for you? The concept of analytical Relationship Management (acrm) becomes more and

More information

Decisyon/Engage. Connecting you to the voice of the market. Contacts. www.decisyon.com

Decisyon/Engage. Connecting you to the voice of the market. Contacts. www.decisyon.com Connecting you to the voice of the market Contacts www.decisyon.com Corporate Headquarters 795 Folsom Street, 1st Floor San Francisco, CA 94107 1 844-329-3972 European Office Viale P. L. Nervi Directional

More information

Chapter. Enterprise Business Systems

Chapter. Enterprise Business Systems Chapter 4 Enterprise Business Systems Learning Objectives Identify and give examples to illustrate the following aspects of customer relationship. Business processes supported Customer and business value

More information

Analytical CRM solution for Banking industry

Analytical CRM solution for Banking industry Analytical CRM solution for Banking industry Harbinger TechAxes PVT. LTD. 2005 Insights about What are the reasons and freq. for a customer contact? What are my product holding patterns? Which of my are

More information

Navsya Technologies Pvt. Ltd. BlueChilli CRM

Navsya Technologies Pvt. Ltd. BlueChilli CRM Navsya Technologies Pvt. Ltd. BlueChilli CRM Solution Agenda What is CRM? CRM SFA Overview System Features Sample Screenshots What Is CRM? How does it differ from simple contact management? Customer Facing

More information

DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM

DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate

More information

Introduction to Management Information Systems

Introduction to Management Information Systems IntroductiontoManagementInformationSystems Summary 1. Explain why information systems are so essential in business today. Information systems are a foundation for conducting business today. In many industries,

More information

Automated Predictive Analysis. Tomer Steinberg

Automated Predictive Analysis. Tomer Steinberg Automated Predictive Analysis Tomer Steinberg Analytics solutions from SAP SAP Analytics Portfolio Cloud Mobile Agile Visualization Advanced Analytics Big Data Enterprise Business Intelligence Collaboration

More information

Customer Relationship Management

Customer Relationship Management V. Kumar Werner Reinartz Customer Relationship Management Concept, Strategy, and Tools ^J Springer Part I CRM: Conceptual Foundation 1 Strategic Customer Relationship Management Today 3 1.1 Overview 3

More information

BUS 516 Computer Information Systems. Global E-business and Collaboration

BUS 516 Computer Information Systems. Global E-business and Collaboration BUS 516 Computer Information Systems Global E-business and Collaboration Business Functions Business Processes Collection of activities required to produce a product or service These activities are supported

More information

ENTERPRISE APPLICATIONS

ENTERPRISE APPLICATIONS CHAPTER EIGHT ENTERPRISE APPLICATIONS Business Communications 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 8.1 Enterprise Systems and Supply Chain Management Building

More information

CRM Solutions. Banking Sector

CRM Solutions. Banking Sector CRM Solutions Banking Sector BY COMMUNICATION PROGRESS Agenda Changing Sales/Marketing Trends Distinct Markets Banks Strategic Goals Introduction to CRM CRM as a Business Strategy Design an effective segmentation

More information

Part VIII: ecrm (Customer Relationship Management)

Part VIII: ecrm (Customer Relationship Management) Part VIII: ecrm (Customer Relationship Management) Learning Targets What are the objectives of CRM? How can we achieve customer acquisition and loyalty? What is the customer buying cycle? How does the

More information

Course Syllabus For Operations Management. Management Information Systems

Course Syllabus For Operations Management. Management Information Systems For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third

More information

Improving customer relationships

Improving customer relationships White paper Customer Engagement Improving customer relationships How top companies maximize lifetime value through effective customer engagement Page 2 Customer experiences help drive long-term profits.

More information

Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011

Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management Decision Making Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management decision making Decision making Spreadsheet exercise Data visualization,

More information

E-Commerce & CRM Building Relationships, Satisfaction, and Loyalty

E-Commerce & CRM Building Relationships, Satisfaction, and Loyalty Lecture 8 E-Commerce & CRM Building Relationships, Satisfaction, and Loyalty CRM Defined a combination of business process & technology that seeks to understand a company s customers from the perspective

More information

Business Intelligence Solutions for Gaming and Hospitality

Business Intelligence Solutions for Gaming and Hospitality Business Intelligence Solutions for Gaming and Hospitality Prepared by: Mario Perkins Qualex Consulting Services, Inc. Suzanne Fiero SAS Objective Summary 2 Objective Summary The rise in popularity and

More information

GENERATE REVENUES WITH AN EFFECTIVE PARTS WHOLESALE STRATEGY.

