Bioinformatics Approaches for Analysis of High-throughput Biological Data WORKSHOP. September Istanbul, Turkey

Size: px
Start display at page:

Download "Bioinformatics Approaches for Analysis of High-throughput Biological Data WORKSHOP. September 3-7 2012 Istanbul, Turkey"

Transcription

1 Bioinformatics Approaches for Analysis of High-throughput Biological Data WORKSHOP September Istanbul, Turkey

2

3 WELCOME TO ISTANBUL! Course Co-Organizers Hasan H. Otu Department of Bioengineering, Istanbul Bilgi University Istanbul, Turkey Luiz F. Zerbini Cancer Genomics, ICGEB Cape Town, South Africa

4 Dear Participants and Faculty, It is my great pleasure to welcome you to the Workshop Bioinformatics Approaches for Analysis of Highthroughput Biological Data in Istanbul, Turkey - September , sponsored by International Centre for Genetic Engineering and Biotechnology (ICGEB), International Union of Biochemistry and Molecular Biology (IUBMB) and Istanbul Bilgi University. My special thanks go to the co-organizer, Dr. Luiz Zerbini and eight speakers without whom this event would not be possible. High Throughput Biological Data (HTBD) production has been increasing at an unprecedented pace with the advancements of microarrays and nextgen sequencing technologies, which requires detailed and comprehensive analysis methods. Bioinformatics has emerged as an interdisciplinary field at the intersection of life sciences, engineering, computational and basic sciences and acts as an information management and analysis system for HTBD. There is, however, increased need for awareness, knowledge, and skills in Bioinformatics, which is one of the main motivations behind this workshop. Bioinformatics mainly deals with four facets of analysis: DNA sequence analysis, Protein structure prediction, Functional Genomics and Proteomics, and Systems Biology. In this workshop, participants will be introduced to current state-of-theart Bioinformatics methods and applications of aforementioned four facets. The workshop is designed to give researchers a thorough basis to understand the new trends in sequence, protein and gene expression analysis. One of the outcomes will be to equip the participants with available databases and analysis tools that address issues faced in their research and propose possible rooms for improvement of discussed methods from an algorithmic point of view. I am very excited in welcoming you for this stimulating event in the historic and beautiful city of Istanbul! Hasan H. Otu, Ph.D. Chair, Department of Bioengineering Istanbul Bilgi University Istanbul, Turkey Letter from the Organizer

5 Faculty Speakers Mehmet Serkan Apaydin, PhD Assistant Professor of Electrical and Electronic Engineering, Istanbul Sehir University, Istanbul Turkey Rita Casadio, PhD Professor of Biophysics, University of Bologna, Group leader of the Bologna Biocomputing Unit, Bologna, Italy Esra Erdem, PhD Assistant Professor of Computer Science and Engineering, Sabanci University, Istanbul Turkey Towia Libermann, PhD Associate Professor of Medicine, Harvard Medical School, Boston, MA, USA Director, BIDMC Genomics and Proteomics Center and DF/HCC Cancer Proteomics Core Div. of Interdisciplinary Medicine and Biotechnology Michael P. Myers, PhD Group Leader, Protein Networks International Centre for Genetic Engineering and Biotechnology (ICGEB) Trieste, Italy Hasan H. Otu, PhD Assistant Professor of Bioengineering, Istanbul Bilgi University, Istanbul Turkey Cenk Sahinalp, PhD Professor of Computing Science, Simon Fraser University, Vancouver, Canada Director, SFU Lab for Computational Biology; Canada Research Chair in Computational Genomics Khalid Sayood, PhD Professor of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA Ugur Sezerman, PhD Associate Professor of Biological Sciences and Bioengineering, Sabanci University, Istanbul Turkey Luiz Zerbini, PhD Group Leader, Cancer Genomics International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, South Africa

6 Scientific Program Monday, September 3rd :15-09:00 Arrival and Registration 09:00-09:20 Welcome / Hasan H. Otu 09:20-09:50 About ICGEB / Luiz F. Zerbini 10:00-10:50 Population Sc3ale Detection of Common and Rare Genomic Rearrangements and Transcriptomic Aberrations / Cenk Sahinalp 11:00-11:30 Tea/Coffee Break 1 1: 30-12:20 Efficient Communication and Storage vs. Accurate Variant Calls in Massively Parallel Sequencing: Two Sides of the Same Coin / Cenk Sahinalp 12:30-14:00 Lunch 14:00-14:50 Large scale annotation of proteins with labeling methods (Part I) / Rita Cassadio :50 Large scale annotation of proteins with labeling methods (Part II) / Rita Cassadio 16:00-17:00 Meet the Expert Session* Tuesday, September 4th :00-09:50 Protein Structure Prediction Methods / Ugur Sezerman 10 :00-10:50 SNP Analysis in a pathway related context / Ugur Sezerman 11:00-11:30 Tea/Coffee Break 1 1: 30-12:20 The connectivity map database and its use in cancer research / Luiz F. Zerbini 12:30-14:00 Lunch 14:00-14:50 Genome Rearrangement with AI Planning / Esra Erdem 15:00-15:50 Querying Biomedical Databases and Ontologies in Natural Language Using Automated Reasoners / Esra Erdem 16:00-17:00 Meet the Expert Session* Wednesday, September 5th 2012 Free morning and afternoon 19:00 - Social Dinner** Thursday, September 6th :20-09:50 Computational Genomic Signatures and their Applications (Part I) / Khalid Sayood 10:00-10:50 Computational Genomic Signatures and their Applications (Part II) / Khalid Sayood 11 :00-11:30 Tea/Coffee Break 11: 30-12:20 Pathway Analysis of High Throughput Biological Data within the context of Bayesian Networks / Hasan H. Otu 12:30-14:00 Lunch 14:00-14:50 Functional genomics driving individualized medicine and the challenges ahead / Towia Liberman :50 Proteomic approaches to personalized medicine / Towia Liberman 16:00-17:00 Meet the Expert Session* Friday, September 7th :00-09:50 Proteomics: From proteins to networks (Part I) / Michael Myers 10:00-10:50 Proteomics: From proteins to networks (Part I) / Michael Myers 11 :00-11:30 Tea/Coffee Break 11: 30-12:20 Introduction to Nuclear Magnetic Resonance Spectroscopy / Serkan Apaydin 12:30-14:00 Lunch 14:00-14:50 Algorithms for NMR Structure Based Assignment / Serkan Apaydin :30 Closing Remarks and Evaluation / Hasan H. Otu 15:30-16:30 Meet the Expert Session* 16:00 - Farewell Cocktail** * Meet the expert sessions will provide an opportunity for the participants to interact with experts and discuss topics related to their experiences. Sessions will begin promptly. ** Social Dinner and Farewell Cocktail are free of charge for all participants. RSVP at the registration desk is required for these events.

7 Mehmet Serkan Apaydin, PhD Assistant Professor of Electrical and Electronic Engineering, Istanbul Sehir University MSA is an assistant professor in the College of Engineering and Natural Sciences at Istanbul Sehir University, Turkey. He received his B.Sc. in Electrical Engineering from Bilkent University and his Ph.D. in Electrical Engineering from Stanford University. His research interests are on bioinformatics developing computational tools to study protein structure, motion, and interactions with ligands. Talk Schedule: Friday, September 7 / 11:30-12:20 & 14:00-14:50 Introduction to Nuclear Magnetic Resonance Spectroscopy The 3-D structure of a protein plays a critical role in defining the protein s function. High-throughput protein structure determination methods are very important to obtain structural information quickly and accurately. The two main experimental techniques for structure determination are X-ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy. Not all proteins can be crystallized and studied by XRC; furthermore NMR allows solving protein structure in solution. In NMR, various experiments are performed on the protein. A general introduction to NMR spectroscopy will be given, with emphasis on the information content of the various NMR experiments, such as HSQC, TOCSY, RDC. Algorithms for NMR Structure Based Assignment NMR Spectroscopy allows determining protein structure in solution. An important problem in protein structure determination using NMR spectroscopy is the mapping of peaks to corresponding nuclei. Structure Based Assignment (SBA) is an approach to solve this problem using a template structure that is homologous to the target. We formulate SBA as a linear assignment problem with additional Nuclear Overhauser Effect (NOE) constraints, which can be solved within Nuclear Vector Replacement s (NVR) framework. This approach (NVR-BIP) uses NVR s scoring function and data types. Our results are comparable to NVR s assignment accuracy on NVR s test set, but higher on four additional small proteins. We prove that this problem is NP-hard and propose a tabu search algorithm (NVR-TS) equipped with a dynamic tabu list structure and guided perturbation mechanism to efficiently solve it. NVR-TS uses a quadratic penalty relaxation of NVR-BIP where the violations in the NOE constraints are penalized in the objective function. We also implement a memory structure that reports k-best solutions. Experimental results indicate that our algorithm finds the optimal solution on NVR-BIP s data set (7 proteins with 24 templates - 31 to 126 residues). Furthermore, it achieves high assignment accuracies on two additional large proteins, MBP and EIN (348 and 243 residues, respectively), which NVR-BIP failed to solve. We then propose an ant colony optimization based approach to this problem. Our method finds optimal solutions for small proteins and achieves higher accuracies on larger proteins compared to NVR-TS. Joint work with Jeyhun Aslanov, Bülent Çatay, Gizem Çavuşlar, Bruce Donald and Nick Patrick.

