PATELLOFEMORAL PAIN SYNDROME (PFPS) is among
|
|
- Clinton Robbins
- 2 years ago
- Views:
Transcription
1 1428 ORIGINAL ARTICLE Outcomes of a Weight-Bearing Rehabilitation Program for Patients Diagnosed With Patellofemoral Pain Syndrome Michelle C. Boling, MS, ATC, Lori A. Bolgla, PT, PhD, ATC, Carl G. Mattacola, PhD, ATC, Tim L. Uhl, PT, PhD, ATC, Robert G. Hosey, MD ABSTRACT. Boling MC, Bolgla LA, Mattacola CG, Uhl TL, Hosey RG. Outcomes of a weight-bearing rehabilitation program for patients diagnosed with patellofemoral pain syndrome. Arch Phys Med Rehabil 2006;87: Objective: To determine the effects of a weight-bearing rehabilitation program on quadriceps and gluteus medius electromyographic activity, pain, and function in subjects diagnosed with patellofemoral pain syndrome (PFPS). Design: Pretest and posttest 6-week intervention study. Setting: Musculoskeletal research laboratory. Participants: Fourteen subjects diagnosed with PFPS and 14 healthy control subjects volunteered to participate in this study. No subjects withdrew from the study because of adverse effects. Intervention: Subjects diagnosed with PFPS participated in a 6-week rehabilitation program. The rehabilitation program consisted of weight-bearing exercises that focused on strengthening the quadriceps and hip abductor musculature. Main Outcome Measures: Electromyographic onsets of the vastus medialis oblique (VMO) and vastus lateralis and onset and duration of the gluteus medius were collected during a stair-stepping task that was performed during the pretest and posttest. A visual analog scale (VAS) and Functional Index Questionnaire (FIQ) were administered at pretest and posttest and each week of the intervention. Results: Vastus lateralis and VMO onset timing differences (vastus lateralis electromyographic onset minus VMO electromyographic onset) and VAS and FIQ scores significantly improved for patients diagnosed with PFPS. Vastus lateralis and VMO onset timing in the PFPS group were significantly different from those in the control group at baseline and were not significantly different from the control group after the intervention. We did not find differences in gluteus medius onsets or duration of activity. Conclusions: Subjects diagnosed with PFPS responded favorably and quickly to a therapeutic exercise program that incorporated quadriceps and hip musculature strengthening. The efficacy of the therapeutic exercise program used in this study should be further investigated in a larger subject population. Key Words: Electromyography; Exercise; Knee; Pain; Rehabilitation. From the Department of Rehabilitation Sciences (Boling, Mattacola, Uhl), College of Medicine (Hosey), University of Kentucky, Lexington, KY; and Department of Physical Therapy, Medical College of Georgia, Augusta, GA (Bolgla). Presented in part to the National Athletic Trainers Symposium, June 2005, Indianapolis, IN. Funded by National Athletic Trainers Association (Osternig Masters grant). No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Reprint requests to Michelle C. Boling, MS, ATC, Fetzer Gymnasium, CB# 8700, University of North Carolina, Chapel Hill, NC 27599, /06/ $32.00/0 doi: /j.apmr by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation PATELLOFEMORAL PAIN SYNDROME (PFPS) is among the most common causes of knee pain in the United States. One of the most commonly accepted etiologies of PFPS is abnormal tracking of the patella within the femoral trochlea. 1 A cause of this abnormal tracking may be a delayed onset of the vastus medialis oblique (VMO) relative to the vastus lateralis. 2,3 If the vastus lateralis contracts before the VMO, a temporary imbalance in mediolateral force may occur, causing abnormal tracking of the patella. 4 Researchers have previously investigated the onset times of the VMO and vastus lateralis in patients with PFPS; however, a consensus has not been made. Some researchers have reported no significant differences in the onset times of the VMO and vastus lateralis in patients with PFPS compared with controls when performing weight-bearing and non weight-bearing exercises. 4-6 However, other researchers have reported that the vastus lateralis was activated significantly sooner than the VMO in patients with PFPS compared with control subjects during a reflex activation. 7,8 Recent literature has determined that the vastus lateralis and VMO onset timing difference (vastus lateralis onset minus VMO onset) is altered in patients with PFPS compared with controls. 2,3 Because of differing results in the literature, this topic warrants further investigation. Cowan et al 9 investigated the effect of a rehabilitation program on timing of the VMO relative to the vastus lateralis using the McConnell-based rehabilitation program. The McConnell-based rehabilitation program incorporates quadriceps strengthening, patellar taping, and weight-bearing exercises that influence the hip musculature. After this intervention, subjects reported decreased pain and had improved vastus lateralis and VMO onset timing differences. 9 These findings suggest that subjects had improved quadriceps neuromuscular control. The researchers, however, did not examine possible influences of the hip musculature. Weak hip musculature is also thought to contribute to abnormal tracking of the patella Ireland et al 10 found that women with PFPS are 26% weaker in hip abduction and 36% weaker in hip external rotation compared with healthy controls. Such weakness may cause an increase in both hip internal rotation and the valgus force vector at the knee, a combination that may further facilitate lateral patella tracking. 1 Limited research exists on the temporal characteristics of the gluteus medius in patients with PFPS. Brindle et al 12 investigated the temporal characteristics of the gluteus medius in patients with and without PFPS and reported a delay and shorter duration of gluteus medius activation during a stair-stepping task in patients with PFPS. 12 They concluded that temporal differences in gluteus medius activation may contribute to PFPS.