GENERATE REVENUES WITH AN EFFECTIVE PARTS WHOLESALE STRATEGY. GENERATE REVENUES WITH AN EFFECTIVE PARTS WHOLESALE STRATEGY. fueled by challenge. powering success. sm 1,500 dealer programs in 27 markets Parts wholesale has the potential to significantly contribute

More information

ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Transforming the Way to Market, Sell and Service

Transforming the Way to Market, Sell and Service Customer Relationship Management (CRM) Transforming the Way to Market, Sell and Service Agenda I. CRM definition and overview II. Getting started with CRM Initiatives 2 1 What is CRM? Customer Relationship

More information

Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms

Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms Data Mining Techniques forcrm Data Mining The non-trivial extraction of novel, implicit, and actionable knowledge from large datasets. Extremely large datasets Discovery of the non-obvious Useful knowledge

More information

Great evolution: from CRM to CCRM. Borut Vovk Head of Omnichannel Studio Moderna

Great evolution: from CRM to CCRM. Borut Vovk Head of Omnichannel Studio Moderna Great evolution: from CRM to CCRM Borut Vovk Head of Omnichannel Studio Moderna Introduction About Studio Moderna The leading direct marketing and multi-channel retailer in CEE region Introduction Philosophy

More information

Data Analytical Framework for Customer Centric Solutions

Data Analytical Framework for Customer Centric Solutions Data Analytical Framework for Customer Centric Solutions Customer Savviness Index Low Medium High Data Management Descriptive Analytics Diagnostic Analytics Predictive Analytics Prescriptive Analytics

More information

Generating Customer Insight with the Multi-Partner Program HappyDigits. Athens, 24th September 2008 Thorsten Franz

Generating Customer Insight with the Multi-Partner Program HappyDigits. Athens, 24th September 2008 Thorsten Franz Generating Insight with the Multi-Partner Program HappyDigits Athens, 24th September 2008 Thorsten Franz Generating Insight with the Multi-Partner Program HappyDigits A brief introduction: Who is CAP,

More information

Ezgi Dinçerden. Marmara University, Istanbul, Turkey

Ezgi Dinçerden. Marmara University, Istanbul, Turkey Economics World, Mar.-Apr. 2016, Vol. 4, No. 2, 60-65 doi: 10.17265/2328-7144/2016.02.002 D DAVID PUBLISHING The Effects of Business Intelligence on Strategic Management of Enterprises Ezgi Dinçerden Marmara

More information

Supply chain intelligence: benefits, techniques and future trends

Supply chain intelligence: benefits, techniques and future trends MEB 2010 8 th International Conference on Management, Enterprise and Benchmarking June 4 5, 2010 Budapest, Hungary Supply chain intelligence: benefits, techniques and future trends Zoltán Bátori Óbuda

More information

Smart Ways To Improve Contact Center Performance

Smart Ways To Improve Contact Center Performance Smart Ways To Improve Contact Center Performance The right technology helps measure what matters White Paper sponsored by Aligning Business and IT To Improve Performance Ventana Research 1900 South Norfolk

More information

Customer Relationship Management

Customer Relationship Management Customer Relationship Management Concepts and Technologies Second edition Francis Buttle xlloillvlcjx. AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY

More information

International Seminar on Business and Management Improving Business Competitiveness Through Integrated System Bandung, April 27 28, 2011

International Seminar on Business and Management Improving Business Competitiveness Through Integrated System Bandung, April 27 28, 2011 Gain Competitive Advantage Through CRM Implementation Yoki Muchsan a, Falahah b a Faculty of Engineering,Informatics Engineering, Widyatama University, Bandung E-mail : yoki.muchsan@widyatama.ac.id b Faculty