8 Rita Casadio, PhD Professor of Biophysics, University of Bologna Group leader of the Bologna Biocomputing Unit Rita Cassadio, after her degree in Physics at the University of Bologna, Italy, attended several courses both in Italy and abroad and acquired experience and theoretical background in different fields, such as Computer Science, Membrane and Protein Biophysics, Bioenergetics and Irreversible Thermodynamics. After working in Laboratories of Biophysics both in the United States and in Germany, in 1987 RC became Assistant Professor of Biophysics at the University of Bologna Italy. Since 1/10/2003 she is full professor of Biochemistry/Bioinformatics/Biophysics at UNIBO. RC worked in membrane and protein Biophysics (particularly with bacteriorhodopsin from Halobacterium Halobium and F1F0 ATPases from mesophilic organisms), both experimentally and theoretically. Presently she is interested in computer modelling of relevant biological processes, such as protein folding and modelling, protein-protein interaction, genome annotation, protein interaction networks, and SNPs search and annotation and their effect on protein stability. RC is giving courses to undergraduate and graduate students in Physics, Biology and Biotechnology on Membrane and Molecular Biophysics, Computational Biology and Bioinformatics. Presently she is the president of the Bologna International Master in Bioinformatics (Laurea Magistrale). RC is member of the American Biophysical Society, the Protein Society, ISCB, the Italian Societies of Biochemistry, Biophysics and Bioinformatics. She is also a member of the Accademia delle Scienze dell Istituto di Bologna. She is member of the board of directors of I.N.B.B, an Italian Interuniversity Consortium for Researches in Biostructures and Biosystems, acting as a representative of the Italian Minister of MIUR; she has been a member of the board of directors of ISCB, the International Society of Computational Biology ( ). Presently she is a member of the Editorial Board of BMC Bioinformatics, Advances in Bioinformatics, Bio Data Mining and BMC Research Notes. Talk Schedule: Monday, September 3 / 14:00 14:50 & 15:00 15:50 Large scale annotation of proteins with labeling methods As a result of large sequencing projects, data banks of protein sequences and structures are growing rapidly. The number of sequences is however orders of magnitude larger than the number of structures known at atomic level and this is so in spite of the efforts in accelerating processes aiming at the resolution of protein structure. Tools have been developed in order to bridge the gap between sequence and protein 3D structure, based on the notion that information is to be retrieved from the data bases and that knowledgebased methods can help in approaching a solution of the protein folding problem. By this several futures can be predicted starting from a protein sequence such as structural and functional motifs and domains, including the topological organisation of a protein inside the membrane phase, and the formation of disulfide bonds in a folded protein structure. Our group has been contributing to the field with different computational methods, mainly based on machine learning (neural networks (NNs), hidden markov models (HMMs), support vector machines (SVMs), hidden neural networks (HNNs) and extreme learning machines (ELMs)) and capable of computing the likelihood of a given feature starting from the protein sequence ( Our methods can add to the process of large scale proteome annotation (endowing sequences with functional and structural features).

9 Recently Conditional Random Fields (CRFs) have been introduced as a new promising framework to solve sequence labelling problems in that they offer several advantages over Hidden Markov Models (HMMs), including the ability of relaxing strong independence assumptions made in HMMs. However, several problems of sequence analysis can be successfully addressed only by designing a grammar in order to provide meaningful results. We therefore introduced Grammatical-Restrained Hidden Conditional Random Fields (GRHCRFs) as an extension of Hidden Conditional Random Fields (HCRFs). GRHCRFs while preserving the discriminative character of HCRFs, can assign labels in agreement with the production rules of a defined grammar. The main GRHCRF novelty is the possibility of including in HCRFs prior knowledge of the problem by means of a defined grammar. Our current implementation allows regular grammar rules. We tested our GRHCRF on two typical biosequence labelling problem: the prediction of the topology of Prokaryotic outer-membrane proteins and the prediction of bonding states of cysteine residues in proteins, proving that the separation of state names and labels allows to model a huge number of concurring paths compatible with the grammar and with the experimental labels without increasing the time and space computational complexity.

10 Esra Erdem, PhD Assistant Professor of Computer Science and Engineering, Sabanci University Esra Erdem is a faculty member at Sabanci University. She received her Ph.D. in computer sciences at the University of Texas at Austin (2002), and visited University of Toronto and Vienna University of Technology for postdoctoral research ( ). Her research is in the area of knowledge representation and reasoning. Talk Schedule: Tuesday, September 4 / 14:00 14:50 & 15:00 15:50 Genome Rearrangement with AI Planning The genome rearrangement problem is to find the most economical explanation for observed differences between the gene orders of two genomes. Such an explanation is provided in terms of events (such as inversions, transpositions) that change the order of genes in a genome. A similar problem studied in AI is the planning problem, where the goal is to plan the actions of a robotic agent to achieve the given goals from a given initial state. In the first part of the talk, we will study these two problems, emphasizing their similarities and the methods for solving them. In the second part of the talk, we will explain how the genome rearrangement problem can be modeled as an AI planning problem and solved using a general-purpose AI planner. Querying Biomedical Databases and Ontologies in Natural Language Using Automated Reasoners Storing biomedical data in various structured forms, like biomedical databases and ontologies, and at different locations have brought about many challenges for answering queries about the knowledge represented in these ontologies, like representation of queries, extraction of relevant knowledge from the biomedical resources, integrating them, efficiently answering queries, and generating further related explanations taking into account the provenance information. In the first part of the talk, we will go over these challenges, and present a related knowledge representation and reasoning paradigm from AI, called Answer Set Programming (ASP), that provides a high-level expressive formalism to represent knowledge and efficient solvers to answer queries about this knowledge. In the second part of the talk, we will discuss how ASP in connection with Semantic Web technologies can be used to handle the challenges of biomedical query answering.

11 Towia Libermann, PhD Associate Professor of Medicine, Harvard Medical School Director, BIDMC Genomics and Proteomics Center and DF/HCC Cancer Proteomics Core Div. of Interdisciplinary Medicine and Biotechnology Towia A. Libermann, Ph.D. is an Associate Professor of Medicine in the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School. Dr. Libermann is also the Director of the Beth Israel Deaconess Medical Center Genomics, Proteomics and Bioinformatics Center and Director of the Dana Farber/Harvard Cancer Center Cancer Proteomics Core. His laboratory is located in the Division of Interdisciplinary Medicine and Biotechnology at Beth Israel Deaconess Medical Center. Dr. Libermann is an experienced molecular biologist with a strong track record in oncology, immunological and inflammatory diseases, signal transduction, molecular biology, gene regulation, bioinformatics, proteomics and genomics. He is applying systematic and comprehensive functional genomics and proteomics strategies for transcriptional profiling, high throughput genotyping, proteomics, and drug screening to define disease mechanisms at a molecular level and to identify novel prognostic and predictive biomarkers as well as new drug targets in human disease such as cancer and diabetes. Dr. Libermann is an expert in translational research and personalized medicine, having worked on a variety of approaches to identify proteins that may be exploited as biomarkers and/ or targets for therapeutic invention, starting with his seminal discovery of EGF receptor gene amplifications in glioblastomas while he was a graduate student. Dr. Libermann is routinely participating as a reviewer for various NIH study sections, NCI Cancer Centers, Arthritis Foundation, AAAS, AIBS, Genome Canada, Science Foundation of Ireland, Israel Science foundation, Ontario Research Fund, Ontario Institute for Cancer Research and Korea Science and Engineering Foundation. Dr. Libermann is a Founder of Karyon Therapeutics, BananaLogix, and Tolerance Pharmaceuticals which merged into Cardion. Prior to joining Beth Israel Deaconess Medical Center and Harvard Medical School in 1990, Dr. Libermann did his post-doctoral training at the Whitehead Institute for Biomedical Research with Dr. David Baltimore, after receiving his Ph. D. degree under the supervision of Dr. Joseph Schlessinger in Immunology from the Weizmann Institute of Science and Technology, Rehovot, Israel in Dr. Libermann is Editor-in-Chief of the Open Proteomics Journal. He has published more than 170 scientific papers and has 4 issued and 5 pending patents. Talk Schedule: Thursday, September 6 / 14:00 14:50 & 15:00 15:50 Functional genomics driving individualized medicine and the challenges ahead Human beings are 99.99% the same. However, subtle genetic differences between individuals combined with environmental effects result in the predisposition or the development of diseases as well as divergent responses to therapies. Patients with the same disease respond differently to drugs due to individual differences in the particular disease causing mechanisms and due to individual variations in drug metabolism. The aim of personalized medicine is to optimally tailor therapy to each patient based on advanced molecular characterization of the individual s disease process and drug response. Functional genomics is promising to provide solutions to personalized medicine and will enhance our overall knowledge and treatment of various diseases.