2 PATELLOFEMORAL PAIN INTERVENTION, Boling 1429 Most patients with PFPS respond favorably to conservative intervention, 1,13,14 with the most common treatment being quadriceps strengthening using non weight-bearing and weightbearing exercises. Weight-bearing exercises are more functional than non weight-bearing exercises because they require multijoint movement, facilitating a functional pattern of muscle recruitment, and stimulate proprioceptors Because of these advantages, clinicians often recommend weight-bearing exercises in the rehabilitation of PFPS patients. 15,18 Based on previous research, we theorized that exercises emphasizing neuromuscular control of both the quadriceps and hip musculature may benefit patients diagnosed with PFPS. Although Cowan et al 9 have quantified VMO and vastus lateralis timing differences, no researchers have determined the effect weight-bearing rehabilitation may have on electromyographic timing characteristics of the hip musculature and surrounding knee musculature. Therefore, the purpose of this study was to investigate the effects of a weight-bearing rehabilitation program in patients diagnosed with PFPS on (1) the electromyographic onset timing of the VMO, vastus lateralis, and gluteus medius during a stair-stepping task; (2) the duration of gluteus medius activity during a stair-stepping task; (3) subjective pain; and (4) perceived function. METHODS Participants Twenty-eight subjects (14 controls, 14 experimental) between the ages of 18 and 42 years were recruited. For the experimental group, we recruited 5 men and 9 women (age, 24 6y; height, cm; weight, kg; duration of symptoms, 22 25mo) from the University of Kentucky Clinic and general campus population. Inclusion criteria were (1) anterior or retropatellar knee pain reported during at least 2 of the following activities: ascending and descending stairs, hopping and running, squatting, kneeling, and prolonged sitting; (2) insidious onset of symptoms not related to trauma; (3) pain with compression of the patella; (4) pain on palpation of patellar facets; and (5) involvement in at least 30 minutes of physical activity 3 days a week. Subjects were excluded for the following reasons: (1) symptoms present for less than 2 months; (2) self-reported clinical evidence of other knee pathology; (3) history of knee surgery; (4) self-reported history of patella dislocations or subluxations; and (5) current significant injury affecting other lower-extremity joints. For the control group, we recruited 5 men and 9 women (age, 23 2y; height, cm; weight, kg) from the University of Kentucky general population. Exclusion criteria were (1) history of knee surgery, (2) clinical evidence of other knee pathology, and (3) current significant injury affecting other lower-extremity joints. Instrumentation We collected surface electromyographic muscle activity using bipolar Ag-AgCl surface electrodes a and a 16-channel Myopac electromyography system. b All electromyography channels were amplified at a gain of 2000 by a portable transmitter attached to each subject s waist. Electromyographic data were sampled at 1000Hz and transmitted via a fiber optic cable to a 12-bit analog-to-digital board. This system also had a common mode rejection ratio of 90dB. The raw electromyographic data were stored on a personal computer for analysis with Datapac software. b A footswitch b was placed in each subject s shoe of the lower extremity being tested to determine heel strike synchronously with the collection of electromyographic activity. The gain was set at 1000 for the footswitch. Procedures On arrival to the Musculoskeletal Research Laboratory, all subjects were screened based on the inclusion and exclusion criteria and signified their voluntary decision to participate by signing a university-approved informed consent form. Next, they completed the visual analog scale (VAS) and Functional Index Questionnaire (FIQ). 19 The VAS and FIQ have previously been reported as reliable for patients diagnosed with PFPS 19,20 (.70 and.96, respectively). We used a 10-cm VAS to determine subjects worst pain in the knee during the previous week. The FIQ is a 16-point questionnaire used to determine changes in function, with a higher score representing greater perceived function. The affected, or most affected, lower extremity of each subject diagnosed with PFPS and the right lower extremity of each control subject were used for electromyographic data collection. Each subject s skin was shaved, abraded, and cleaned with isopropyl alcohol before application of surface electrodes. Surface electrodes, measuring 5mm in diameter with an interelectrode distance of approximately 20mm, were placed in parallel arrangement over the muscle bellies of the VMO, vastus lateralis, and gluteus medius. The electrode for the VMO was placed approximately 4cm superior to and 3cm medial to the superomedial border of the patella and oriented 55 to the long axis of the femur. 9 The electrode for the vastus lateralis was placed approximately 10cm superior and 7cm lateral to the superior border of the patella and oriented 15 to the long axis of the femur. 9 The electrode for the gluteus medius was placed approximately halfway between the iliac crest and greater trochanter. 21 Specific electrode placements for the VMO, vastus lateralis, and gluteus medius were documented for each subject so that the placements could be replicated for the posttest. We confirmed electrode placements with manual muscle testing and verified that there was no discernable cross talk. Electromyographic activity of the VMO, vastus lateralis, and gluteus medius were recorded when subjects performed 5 trials of the stair-stepping task. The stair-stepping task consisted of walking to a stair platform, ascending 2 stairs, and descending 2 stairs (figs 1, 2). Each step was 20cm in height. The stairstepping task was performed at a rate of 96 steps/min. 3,22 Subjects stood approximately 1.5m away from the stair platform so that they could take 2 steps before reaching the platform. The principal investigator instructed subjects to use the instrumented lower extremity to ascend and descend the Fig 1. The stair platform.