More information

Big Data Strategies Creating Customer Value In Utilities

Big Data Strategies Creating Customer Value In Utilities Big Data Strategies Creating Customer Value In Utilities National Conference ICT For Energy And Utilities Sofia, October 2013 Valery Peykov Country CIO Bulgaria Veolia Environnement 17.10.2013 г. One Core

More information

GenOmega Achieving the Genesis and Omega

GenOmega Achieving the Genesis and Omega GenOmega Achieving the Genesis and Omega Collaborative s GenOmega Digital White Paper Prepared by Dave Guertin GenOmega Partners Date 30 March 2001 Table of Contents Executive Summary...3 What are Collaborative

More information

SAP FINUG Teknologiaseminaari

SAP FINUG Teknologiaseminaari SAP FINUG Teknologiaseminaari SAP Advanced Analytics Joni Ahola, 09 September 2015 Human Centric Innovation On the Agenda Advanced Analytics Approach SAP Predictive Analytics Tools, Functions & Libraries

More information

Community Development and Training Centre Semester 2 2006 IT 245 Management Information Systems

Community Development and Training Centre Semester 2 2006 IT 245 Management Information Systems Community Development and Training Centre Semester 2 2006 IT 245 Management Information Systems Chapter 4 Electronic E-Business System Cross-Functional E-Business Applications. Major E-business applications

More information

Mexico ICT Market Update: 1Q13 Results & Opportunities. Equipment. Supplies. ICT services. Software. ICT services (in the cloud)

Mexico ICT Market Update: 1Q13 Results & Opportunities. Equipment. Supplies. ICT services. Software. ICT services (in the cloud) Mexico ICT Market Update: 1Q13 Results & Opportunities ICT Mexico Market Size & Growth ICT Growth IT Growth 24.60% 24.30% 24.70% 2.50% 2.50% 2.50% 10.40% 11.50% 12.60% 4.60% 5.20% 5.70% Equipment Supplies

More information

AA Automated Attendant is a device connected to voice mail systems that answers and may route incoming calls or inquiries.

AA Automated Attendant is a device connected to voice mail systems that answers and may route incoming calls or inquiries. CRM Glossary Guide AA Automated Attendant is a device connected to voice mail systems that answers and may route incoming calls or inquiries. ABANDON RATE Abandon Rate refers to the percentage of phone

More information

Customer Experience Management

Customer Experience Management Customer Experience Management 10 tips for the successful development and execution of Chris Bland Research Director SPA Future Thinking Introduction, sometimes referred to as Customer Feedback Programmes,

More information

Database Marketing, Business Intelligence and Knowledge Discovery

Database Marketing, Business Intelligence and Knowledge Discovery Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski

More information

Business Intelligence: Effective Decision Making

Business Intelligence: Effective Decision Making Business Intelligence: Effective Decision Making Bellevue College Linda Rumans IT Instructor, Business Division Bellevue College lrumans@bellevuecollege.edu Current Status What do I do??? How do I increase

More information

Lecture: Mon 13:30 14:50 Fri 9:00-10:20 ( LTH, Lift 27-28) Lab: Fri 12:00-12:50 (Rm. 4116)

Lecture: Mon 13:30 14:50 Fri 9:00-10:20 ( LTH, Lift 27-28) Lab: Fri 12:00-12:50 (Rm. 4116) Business Intelligence and Data Mining ISOM 3360: Spring 203 Instructor Contact Office Hours Course Schedule and Classroom Course Webpage Jia Jia, ISOM Email: justinjia@ust.hk Office: Rm 336 (Lift 3-) Begin

More information

Marketing Advanced Analytics. Predicting customer churn. Whitepaper

Marketing Advanced Analytics. Predicting customer churn. Whitepaper Marketing Advanced Analytics Predicting customer churn Whitepaper Churn prediction The challenge of predicting customers churn It is between five and fifteen times more expensive for a company to gain

More information

Microsoft Business Analytics Accelerator for Telecommunications Release 1.0

Microsoft Business Analytics Accelerator for Telecommunications Release 1.0 Frameworx 10 Business Process Framework R8.0 Product Conformance Certification Report Microsoft Business Analytics Accelerator for Telecommunications Release 1.0 November 2011 TM Forum 2011 Table of Contents

More information

Role of Social Networking in Marketing using Data Mining

Role of Social Networking in Marketing using Data Mining Role of Social Networking in Marketing using Data Mining Mrs. Saroj Junghare Astt. Professor, Department of Computer Science and Application St. Aloysius College, Jabalpur, Madhya Pradesh, India Abstract:

More information

DEMYSTIFYING BIG DATA. What it is, what it isn t, and what it can do for you.