12 Functional genomics approaches have rapidly evolved over the last years and have provided the basis for groundbreaking discoveries in basic and clinical research. As the technologies such as next generation sequencing become more mature and validated, bench-to-bedside clinical applications rapidly emerge. Genomics strategies in conjunction with bioinformatics and systems biology approaches are rapidly changing the landscape of medicine and patient management enabling stratification of patients based on their individual disease mechanism, development of targeted and more specific therapies and identification of novel diagnostic and prognostic biomarkers. This course will introduce some of the genomic technologies, applications to personalized medicine and challenges in applying genomic discoveries to patient management. Proteomic approaches to personalized medicine As a result of the human genome sequencing effort, delineation of the proteome has become the new frontier in basic, translational and clinical research. In-depth understanding of the proteome promises to solve many biological and clinical questions and is considered an enabling and critical approach in research and clinical investigation, expanding knowledge of etiology, development and progression of diseases. It is becoming more apparent that only if we understand the proteome within cells and in the extracellular compartments, will we be able to model the complex biological pathways in human disease. With the aid of knowledge-based analytical fields such as bioinformatics, proteomic technologies (e.g., mass spectrometry, protein fractionation) provide the means to compare profiles in normal and pathological tissues and correlate them with biological function, identify temporal patterns of protein expression and post-translational modifications and define the function and interactions of proteins. When considered along with clinical data, the proteomic profile of bodily fluids or tumor tissue can guide the rational and personalized management of patients with regard to therapeutic modalities and with the ultimate hope of discovering new molecular targets for drug development. Mass spectrometry has the unique ability to identify in parallel protein modifications and mutations while at the same time providing quantitative measurements. While mass spectrometry until recently had major limitations with regard to quantitation, sensitivity and throughput when applied to larger sets of clinical samples, recent technological developments have resulted in significant enhancements that make clinical proteomics feasible. Technological advances in mass spectrometry are rapidly pushing the limits of sensitivity and resolution. Indeed some targeted quantitative proteomic approaches combining antibody immunoprecipitation with mass spectrometry using Multiple Reaction Monitoring (MRM) are pushing the limit of protein detection to the level of ELISAs. As a result of this proteomic revolution, we are now able to identify and validate new disease biomarkers and potential novel molecular targets for drug development as well as to dissect aberrant biological pathways in diseases. This course will introduce fundamental language and concepts including basic concepts of mass spectrometry, sample preparation, quantitative proteomics, protein-protein interaction networks, posttranslational modifications, proteomics data analysis, proteomic biomarker discovery and validation, translational introduction of diagnostic and prognostic biomarkers into the clinic, proteomics approaches to understand basic disease mechanisms and to identify potential novel drug targets.

13 Michael P. Myers, PhD Group Leader, Protein Networks ICGEB Trieste Dr. Myers received his BA degree in Departments of Biology and Physics, DePauw University, Greencastle USA (1990) and his PhD degree in Department of Neuroscience, Case Western Reserve University, Cleveland USA (1996). Since 2007, Dr. Myers has been a group leader at the ICGEB Trieste Component. Prior to that, he was a principal investigator and the director of proteomics at the Cold Spring Harbor Laboratory. His laboratory is interested in understanding how protein complexes regulate cellular behavior. Inside the cell, the majority of proteins can be found in highly interactive networks. The architecture of these networks and how they change in response to the cellular environment is critical for the normal physiological functioning of the cell. In fact, these networks are responsible for the robustness and adaptability of living cells and perturbations to these networks result in pathological conditions such as cancer and neurological disorders. The laboratory uses high throughput mass spectrometry to gain insights into the protein interaction networks from a variety of normal and pathological conditions. Talk Schedule: Friday, September 7 / 09:00 09:50 & 10:00 10:50 Proteomics: From proteins to networks (in two parts) Proteomics attempts to identify or characterize the protein component from a biologically interesting source. The source can be extremely complex, such as the whole cell lysate from a tumor, or extremely simple, such as a single purified protein. Clearly the goals of these approaches, as well as the underlying workflows, are extremely different and these will be highlighted in the first presentation. The focus of the second presentation will be on how these approaches can be used to build networks of proteins and how these networks can be exploited to gain new insights. The goal of my laboratory is to understand how protein complexes regulate cellular behavior. My laboratory implements new methods for the high throughput analysis of protein interactions (networks) using mass spectrometry. In particular, we focus on those networks that are (or likely to be) perturbed in a variety of pathological conditions, including tumorigenesis and viral infection.

14 Hasan H. Otu, PhD Assistant Professor of Bioengineering, Istanbul Bilgi University Hasan H. Otu obtained his BS degree in 1996 and MS degree in 1997, both from Bogazici University, Department of Electrical and Electronics Engineering. In 2002, he graduated from the University of Nebraska-Lincoln with a PhD in Electrical Engineering. He is a faculty member at Harvard Medical School ( ) where he was a research fellow between Dr. Otu is the founding director of Bioinformatics Core at Beth Israel Deaconess Medical Center, Harvard Medical School and Associate Director of Proteomics Core at Dana Farber Harvard Cancer Center. Since 2010, Dr. Otu has been acting as the founding chair of Department of Bioengineering at Istanbul Bilgi University. Dr. Otu s research interests are in the area of Bioinformatics focusing on macromolecular sequence analysis, microarrays, biomarker discovery and systems biology, analyzing high throughput biological data within the context of networks. Talk Schedule: Monday, September 3 / 09:00 09:20 Thursday, September 6 / 11:30 12:20 Pathway Analysis of High Throughput Biological Data within the context of Bayesian Networks High Throughput Biological Data (HTBD) production has been increasing at an unprecedented pace with the advancements of microarrays and next-gen sequencing technologies. From a life science perspective HTBD data analysis results make most sense when interpreted within the context of biological networks and pathways. Bayesian Networks (BN) represent dependency structure for a set of random variables using directed acyclic graphs and have been used with increasing popularity in mathematics and computational sciences over the past 20 years. BNs model both linear and non-linear interactions, handle stochastic events in a probabilistic framework accounting for noise, and emphasize only strong relations in noisy data. These properties make BNs excellent candidates for HTBD analysis. In applications of BNs to HTBD analysis, generally, nodes represent genes and edges represent interaction relations. In this talk I will describe a method we have devised, Bayesian Pathway Analysis (BPA), with applications to synthetic and real data. In the BPA approach, known biological pathways are modeled as BNs and pathways that best explain given HTBD are found. Gene Set Enrichment (GSE) or Gen Ontology (GO) based approaches that analyze microarray data within the context of pathways or functional groups consider the genes in a pathway or group as a list, calculate some sort of a score for each list representing the pathway s or group s significance without involving in their model the topology via which genes in a given pathway or group interact with each other. Proposed method, for the first time, integrates pathway topology (graph representing gene interactions) when analyzing HTBD within the context of pathways. BPA tests fitness of the HTBD to the pathways (which are modeled as BNs) through the Bayesian Dirichlet Equivalent (BDe) scoring scheme. Significance of the scores are assessed using randomization via bootstrapping and False Discovery Rate (FDR) corrected p-values are calculated for each pathway accounting for multiple hypothesis testing.

15 Cenk Sahinalp, PhD Professor of Computing Science, Simon Fraser University Director, SFU Lab for Computational Biology; Canada Research Chair in Computational Genomics S. Cenk Sahinalp is a Professor of Computing Science at Simon Fraser University, Canada. He received his B.Sc. in Electrical Engineering from Bilkent University and his Ph.D. in Computer Science from the University of Maryland at College Park. Sahinalp is a University of Maryland Distinguished CS Alumni, an NSF Career Awardee, a Canada Research Chair, a Michael Smith Foundation for Health Research Scholar and an NSERC Discovery Accelerator Awardee. His papers on genomics and bioinformatics have been highlighted by scientific journals and magazines (e.g. Genome Research, Nature Biotech, Genome Technology) and won several awards (e.g. ISMB 12 Best Student Paper, ISMB 11 HitSeq Best Paper). He was/is the conference general chair of RECOMB 11, PC chair of APBC 13, and has served as the sequence analysis area chair for ISMB and CSHL Genome Informatics Conferences. He has also co-founded the RECOMB-Seq conference series on Massively Parallel Sequencing. He is an area co-editor for BMC Bioinformatics and is on the editorial board of Bioinformatics and several other journals. He co-directs the SFU undergraduate program in Bioinformatics and the SFU Bioinformatics for Combating Infectious Diseases Research Program. His research interests include computational genomics, in particular algorithms for high throughput sequence data, network biology, RNA structure and interaction prediction and chemoinformatics algorithms. Talk Schedule: Monday, September 3 / 10:00-10:50 & 11:30-12:20 Population Scale Detection of Common and Rare Genomic Rearrangements and Transcriptomic Aberrations Massively parallel (MP) sequencing technologies are on their way to reduce the cost of whole shotgun sequencing of an individual donor genome to USD Coupled with algorithms to accurately detect structural (in particular expressed) differences among many individual genomes, MP sequencing technologies are soon to change the way diseases of genomic origin are diagnosed and treated. In this talk we will briefly go through some of the algorithm development efforts at the Lab for Computational Biology in SFU for simultaneously analyzing large collections of MP sequenced genomes and transcriptomes, and in particular for identifying and differentiating common and rare, expressed and unexpressed large scale variants with high accuracy. Our algorithms, which we collectively call CommonLAW (Common Loci structural Alteration detection Widgets) move away from the current model of detecting genomic variants in single MP sequenced donors independently, and checking whether two or more donor genomes indeed agree or disagree on the variations. Instead, we propose a new model in which structural variants are detected among multiple genomes and transcriptomes simultaneously. One of our methods, Comrad, for example, enables integrated analysis of transcriptome (i.e. RNA) and genome (i.e. DNA) sequence data for discovering expressed rearrangements in multiple, possibly related, individuals.

16 Efficient Communication and Storage vs. Accurate Variant Calls in Massively Parallel Sequencing: Two Sides of the Same Coin Given two strings A and B from the DNA alphabet, the Levenshtein edit distance between A and B, LED(A,B), is defined to be the minimum number of single character insertions, deletions and replacements to transform A to B (equivalently B to A). If in addition to the single character edits, one is permitted to perform segmental (block) edits in the form of (i) moving a block from any location to another, (ii) copying a block to any location, and (iii) uncopying (i.e. deleting one of the two occurrences of) a block, the resulting block edit distance, BED(A,B), captures much of our current understanding of the relation between individual genome sequences. If among two communicating parties, Alice (holding genome sequence A) and Bob (holding genome sequence B), Alice wants to compute B, then, theoretically, the total number of bits Bob needs to send to Alice is O(BED(A,B) polylog BED(A,B)) [Cormode et al., SODA 2000]. Considering that between a typical donor genome B and a reference genome A, the number of single character differences are in the order of a few million and the number of structural (i.e. blockwise) differences are in the order of tens of thousands, it should be possible to communicate genomes by exchanging only a few million bytes! Yet, today, the most effective way of communicating genome sequence data involves physically exchanging hard disks. In this talk we will try to explain the wide gap between theoretical expectations and the current reality in genome communication, as well as storage, and pose some theoretical and practical problems on the way to the Google-ization of genome search and analysis. We will also try to explore the extent our theoretical predictions for genome sequences hold for the RNA-Seq data. Finally we will briefly go through some of the recent developments in transcriptome sequence analysis, especially in the context of disease studies.

17 Khalid Sayood, PhD Professor of Electrical Engineering, University of Nebraska-Lincoln Khalid Sayood received his undergraduate education at the Middle East Technical University, Ankara, Turkey, and the University of Rochester, Rochester, NY. He received the B.S. and M.S. degrees from the University of Rochester, and the Ph.D. degree from Texas A&M University, College Station, TX, in 1977, 1979, and 1982 respectively, all in electrical engineering. He joined the Department of Electrical Engineering at the University of Nebraska-Lincoln in 1982, where he is currently serving as Henson Professor of Engineering. He spent the academic years at the TUBITAK Marmara Research Center and Bogazici University in Turkey. He is the author of Introductionto Data Compression, now in its second edition, and the editor of The Lossless Compression Handbook. Khalid Sayood s principal interest is in the search of patterns in data. He indulges this interest by looking at problems in data compression, joint source-channel coding, and various aspects of bioinformatics. Talk Schedule: Thursday, September 6 / 09:00-09:50 & 10:00-10:50 Computational Genomic Signatures and their Applications Recent advances in development of sequencing technology have resulted in a deluge of genomic data. In order to make sense of this data there is an urgent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global speciesspecific features of genomes using simple mathematical models. The first talk introduces the general concept of computational genomic signatures, and reviews some of the DNA sequence models which can be used as computational genomic signatures. We begin with well known composition models such as GC content and dinucleotide odds ratio. We continue with signatures based on correlation statistics. These include autoregressive models as well as information theoretic models such as the average mutual information profile. We conclude with signatures based on composition vectors. Practical computational genomic signatures consist of both a model and a measure for computing the distance or similarity between models. Therefore, a discussion of sequence similarity/distance measurement in the context of computational genomic signatures is presented. The second talk deals with various applications of computational genomic signatures. In particular we will examine the areas of phylogeny construction and metagenomics with a brief excursion into the problem of detecting horizontal gene transfer.

18 Ugur Sezerman, PhD Associate Professor of Biological Sciences and Bioengineering, Sabanci University O. Uğur Sezerman graduated from Bogazici University, Istanbul, (B. Sc. Elect. Eng. 1985, M.Sc. Biomedical Eng. 1987) and received a Ph. D. in Biomedical Engineering (1993) from Boston University, MA, USA. Previously he worked at Boston University and Bogazici University as a researcher and an instructor. He has been at Sabanci University Biological Sciences and Bioengineering Program since He has established the Computational Biology Laboratory at Sabanci University. His current research interests are molecular modeling, synthetic vaccine and drug design, protein engineering, DNA chips, and developing algorithms for applications in functional genomics, systems biology and bioinformatics. Talk Schedule: Tuesday, September 4 / 09:00 09:50 & 10:00 10:50 Protein Structure Prediction Methods 3D structure information on proteins is instrumental in understanding the mechanism of their function. Even though there are several experimental methods for structure determination they are usually labor, time and cost expensive. In this talk I will go over computational methods developed for protein structure prediction. The talk will specially focus on ab initio, threading and homology modeling. SNP Analysis in a pathway related context For complex diseases there are no strong associations between SNPs and disease etiology. Analysis of SNPs in a pathway related context reveals pathways that are affected by these SNPs and show higher conservation than SNPs across populations. In this talk I will summarize the method we developed to find disease related pathways. The method involves SNP targeted gene identification, functional impact scoring, mapping to interaction networks, identification of targeted connected sub networks and finally identification of KEGG pathways found in these sub-networks.

19 Luiz Zerbini, PhD Group Leader, Cancer Genomics ICGEB Cape Town Dr. Luiz Zerbini received a Ph. D. from University of Sao Paulo, Brazil in His Ph. D. work focused on developing new gene therapy strategies in order to generate adenoviral vectors that could be specifically targeted to certain cell types. He joined Dr. Libermann s laboratory as post-doctoral scientist at Beth Israel Deaconess Medical Centre (BIDMC) and Harvard Medical School in September 1999 where he worked on defining the mechanisms involved in the deregulated function of malignant cells. He was promoted to Instructor Faculty position at Harvard Medical School in At the same year, Dr. Zerbini became the Associate Director of Research Proteomics, Dana Farber Harvard Proteomics Core. Furthermore, he was awarded as an independent investigator with two long-term Department of Defense (DoD), Cancer Program projects and co-investigator in a NIH R01 Research grant. He was also award two research grants from the Special Program for Research Excellence (SPORE) through the Dana Farber Harvard Cancer Center, funded by the National Cancer Institute (NCI). Dr. Zerbini joined the International Centre for Genetic Engineering and Biotechnology (ICGEB), located in Cape Town, South Africa in March ICGEB provides a scientific and educational environment of the highest standard and conducts innovative research in life sciences for the benefit of developing countries. ICGEB is part of the United Nations System. Dr. Zerbini currently serves as the head of the Cancer Genomics Group. The overall goals of the Group are to utilize genomics and proteomics tools and signal transduction resources to accelerate comparative analysis of aberrant gene expression in carcinogenesis and to study alterations in signal transduction pathways during development of cancers. Talk Schedule: Monday, September 3 / 09:20 09:50 Tuesday, September 4 / 11:30 12:20 The Connectivity map database and its use in cancer research Global molecular profiling has shown broad utility in delineating pathways and processes underlying disease, in predicting prognosis and response to therapy. The connectivity map (cmap) database was established in 2008 at The Broad Institute of MIT and Harvard in Cambridge, Massachusetts. It consists of a collection of genome-wide transcriptional expression data from cultured human cells treated with bioactive small molecules and simple pattern-matching algorithms that together enable the discovery of functional connections between drugs, genes and diseases through the transitory feature of common gene-expression changes. This approach can be used to identify gene signatures in patients that may predict the response to a particular drug. The cmap analysis involves the ranking of drugs based on the highest inverse similarity with the disease-specific gene signatures, providing a score for each drug. The drug gene signatures that are opposite to disease-specific gene signatures are drugs that may potentially reverse the disease phenotype towards the healthy state. This talk will introduce the rationale behind cmap and it will describe some applications that can be used in cancer research

20 Shuttle Bus Schedule from TAKSİM: Taksim - Dolapdere - Santral 08:00-08:30-09:00-09:30-10:00-10:30-11:00-11:30-12:00-12:30-13:00-13:30-14:00-14:30-15:00-15:30-16:00-16:30-17:00-17:30-18:00-18:30-19:00 Taksim - Dolapdere 08:15-09:15-10:15-11:15-12:15-13:15-14:15-15:15-16:15 There are hourly shuttle buses between on every Saturdays. from SANTRAL CAMPUS: Santral - Dolapdere - Taksim 08:00-08:30-09:00-09:30-10:00-10:30-11:00-11:30-12:00-12:30-13:00-13:30-14:00-14:30-15:00-15:30-16:00-16:30-17:00-17:30-18:00-18:30-19:00-19:30-20:00 There are hourly shuttle buses between on every Saturdays. Shuttle services are not available on Sundays. Shuttle services are not available on official holidays. You should check to see Shuttle Bus Schedule on our website.