DEMYSTIFYING BIG DATA. What it is, what it isn t, and what it can do for you. DEMYSTIFYING BIG DATA What it is, what it isn t, and what it can do for you. JAMES LUCK BIO James Luck is a Data Scientist with AT&T Consulting. He has 25+ years of experience in data analytics, in addition

More information

Chapter 9. Video Cases. 6.1 Copyright 2014 Pearson Education, Inc. publishing as Prentice Hall

Chapter 9. Video Cases. 6.1 Copyright 2014 Pearson Education, Inc. publishing as Prentice Hall Chapter 9 Achieving Operational Excellence and Customer Intimacy: Enterprise Applications Video Cases Video Case 1a: What Is Workday: Enterprise Software as a Service (Saas) Video Case 1b: Workday: Mobile

More information

Making Multi-Channel Work For You

Making Multi-Channel Work For You Making Multi-Channel Work For You Stephen Walter Solutions Consultant 1 Today s Reality 2 Social Technologies Can Bring People and Information Together "Deployed effectively, social media unleashes the

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

Product recommendations and promotions (couponing and discounts) Cross-sell and Upsell strategies

Product recommendations and promotions (couponing and discounts) Cross-sell and Upsell strategies WHITEPAPER Today, leading companies are looking to improve business performance via faster, better decision making by applying advanced predictive modeling to their vast and growing volumes of data. Business

More information

Information Systems for Business Integration: EDI, SCM, CRM Systems

Information Systems for Business Integration: EDI, SCM, CRM Systems Information Systems for Business Integration: EDI, SCM, CRM Systems (April 2, 2009) BUS3500 - Abdou Illia, Spring 2009 1 LEARNING GOALS Discuss Supply Chain Management systems Discuss Customer Relationship

More information

Global Enterprise Business Management Platform Interactive, Intelligent with Controls to Ensure Profit

Global Enterprise Business Management Platform Interactive, Intelligent with Controls to Ensure Profit Global Enterprise Business Platform Interactive, Intelligent with Controls to Ensure Profit Sales and Sales Force Customer Relationship Supply Chain Stores & Purchase Production Product Data Scheduling

More information

How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK

How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK Agenda Analytics why now? The process around data and text mining Case Studies The Value of Information

More information

CRM: Retaining Your Customers: Preventing Your Competitors

CRM: Retaining Your Customers: Preventing Your Competitors CRM: Retaining Your Customers: Preventing Your Competitors Krittapon Victor Indarakris Founder & CEO Blue Intelligence (Thailand) Co., Ltd. October 30, 2007 Microsoft CRM October 30 th, 2007 1 Core Microsoft

More information

Innovative Analysis of a CRM Database using Online Analytical Processing (OLAP) Technique in Value Chain Management Approach

Innovative Analysis of a CRM Database using Online Analytical Processing (OLAP) Technique in Value Chain Management Approach Innovative Analysis of a CRM Database using Online Analytical Processing (OLAP) Technique in Value Chain Management Approach ADRIAN MICU, ANGELA-ELIZA MICU, ALEXANDRU CAPATINA Faculty of Economics, Dunărea

More information

Applied Business Intelligence. Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA

Applied Business Intelligence. Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA Applied Business Intelligence Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA Agenda Business Drivers and Perspectives Technology & Analytical Applications Trends Challenges

More information

Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI

Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Yudho Giri Sucahyo, Ph.D, CISA (yudho@cs.ui.ac.id) Faculty of Computer Science, University of Indonesia Objectives

More information

Knowledge is the food of the soul ~Plato. Knowledge Transferred Transferencia del Saber