Dr Alexander Henzing

Dr Alexander Henzing Horizon 2020 Health, Demographic Change & Wellbeing EU funding, research and collaboration opportunities for 2016/17 Innovate UK funding opportunities in omics, bridging health and life sciences Dr Alexander

More information

BBSRC TECHNOLOGY STRATEGY: TECHNOLOGIES NEEDED BY RESEARCH KNOWLEDGE PROVIDERS

BBSRC TECHNOLOGY STRATEGY: TECHNOLOGIES NEEDED BY RESEARCH KNOWLEDGE PROVIDERS BBSRC TECHNOLOGY STRATEGY: TECHNOLOGIES NEEDED BY RESEARCH KNOWLEDGE PROVIDERS 1. The Technology Strategy sets out six areas where technological developments are required to push the frontiers of knowledge

More information

A leader in the development and application of information technology to prevent and treat disease.

A leader in the development and application of information technology to prevent and treat disease. A leader in the development and application of information technology to prevent and treat disease. About MOLECULAR HEALTH Molecular Health was founded in 2004 with the vision of changing healthcare. Today

More information

A Primer of Genome Science THIRD

A Primer of Genome Science THIRD A Primer of Genome Science THIRD EDITION GREG GIBSON-SPENCER V. MUSE North Carolina State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts USA Contents Preface xi 1 Genome Projects:

More information

Ph.D. in Bioinformatics and Computational Biology Degree Requirements

Ph.D. in Bioinformatics and Computational Biology Degree Requirements Ph.D. in Bioinformatics and Computational Biology Degree Requirements Credits Students pursuing the doctoral degree in BCB must complete a minimum of 90 credits of relevant work beyond the bachelor s degree;

More information

BIOINF 525 Winter 2016 Foundations of Bioinformatics and Systems Biology http://tinyurl.com/bioinf525-w16

BIOINF 525 Winter 2016 Foundations of Bioinformatics and Systems Biology http://tinyurl.com/bioinf525-w16 Course Director: Dr. Barry Grant (DCM&B, bjgrant@med.umich.edu) Description: This is a three module course covering (1) Foundations of Bioinformatics, (2) Statistics in Bioinformatics, and (3) Systems

More information

UPBM CURRICULAR BROCHURE

UPBM CURRICULAR BROCHURE UPBM CURRICULAR BROCHURE Undergraduate Program in Biology and Medicine Contents Academic Year 2015-16 About the Undergraduate Program in Biology and Medicine...pg. 1 Undergraduate Majors...pg. 2-3 Getting

More information

M.Sc. in Nano Technology with specialisation in Nano Biotechnology

M.Sc. in Nano Technology with specialisation in Nano Biotechnology M.Sc. in Nano Technology with specialisation in Nano Biotechnology Nanotechnology is all about designing, fabricating and controlling materials, components and machinery with dimensions on the nanoscale,

More information

How Can Institutions Foster OMICS Research While Protecting Patients?

How Can Institutions Foster OMICS Research While Protecting Patients? IOM Workshop on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials How Can Institutions Foster OMICS Research While Protecting Patients? E. Albert Reece, MD, PhD, MBA Vice

More information

ITT Advanced Medical Technologies - A Programmer's Overview

ITT Advanced Medical Technologies - A Programmer's Overview ITT Advanced Medical Technologies (Ileri Tip Teknolojileri) ITT Advanced Medical Technologies (Ileri Tip Teknolojileri) is a biotechnology company (SME) established in Turkey. Its activity area is research,

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

Resumen Curricular de los Profesores. Jesse Boehm

Resumen Curricular de los Profesores. Jesse Boehm Resumen Curricular de los Profesores Jesse Boehm Jesse Boehm is the assistant director of the Cancer Program at the Broad Institute. In this role, he works closely with Cancer Program director Todd Golub

More information

The University is comprised of seven colleges and offers 19. including more than 5000 graduate students.

The University is comprised of seven colleges and offers 19. including more than 5000 graduate students. UNC CHARLOTTE A doctoral, research-intensive university, UNC Charlotte is the largest institution of higher education in the Charlotte region. The University is comprised of seven colleges and offers 19

More information

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Biochemistry

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Biochemistry Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Biochemistry The Master Degree in Medical Laboratory Sciences /Clinical Biochemistry, is awarded by the Faculty of Graduate Studies

More information

NIH/NIGMS Trainee Forum: Computational Biology and Medical Informatics at Georgia Tech

NIH/NIGMS Trainee Forum: Computational Biology and Medical Informatics at Georgia Tech ACM-BCB 2015 (Sept. 10 th, 10:00am-12:30pm) NIH/NIGMS Trainee Forum: Computational Biology and Medical Informatics at Georgia Tech Chair: Professor Greg Gibson Georgia Institute of Technology Co-Chair:

More information

Study Program Handbook Biochemistry and Cell Biology

Study Program Handbook Biochemistry and Cell Biology Study Program Handbook Biochemistry and Cell Biology Bachelor of Science Jacobs University Undergraduate Handbook BCCB - Matriculation Fall 2015 Page: ii Contents 1 The Biochemistry and Cell Biology (BCCB)

More information

PROGRAMME OF THE M.Sc. (OTHER THAN MATHEMATICS, STATISTICS & GEOGRAPHY)(PART II) EXAMINATION. Days and Dates Time Paper

PROGRAMME OF THE M.Sc. (OTHER THAN MATHEMATICS, STATISTICS & GEOGRAPHY)(PART II) EXAMINATION. Days and Dates Time Paper (324) FIRST HALF 2013 PROGRAMME OF THE M.Sc. (OTHER THAN MATHEMATICS, STATISTICS & GEOGRAPHY)(PART II) EXAMINATION Candidates for the above examination are requested to be in attendance at the place of

More information

The College of Science Graduate Programs integrate the highest level of scholarship across disciplinary boundaries with significant state-of-the-art

The College of Science Graduate Programs integrate the highest level of scholarship across disciplinary boundaries with significant state-of-the-art GRADUATE PROGRAMS The College of Science Graduate Programs integrate the highest level of scholarship across disciplinary boundaries with significant state-of-the-art research centers and experiential

More information

REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOINFORMATICS (BSc[BioInf])

REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOINFORMATICS (BSc[BioInf]) 820 REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOINFORMATICS (BSc[BioInf]) (See also General Regulations) BMS1 Admission to the Degree To be eligible for admission to the degree of Bachelor

More information

FACULTY OF MEDICAL SCIENCE

FACULTY OF MEDICAL SCIENCE Doctor of Philosophy Program in Microbiology FACULTY OF MEDICAL SCIENCE Naresuan University 171 Doctor of Philosophy Program in Microbiology The time is critical now for graduate education and research

More information

An Interdepartmental Ph.D. Program in Computational Biology and Bioinformatics:

An Interdepartmental Ph.D. Program in Computational Biology and Bioinformatics: An Interdepartmental Ph.D. Program in Computational Biology and Bioinformatics: The Yale Perspective Mark Gerstein, Ph.D. 1,2, Dov Greenbaum 1, Kei Cheung, Ph.D. 3,4,5, Perry L. Miller, M.D., Ph.D. 3,4,6

More information

FACULTY OF ALLIED HEALTH SCIENCES

FACULTY OF ALLIED HEALTH SCIENCES FACULTY OF ALLIED HEALTH SCIENCES 102 Naresuan University FACULTY OF ALLIED HEALTH SCIENCES has focused on providing strong professional programs, including Medical established as one of the leading institutes

More information

Using Ontologies in Proteus for Modeling Data Mining Analysis of Proteomics Experiments

Using Ontologies in Proteus for Modeling Data Mining Analysis of Proteomics Experiments Using Ontologies in Proteus for Modeling Data Mining Analysis of Proteomics Experiments Mario Cannataro, Pietro Hiram Guzzi, Tommaso Mazza, and Pierangelo Veltri University Magna Græcia of Catanzaro, 88100

More information

University of Glasgow - Programme Structure Summary C1G5-5100 MSc Bioinformatics, Polyomics and Systems Biology

University of Glasgow - Programme Structure Summary C1G5-5100 MSc Bioinformatics, Polyomics and Systems Biology University of Glasgow - Programme Structure Summary C1G5-5100 MSc Bioinformatics, Polyomics and Systems Biology Programme Structure - the MSc outcome will require 180 credits total (full-time only) - 60

More information

> Semantic Web Use Cases and Case Studies

> Semantic Web Use Cases and Case Studies > Semantic Web Use Cases and Case Studies Case Study: Applied Semantic Knowledgebase for Detection of Patients at Risk of Organ Failure through Immune Rejection Robert Stanley 1, Bruce McManus 2, Raymond

More information

Nuevas tecnologías basadas en biomarcadores para oncología

Nuevas tecnologías basadas en biomarcadores para oncología Nuevas tecnologías basadas en biomarcadores para oncología Simposio ASEBIO 14 de marzo 2013, PCB Jose Jimeno, MD, PhD Co-Founder / Vice Chairman Pangaea Biotech SL Barcelona, Spain PANGAEA BIOTECH BUSINESS

More information

Programme Specification (2014-15): MSc in Bioinformatics and Computational Genomics

Programme Specification (2014-15): MSc in Bioinformatics and Computational Genomics Date of Revision Date of Previous Revision Programme Specification (2014-15): MSc in Bioinformatics and Computational Genomics A programme specification is required for any programme on which a student

More information

Doctor of Philosophy in Computer Science

Doctor of Philosophy in Computer Science Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects

More information

3. Career Tools Podcasts

3. Career Tools Podcasts Workshop minutes: Title: Young Mass spectrometrists Workshop Date: June 1 st, 2015 Host: Olga Friese and Kristin Wildsmith Panelist: Industry: Lisa Marzilli, Daniel Spellman Academia: Leslie Hicks Attendees:

More information

BIOSCIENCES COURSE TITLE AWARD

BIOSCIENCES COURSE TITLE AWARD COURSE TITLE AWARD BIOSCIENCES As a Biosciences undergraduate student at the University of Westminster, you will benefit from some of the best teaching and facilities available. Our courses combine lecture,

More information

FINDING PROTEINS THAT HIT THE MARK PROVEN TRACK-RECORD OF PROTEOMICS EXPERTISE

FINDING PROTEINS THAT HIT THE MARK PROVEN TRACK-RECORD OF PROTEOMICS EXPERTISE FINDING PROTEINS THAT HIT THE MARK PROVEN TRACK-RECORD OF PROTEOMICS EXPERTISE Bioanalytical Services Fit-for-Purpose Assays Biomarker Discovery and Development Proven track-record of proteomics expertise

More information

FACULTY OF MEDICAL SCIENCE

FACULTY OF MEDICAL SCIENCE Doctor of Philosophy in Biochemistry FACULTY OF MEDICAL SCIENCE Naresuan University 73 Doctor of Philosophy in Biochemistry The Biochemistry Department at Naresuan University is a leader in lower northern

More information

CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS

CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS PROGRAM MODIFICATION DATE: 12.06.06 PROGRAM AREA: BIOLOGY AND BUSINESS AND ECONOMICS SEMESTER /YEAR FIRST EFFECTED: FALL 2007 Please use the following format

More information

EXPLORE BIO SIMULATION. COMPUTATIONAL LIFE SCIENCE (MSc) GRADUATE PROGRAM

EXPLORE BIO SIMULATION. COMPUTATIONAL LIFE SCIENCE (MSc) GRADUATE PROGRAM EXPLORE BIO SIMULATION COMPUTATIONAL LIFE SCIENCE (MSc) GRADUATE PROGRAM THE PROGRAM COMPUTATIONAL LIFE SCIENCE (COMPLIFE) Over the last decades, biomedical research has become increasingly interdisciplinary

More information

THE M.SC. PROGRAMS OF THE FACULTY OF SCIENCE GENERAL INFORMATION THE SCHOOL OF M.SC. STUDIES

THE M.SC. PROGRAMS OF THE FACULTY OF SCIENCE GENERAL INFORMATION THE SCHOOL OF M.SC. STUDIES THE M.SC. PROGRAMS OF THE FACULTY OF SCIENCE GENERAL INFORMATION THE SCHOOL OF M.SC. STUDIES The Faculty of Science at the Hebrew University of Jerusalem invites outstanding Bachelor s-degree-level graduates

More information

COMPUTATIONAL LIFE SCIENCE (MSc) GRADUATE PROGRAM

COMPUTATIONAL LIFE SCIENCE (MSc) GRADUATE PROGRAM COMPUTATIONAL LIFE SCIENCE (MSc) GRADUATE PROGRAM THE PROGRAM COMPUTATIONAL LIFE SCIENCE (COMPLIFE) Over the last decades, biomedical research has become increasingly interdisciplinary in nature, focusing

More information

Master of Science in BIOINFORMATICS. > information. > insight. > innovation

Master of Science in BIOINFORMATICS. > information. > insight. > innovation Master of Science in BIOINFORMATICS > information > insight > innovation The Program Master of Science in Bioinformatics The College of Science at Northeastern University is committed to delivering cutting-edge

More information

SACKLER SCHOOL OF GRADUATE BIOMEDICAL SCIENCES CATALOG 2015-2016 PROGRAMS OF STUDY, COURSES AND REQUIREMENTS FOR ALL GRADUATE PROGRAMS

SACKLER SCHOOL OF GRADUATE BIOMEDICAL SCIENCES CATALOG 2015-2016 PROGRAMS OF STUDY, COURSES AND REQUIREMENTS FOR ALL GRADUATE PROGRAMS SACKLER SCHOOL OF GRADUATE BIOMEDICAL SCIENCES CATALOG 2015-2016 PROGRAMS OF STUDY, COURSES AND REQUIREMENTS FOR ALL GRADUATE PROGRAMS Graduate Programs CELL, MOLECULAR, AND DEVELOPMENTAL BIOLOGY CLINICAL

More information

BIOINFORMATICS METHODS AND APPLICATIONS

BIOINFORMATICS METHODS AND APPLICATIONS FACULTY of ENGINEERING SCHOOL OF COMPUTER SCIENCE AND ENGINEERING BINF3010/9010 BIOINFORMATICS METHODS AND APPLICATIONS SESSION 1, 2015 Course staff Course Convener: Bruno Gaëta bgaeta@unsw.edu.au School

More information

ATIP Avenir Program 2014. Applicant s guide

ATIP Avenir Program 2014. Applicant s guide ATIP Avenir Program 2014 Applicant s guide Important dates: - November 29 th 2013: deadline for the online submission, the mailing of the hard copy of the scientific project, and the letters of recommendation

More information

Biotechnology and Life Science Marketing Services Mailing List and Data Card Order Form

Biotechnology and Life Science Marketing Services Mailing List and Data Card Order Form C H I Cambridge Healthtech Institute s Biotechnology and Life Science Marketing Services Mailing List and Data Card Order Form Over 800,000 names segmented by scientific interest Featuring U.S and International

More information

Graduate Studies in Biomedical Sciences

Graduate Studies in Biomedical Sciences Graduate Studies in Biomedical Sciences The graduate program in Biomedical Sciences is designed to provide a multidisciplinary educational and training environment that will prepare them for independent

More information

M.S. AND PH.D. IN BIOMEDICAL ENGINEERING

M.S. AND PH.D. IN BIOMEDICAL ENGINEERING M.S. AND PH.D. IN BIOMEDICAL ENGINEERING WHEREAS, the Board of Visitors recently approved the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences (SBES) to form a joint research

More information

M110.726 The Nucleus M110.727 The Cytoskeleton M340.703 Cell Structure and Dynamics

M110.726 The Nucleus M110.727 The Cytoskeleton M340.703 Cell Structure and Dynamics of Biochemistry and Molecular Biology 1. Master the knowledge base of current biochemistry, molecular biology, and cellular physiology Describe current knowledge in metabolic transformations conducted

More information

Russ College of Engineering and Technology. Revised 9/06. 2. Undergraduate GPA of 3.0/4.0 or equivalent.

Russ College of Engineering and Technology. Revised 9/06. 2. Undergraduate GPA of 3.0/4.0 or equivalent. Requirements and Guidelines for the Master of Science Degree in Biomedical Engineering Revised 9/06 I. Minimum Entrance Requirements Admission is subject to final approval by the BME Graduate Committee.