Knowledge is the food of the soul ~Plato. Knowledge Transferred Transferencia del Saber Knowledge is the food of the soul ~Plato Knowledge Transferred Transferencia del Saber Unlocking your organization s workforce potential with customized key solutions Saber Academy Capacity Building Program

More information

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction

More information

6/10/2015. Chapter Nine Overview. Learning Outcomes. Opening Case: Twitter: A Social CRM Tool

6/10/2015. Chapter Nine Overview. Learning Outcomes. Opening Case: Twitter: A Social CRM Tool Opening Case: Twitter: A Social CRM Tool McGraw-Hill-Ryerson 2015 The McGraw-Hill Companies, All Rights Reserved Chapter Nine Overview SECTION 9.1 CRM FUNDAMENTALS Introduction Using Information to Drive

More information

CoolaData Predictive Analytics

CoolaData Predictive Analytics CoolaData Predictive Analytics 9 3 6 About CoolaData CoolaData empowers online companies to become proactive and predictive without having to develop, store, manage or monitor data themselves. It is an

More information

ACS-1803 Introduction to Information Systems. Enterprise Information Systems. Lecture Outline 6

ACS-1803 Introduction to Information Systems. Enterprise Information Systems. Lecture Outline 6 ACS-1803 Introduction to Information Systems Instructor: David Tenjo Enterprise Information Systems Lecture Outline 6 1 Learning Objectives 1. Explain how organizations support business activities by using

More information

Information Systems Roles in the Value Chain Customer Relationship Management (CRM) Systems 09/11/2015. ACS 3907 E-Commerce

Information Systems Roles in the Value Chain Customer Relationship Management (CRM) Systems 09/11/2015. ACS 3907 E-Commerce ACS 3907 E-Commerce Instructor: Kerry Augustine November 10 th 2015 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) SYSTEMS Managing materials, services and information from suppliers through to the organization

More information

Customer Experience Management

Customer Experience Management Customer Experience Management Best Practices for Voice of the Customer (VoC) Programmes Jörg Höhner Senior Vice President Global Head of Automotive SPA Future Thinking The Evolution of Customer Satisfaction

More information

ACS 3907 E-Commerce. Instructor: Kerry Augustine November 10 th 2015. Bowen Hui, Beyond the Cube Consulting Services Ltd.

ACS 3907 E-Commerce. Instructor: Kerry Augustine November 10 th 2015. Bowen Hui, Beyond the Cube Consulting Services Ltd. ACS 3907 E-Commerce Instructor: Kerry Augustine November 10 th 2015 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) SYSTEMS Managing materials, services and information from suppliers through to the organization

More information

Easily Identify Your Best Customers

Easily Identify Your Best Customers IBM SPSS Statistics Easily Identify Your Best Customers Use IBM SPSS predictive analytics software to gain insight from your customer database Contents: 1 Introduction 2 Exploring customer data Where do

More information

Data Mining Techniques in CRM

Data Mining Techniques in CRM Data Mining Techniques in CRM Inside Customer Segmentation Konstantinos Tsiptsis CRM 6- Customer Intelligence Expert, Athens, Greece Antonios Chorianopoulos Data Mining Expert, Athens, Greece WILEY A John

More information

Customer Experience Presentation Lauriette Modipane

Customer Experience Presentation Lauriette Modipane Customer Experience Presentation Lauriette Modipane 30 September 2013 CONTENTS Customer Satisfaction Index (CSI) Objectives, Scope & Approach, CSI Results. Three Tier Approach End State Customer Centric

More information

S.Thiripura Sundari*, Dr.A.Padmapriya**

S.Thiripura Sundari*, Dr.A.Padmapriya** Structure Of Customer Relationship Management Systems In Data Mining S.Thiripura Sundari*, Dr.A.Padmapriya** *(Department of Computer Science and Engineering, Alagappa University, Karaikudi-630 003 **

More information

Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management

Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management Paper Jean-Louis Amat Abstract One of the main issues of operators

More information

Data Mining + Business Intelligence. Integration, Design and Implementation

Data Mining + Business Intelligence. Integration, Design and Implementation Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution

More information

The Essentials Series. Communications Enabled Business. by Ken Camp

The Essentials Series. Communications Enabled Business. by Ken Camp The Essentials Series Communications Enabled Business by Ken Camp Communications-Enabled Business Processes in the Enterprise Environment By Ken Camp Today more than ever, businesses are seeking measurable

More information

ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

12/10/2012. Real-Time Analytics & Attribution. Client Case Study: Staples. Noah Powers Principal Solutions Architect, Customer Intelligence, SAS

12/10/2012. Real-Time Analytics & Attribution. Client Case Study: Staples. Noah Powers Principal Solutions Architect, Customer Intelligence, SAS Real-Time Analytics & Attribution Noah Powers Principal Solutions Architect, Customer Intelligence, SAS Patty Hager Analytics Manager, Content/Communication/Entertainment, SAS Suneel Grover Solutions Architect,

More information

Microsoft Dynamics AX 2012 R3, clear cut benefits for your Organisation

Microsoft Dynamics AX 2012 R3, clear cut benefits for your Organisation 2012 R3 Microsoft Dynamics AX 2012 R3, clear cut benefits for your Organisation Microsoft Dynamics AX is an enterprise resource planning (ERP) solution for midsize and larger organisations that helps people

More information

OPTIMIZE SALES, SERVICE AND SATISFACTION WITH ORACLE DEALER MANAGEMENT

OPTIMIZE SALES, SERVICE AND SATISFACTION WITH ORACLE DEALER MANAGEMENT OPTIMIZE SALES, SERVICE AND SATISFACTION WITH ORACLE DEALER MANAGEMENT KEY FEATURES Manage leads, configure vehicles, prepare quotes, submit invoice and process orders Capture customer, vehicle and service

More information

Upstream Works Overview

Upstream Works Overview Upstream Works Software June 2009 Introduction Upstream Works solutions connect customer experience to every aspect of your contact center performance. We provide a complete suite of agent and management

More information

CUSTOMER RELATIONSHIP MANAGEMENT. Concepts and technologies. Third edition FRANCIS BUTTLE AND STAN MAKLAN

CUSTOMER RELATIONSHIP MANAGEMENT. Concepts and technologies. Third edition FRANCIS BUTTLE AND STAN MAKLAN CUSTOMER RELATIONSHIP MANAGEMENT Concepts and technologies Third edition FRANCIS BUTTLE AND STAN MAKLAN Routledge R Taylor & Francis Group LONDON AND NEW YORK List offigures List oftables About the authors

More information

CUSTOMER RELATIONSHIP MANAGEMENT

CUSTOMER RELATIONSHIP MANAGEMENT 3-02-70 INFORMATION MANAGEMENT: STRATEGY, SYSTEMS, AND TECHNOLOGIES CUSTOMER RELATIONSHIP MANAGEMENT Ken Liang and Houston H. Carr INSIDE Customer Relationship Management; Information Technology and CRM;

More information

Supply Chain development - a cornerstone for business success

Supply Chain development - a cornerstone for business success Supply Chain development - a cornerstone for business success Agenda 1. Supply chain considerations 2. Benefits of a developed SCM strategy 3. Competitive advantage by using a LSP 4. CRM/SCM key to business

More information

Title. The Customer Experience Imperative

Title. The Customer Experience Imperative Delivering Positive Student Experiences Daniel Harrison Director, Higher Education - Australia Title 2007 RightNow Technologies, Inc. The Customer Experience Imperative 99% are likely to recommend your

More information

HGH BI Solutions. Business Intelligence & Integration. Equipping Your Organization for Effective Decision Making

HGH BI Solutions. Business Intelligence & Integration. Equipping Your Organization for Effective Decision Making HGH BI Solutions Business Intelligence & Integration Equipping Your Organization for Effective Decision Making Peter Kranenburg RI MCP HGH Business Consultancy B.V. Agenda BI building blocks - components

More information

Elevate Customer Experience and Engagement in the New Digital World

Elevate Customer Experience and Engagement in the New Digital World Elevate Customer Experience and Engagement in the New Digital World John Chan CRM Solutions Lead, Microsoft Business Solutions Microsoft Asia Customer buying behavior has fundamentally changed therefore,

More information