More information

LCFA/IASLC LORI MONROE SCHOLARSHIP IN TRANSLATIONAL LUNG CANCER RESEARCH

LCFA/IASLC LORI MONROE SCHOLARSHIP IN TRANSLATIONAL LUNG CANCER RESEARCH LCFA/IASLC LORI MONROE SCHOLARSHIP IN TRANSLATIONAL LUNG CANCER RESEARCH FUNDING OPPORTUNITY DESCRIPTION 2016 REQUEST FOR APPLICATION (RFA) Lung Cancer Foundation of America (LCFA) and the International

More information

Graduate Program in Molecular and Cellular Biology University of Guelph www.uoguelph.ca/mcb/graduate/graduate.shtml

Graduate Program in Molecular and Cellular Biology University of Guelph www.uoguelph.ca/mcb/graduate/graduate.shtml Graduate Program in Molecular and Cellular Biology University of Guelph www.uoguelph.ca/mcb/graduate/graduate.shtml Graduate Program Information 40 faculty members, ~100 grad students, 30+ Postdoctoral

More information

COURSE TITLE COURSE DESCRIPTION

COURSE TITLE COURSE DESCRIPTION COURSE TITLE COURSE DESCRIPTION CH-00X CHEMISTRY EXIT INTERVIEW All graduating students are required to meet with their department chairperson/program director to finalize requirements for degree completion.

More information

Introduction to Proteomics 1.0

Introduction to Proteomics 1.0 Introduction to Proteomics 1.0 CMSP Workshop Tim Griffin Associate Professor, BMBB Faculty Director, CMSP Objectives Why are we here? For participants: Learn basics of MS-based proteomics Learn what s

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

AGILENT S BIOINFORMATICS ANALYSIS SOFTWARE

AGILENT S BIOINFORMATICS ANALYSIS SOFTWARE ACCELERATING PROGRESS IS IN OUR GENES AGILENT S BIOINFORMATICS ANALYSIS SOFTWARE GENESPRING GENE EXPRESSION (GX) MASS PROFILER PROFESSIONAL (MPP) PATHWAY ARCHITECT (PA) See Deeper. Reach Further. BIOINFORMATICS

More information

Integrating Bioinformatics, Medical Sciences and Drug Discovery

Integrating Bioinformatics, Medical Sciences and Drug Discovery Integrating Bioinformatics, Medical Sciences and Drug Discovery M. Madan Babu Centre for Biotechnology, Anna University, Chennai - 600025 phone: 44-4332179 :: email: madanm1@rediffmail.com Bioinformatics

More information

Harald Isemann. Vienna Brno Olomouc. Research Institute for Molecular Pathology

Harald Isemann. Vienna Brno Olomouc. Research Institute for Molecular Pathology Harald Isemann Vienna Brno Olomouc Managing Director Research Institute for Molecular Pathology The Campus The Campus Max F. Perutz Laboratories www.mfpl.ac.at www.univie.ac.at www.meduniwien.ac.at Research

More information

InSyBio BioNets: Utmost efficiency in gene expression data and biological networks analysis

InSyBio BioNets: Utmost efficiency in gene expression data and biological networks analysis InSyBio BioNets: Utmost efficiency in gene expression data and biological networks analysis WHITE PAPER By InSyBio Ltd Konstantinos Theofilatos Bioinformatician, PhD InSyBio Technical Sales Manager August

More information

McMASTER SCHOOL OF BIOMEDICAL ENGINEERING. http://bme.mcmaster.ca

McMASTER SCHOOL OF BIOMEDICAL ENGINEERING. http://bme.mcmaster.ca McMASTER SCHOOL OF BIOMEDICAL ENGINEERING http://bme.mcmaster.ca A wide gap currently exists between researchers trained in life sciences and those trained in engineering a gap that represents an impediment

More information

J D R F R E Q U E S T S L E T T E R S O F I N T E N T F O R : B I O M AR K E R S O F P AN C R E A T I C B E T A C E L L S T R E S S AN D H E AL T H

J D R F R E Q U E S T S L E T T E R S O F I N T E N T F O R : B I O M AR K E R S O F P AN C R E A T I C B E T A C E L L S T R E S S AN D H E AL T H J D R F R E Q U E S T S L E T T E R S O F I N T E N T F O R : B I O M AR K E R S O F P AN C R E A T I C B E T A C E L L S T R E S S AN D H E AL T H PURPOSE JDRF, the world s leading non-profit organization

More information

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology The Master Degree in Medical Laboratory Sciences / Clinical Microbiology, Immunology or

More information

University Uses Business Intelligence Software to Boost Gene Research

University Uses Business Intelligence Software to Boost Gene Research Microsoft SQL Server 2008 R2 Customer Solution Case Study University Uses Business Intelligence Software to Boost Gene Research Overview Country or Region: Scotland Industry: Education Customer Profile

More information

Master of Science in Artificial Intelligence

Master of Science in Artificial Intelligence Master of Science in Artificial Intelligence Options: Engineering and Computer Science (ECS) Speech and Language Technology (SLT) Big Data Analytics (BDA) Faculty of Engineering Science Faculty of Science

More information

Master of Science in Biomedical Sciences

Master of Science in Biomedical Sciences Master of Science in Biomedical Sciences Faculty of Medicine Good health is our greatest treasure. Understanding the human body, healthy and diseased, is the stepping stone to finding tools to improving

More information

Tier 2 Canada Research Chair in Bioinformatics Additional Information for Potential Applicants

Tier 2 Canada Research Chair in Bioinformatics Additional Information for Potential Applicants St. Francis Xavier University (StFX) Tier 2 Canada Research Chair in Bioinformatics Additional Information for Potential Applicants Founded in 1853, St. Francis Xavier University (StFX) has a long and

More information

Biology meets Engineering

Biology meets Engineering UIC Bioengineering What is Bioengineering? Biology meets Engineering The term bioengineering is often used interchangeably with: Biomedical Engineering synonymous (as far as accreditation goes ABET) Biological

More information

Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik

Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik Leading Genomics Diagnostic harma Discove Collab Shanghai Cambridge, MA Reykjavik Global leadership for using the genome to create better medicine WuXi NextCODE provides a uniquely proven and integrated

More information

Current Motif Discovery Tools and their Limitations

Current Motif Discovery Tools and their Limitations Current Motif Discovery Tools and their Limitations Philipp Bucher SIB / CIG Workshop 3 October 2006 Trendy Concepts and Hypotheses Transcription regulatory elements act in a context-dependent manner.

More information

Next Generation Sequencing: Technology, Mapping, and Analysis

Next Generation Sequencing: Technology, Mapping, and Analysis Next Generation Sequencing: Technology, Mapping, and Analysis Gary Benson Computer Science, Biology, Bioinformatics Boston University gbenson@bu.edu http://tandem.bu.edu/ The Human Genome Project took

More information

For additional information on the program, see the current university catalog.

For additional information on the program, see the current university catalog. For information call: Tel: (818) 77-81 Fax: (818) 77-08 E-mail: chemistry.office@csun.edu Website: http://www.csun.edu/chemistry Or write: Department of Chemistry and Biochemistry California State University,

More information

Pharmacology skills for drug discovery. Why is pharmacology important?

Pharmacology skills for drug discovery. Why is pharmacology important? skills for drug discovery Why is pharmacology important?, the science underlying the interaction between chemicals and living systems, emerged as a distinct discipline allied to medicine in the mid-19th

More information

The Master s Degree Program in Applied Biomedical Engineering

The Master s Degree Program in Applied Biomedical Engineering The Master s Degree Program in Applied Biomedical Engineering Russell L. McCally The Master s Degree Program in Applied Biomedical Engineering was established in 1993. This article describes its history,

More information

1. Program Title Master of Science Program in Biochemistry (International Program)

1. Program Title Master of Science Program in Biochemistry (International Program) 1 Program Structure and Specification Master of Science Program in Biochemistry (International Program) Curriculum Last Revised in 2012 for Students Entering in Academic Year 2016 -----------------------------------------

More information

Intro to Bioinformatics

Intro to Bioinformatics Intro to Bioinformatics Marylyn D Ritchie, PhD Professor, Biochemistry and Molecular Biology Director, Center for Systems Genomics The Pennsylvania State University Sarah A Pendergrass, PhD Research Associate

More information

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources 1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools

More information

Vad är bioinformatik och varför behöver vi det i vården? a bioinformatician's perspectives

Vad är bioinformatik och varför behöver vi det i vården? a bioinformatician's perspectives Vad är bioinformatik och varför behöver vi det i vården? a bioinformatician's perspectives Dirk.Repsilber@oru.se 2015-05-21 Functional Bioinformatics, Örebro University Vad är bioinformatik och varför

More information

Workshop on Establishing a Central Resource of Data from Genome Sequencing Projects

Workshop on Establishing a Central Resource of Data from Genome Sequencing Projects Report on the Workshop on Establishing a Central Resource of Data from Genome Sequencing Projects Background and Goals of the Workshop June 5 6, 2012 The use of genome sequencing in human research is growing

More information

University of Medicine and Dentistry of New Jersey (UMDNJ)

University of Medicine and Dentistry of New Jersey (UMDNJ) University of Medicine and Dentistry of New Jersey (UMDNJ) Dual-Degree Program between the UMDNJ Graduate School of Biomedical Sciences (GSBS) And the UMDNJ School of Public Health (SPH) Leading to the:

More information

The Evolution of Graduate Education in the College of Medicine. Office of Graduate & Postdoctoral Affairs School of Basic Biomedical Sciences

The Evolution of Graduate Education in the College of Medicine. Office of Graduate & Postdoctoral Affairs School of Basic Biomedical Sciences The Evolution of Graduate Education in the College of Medicine Office of Graduate & Postdoctoral Affairs Graduate Education in the College of Medicine Graduate Programs in Integrated Graduate Education

More information

PharmD Postdoctoral Fellowship Program

PharmD Postdoctoral Fellowship Program Novartis Institutes for Biomedical Research and Massachusetts College of Pharmacy and Health Sciences, Worcester/Manchester PharmD Postdoctoral Fellowship Program Introduction Fellowship training in the

More information

Elective Options for MS in Clinical and Translational Sciences Program

Elective Options for MS in Clinical and Translational Sciences Program Elective Options for MS in Clinical and Translational Sciences Program NOTE: ALL ELECTIVES MUST BE GRADUATE LEVEL COURSES AND APPROVED BY A MS CTS PROGRAM DIRECTOR IN ORDER TO RECEIVE CREDIT TOWARDS MCTS

More information

Data deluge (and it s applications) Gianluigi Zanetti. Data deluge. (and its applications) Gianluigi Zanetti

Data deluge (and it s applications) Gianluigi Zanetti. Data deluge. (and its applications) Gianluigi Zanetti Data deluge (and its applications) Prologue Data is becoming cheaper and cheaper to produce and store Driving mechanism is parallelism on sensors, storage, computing Data directly produced are complex

More information

Biochemistry (Molecular and Cellular) Information Sheet for entry in 2016. What is Biochemistry?

Biochemistry (Molecular and Cellular) Information Sheet for entry in 2016. What is Biochemistry? Biochemistry (Molecular and Cellular) Information Sheet for entry in 2016 What is Biochemistry? The study of living things at the molecular level has undergone tremendous expansion in recent years, leading

More information

Regulatory Issues in Genetic Testing and Targeted Drug Development

Regulatory Issues in Genetic Testing and Targeted Drug Development Regulatory Issues in Genetic Testing and Targeted Drug Development Janet Woodcock, M.D. Deputy Commissioner for Operations Food and Drug Administration October 12, 2006 Genetic and Genomic Tests are Types

More information

Graduate and Postdoctoral Affairs School of Biomedical Sciences College of Medicine. Graduate Certificate. Metabolic & Nutritional Medicine

Graduate and Postdoctoral Affairs School of Biomedical Sciences College of Medicine. Graduate Certificate. Metabolic & Nutritional Medicine Graduate and Postdoctoral Affairs School of Biomedical Sciences College of Medicine Graduate Certificate in Metabolic & Nutritional Medicine Graduate Certificate Metabolic & Nutritional Medicine Purpose

More information

BIOLOGICAL SCIENCES REQUIREMENTS [63 75 UNITS]

BIOLOGICAL SCIENCES REQUIREMENTS [63 75 UNITS] Biological Sciences Major The Biological Sciences address many of the most important and fundamental questions about our world: What is life? How does our brain produce our ideas and emotions? What are

More information

CHEMICAL SCIENCES REQUIREMENTS [61-71 UNITS]

CHEMICAL SCIENCES REQUIREMENTS [61-71 UNITS] Chemical Sciences Major Chemistry is often known as the central science because of the key position it occupies in modern science and engineering. Most phenomena in the biological and Earth sciences can

More information

Session 1. Course Presentation: Mass spectrometry-based proteomics for molecular and cellular biologists

Session 1. Course Presentation: Mass spectrometry-based proteomics for molecular and cellular biologists Program Overview Session 1. Course Presentation: Mass spectrometry-based proteomics for molecular and cellular biologists Session 2. Principles of Mass Spectrometry Session 3. Mass spectrometry based proteomics

More information

Biochemistry. Entrance Requirements. Requirements for Honours Programs. 148 Bishop s University 2015/2016

Biochemistry. Entrance Requirements. Requirements for Honours Programs. 148 Bishop s University 2015/2016 148 Bishop s University 2015/2016 Biochemistry The Biochemistry program at Bishop s is coordinated through an interdisciplinary committee of chemists, biochemists and biologists, providing students with

More information

Faculty of Biological Sciences POSTGRADUATE RESEARCH DEGREES 2014

Faculty of Biological Sciences POSTGRADUATE RESEARCH DEGREES 2014 Faculty of Biological Sciences POSTGRADUATE RESEARCH DEGREES 2014 RESEARCH DEGREES: PHD & MSC BY RESEARCH The Faculty is home to more than 100 academic researchers with expertise right across the biological

More information

BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS

BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS NEW YORK CITY COLLEGE OF TECHNOLOGY The City University Of New York School of Arts and Sciences Biological Sciences Department Course title:

More information

CHEMISTRY. Real. Amazing. Program Goals and Learning Outcomes. Preparation for Graduate School. Requirements for the Chemistry Major (71-72 credits)

CHEMISTRY. Real. Amazing. Program Goals and Learning Outcomes. Preparation for Graduate School. Requirements for the Chemistry Major (71-72 credits) CHEMISTRY UW-PARKSIDE 2015-17 CATALOG Greenquist 344 262-595-2326 College: Natural and Health Sciences Degree and Programs Offered: Bachelor of Science Major - Chemistry Minor - Chemistry Certificate -

More information

SAP HANA Enabling Genome Analysis

SAP HANA Enabling Genome Analysis SAP HANA Enabling Genome Analysis Joanna L. Kelley, PhD Postdoctoral Scholar, Stanford University Enakshi Singh, MSc HANA Product Management, SAP Labs LLC Outline Use cases Genomics review Challenges in

More information

COMPLEXITY RISING: FROM HUMAN BEINGS TO HUMAN CIVILIZATION, A COMPLEXITY PROFILE. Y. Bar-Yam New England Complex Systems Institute, Cambridge, MA, USA

COMPLEXITY RISING: FROM HUMAN BEINGS TO HUMAN CIVILIZATION, A COMPLEXITY PROFILE. Y. Bar-Yam New England Complex Systems Institute, Cambridge, MA, USA COMPLEXITY RISING: FROM HUMAN BEINGS TO HUMAN CIVILIZATION, A COMPLEXITY PROFILE Y. BarYam New England Complex Systems Institute, Cambridge, MA, USA Keywords: complexity, scale, social systems, hierarchical

More information

Join our scientific talent community

Join our scientific talent community Join our scientific talent community There has never been a better time to be a part of Janssen Research & Development. We are at the forefront of healthcare leading, evolving and transforming it into

More information

October 17, 2005. Elias Zerhouni, M.D. Director National Institutes of Health One Center Drive Suite 126 MSC 0148 Bethesda, MD 20892

October 17, 2005. Elias Zerhouni, M.D. Director National Institutes of Health One Center Drive Suite 126 MSC 0148 Bethesda, MD 20892 October 17, 2005 Elias Zerhouni, M.D. Director National Institutes of Health One Center Drive Suite 126 MSC 0148 Bethesda, MD 20892 Dear Dr. Zerhouni: The undersigned nonprofit medical and scientific societies

More information

Human Health Sciences

Human Health Sciences Human Health Sciences WITH PLYMOUTH UNIVERSITY DISCOVER MORE If you would like to visit Plymouth and meet our staff, then why not come along to one of our open days. Human Health Sciences WITH PLYMOUTH

More information

TRACKS GENETIC EPIDEMIOLOGY

TRACKS GENETIC EPIDEMIOLOGY Dr. Priya Duggal, Director In the post-genomic era where larger amounts of genetic data are now readily available, it has become increasingly important to design studies and use analytical techniques that

More information

History & Fast Facts. Academic Programs. Research & Innovation. Education

History & Fast Facts. Academic Programs. Research & Innovation. Education History & Fast Facts Academic Programs Faculty Student & Education Research & Innovation Established in 1898, Peking University was originally named the Imperial University of Peking. It was the first

More information

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics. Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

More information

Department of Biochemistry & Molecular Biology

Department of Biochemistry & Molecular Biology Department of Biochemistry & Molecular Biology Two-Year Master s Program in Biochemistry & Molecular Biology A four-semester post-baccalaureate program designed to provide advanced training in the biochemical

More information

Biology Institute: 7 PhD programs Expertise in all areas of biological sciences

Biology Institute: 7 PhD programs Expertise in all areas of biological sciences Biology Institute: 7 PhD programs Expertise in all areas of biological sciences!" #$%&'()*" '+**$,%' Biology Institute: PhD programs Programs Website: http://www.ib.unicamp.br/pos About the Biology Institute

More information

MOLECULAR PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS

MOLECULAR PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS MOLECULAR PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS R. M. Weinshilboum, M.D., Program Director L. Wang, M.D., Ph.D., Program Co-Director D. C. Mays, Ph.D., Associate Program Director Ph.D. Degree Course

More information

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

More information