3 1430 PATELLOFEMORAL PAIN INTERVENTION, Boling from the previous week until the next training session with the principal investigator. The rehabilitation exercises focused on quadriceps strengthening, gluteus medius strengthening, and lower-extremity neuromuscular control. Appendix 1 provides a detailed description of the rehabilitation program. All subjects (PFPS, control) completed a VAS and FIQ every week for 6 weeks. At the end of the 6-week period, subjects repeated the stair-stepping task to determine changes in the electromyography-dependent measures. Fig 2. The descent phase of the stair-stepping task. first and last steps, respectively. Subjects performed a minimum of 5 practice trials before data collection to familiarize themselves with the stair-stepping task. They performed 5 test trials with 10 seconds of rest between each trial. After the testing procedures, the principal investigator instructed subjects diagnosed with PFPS on the first phase of rehabilitation exercises. The components of the rehabilitation program included stretching, balancing, and strengthening exercises. All subjects with PFPS received an exercise video, exercise instruction booklet, and exercise log to complete each week to facilitate program compliance. Subjects with PFPS documented the sets and repetitions for all exercises performed at home in the exercise log. Subjects with PFPS were also asked to not take any nonsteroidal anti-inflammatory drugs 24 hours before a rehabilitation or testing session and to not change their training regimens drastically during study participation. They performed rehabilitation exercises 1 day a week with the principal investigator and 2 days at home, for a total of 3 exercise sessions a week. During weekly supervised sessions, the principal investigator introduced new exercises and ensured that subjects performed them in a pain-free manner. If subjects could not perform the exercises or a specific exercise without pain, they were instructed to perform the exercise(s) Data Reduction Electromyographic data were sampled at 1000Hz and bandpass filtered between 20 and 500Hz. Data were then full wave rectified and low-pass filtered at 50Hz. This processing duplicated methods used by Cowan et al 9 and enabled comparison between results. Muscle onset was determined when electromyographic activity increased above a threshold at least 3 standard deviations (SDs) above electromyography data for a standing resting interval of 200ms and remained above this threshold for at least 25ms. The muscle was considered off when it fell below this threshold for more than 50ms. The vastus lateralis, VMO, and gluteus medius onsets and gluteus medius durations were determined by using the procedures described above. The time of onset for each muscle was determined relative to activation of the footswitch during the ascent and descent phases of the stair-stepping task. The duration of gluteus medius activation was defined as the time from gluteus medius onset to the time the gluteus medius turned off for each phase of the stair-stepping task. The ascent phase was the period from when a subject stepped up onto the first stair with the instrumented leg until the foot of this leg lifted off the first stair. The descent phase was the period when a subject stepped down onto the third stair with the instrumented leg until the foot of this leg lifted off the third step. The vastus lateralis and VMO onset timing difference was quantified by subtracting the VMO onset from the vastus lateralis onset from each stage of the stair-stepping task. 22 A zero difference indicated that the vastus lateralis and VMO were activated simultaneously, a negative value indicated that the vastus lateralis was activated before the VMO, and a positive value indicated that the VMO was activated before the vastus lateralis. We averaged the vastus lateralis onsets, VMO onsets, VMO and vastus lateralis onset timing differences, gluteus medius onsets, and gluteus medius durations for the 5 stair-stepping trials and used these values for data analysis. Statistical Analysis Separate 3-way analysis of variance (ANOVA) procedures with repeated measures were performed to determine differences between the vastus lateralis and VMO onset timing differences, onset of vastus lateralis, onset of VMO, onset of the gluteus medius, and duration of gluteus medius activity. The model included 1 between-subjects factor (group: PFPS, controls) and 2 within-subjects factors (test: pre, post; step phase: ascent, descent). The intraclass correlation coefficient (ICC 2,1 ) was used to determine intrarater reliability for the vastus lateralis and VMO onset timing difference, gluteus medius onset, and gluteus medius duration across 10 randomly selected control subjects. We compared values for the dependent variables measured during the pretest and posttest in 10 randomly selected control subjects. The ICC 2,1 and standard error (SE) of measurement are reported for each electromyographic variable in the results section. Two separate 2-way repeated-measures ANOVA procedures were performed to determine differences for VAS and FIQ
4 PATELLOFEMORAL PAIN INTERVENTION, Boling 1431 Table 1: Electromyographic Values for the PFPS and Control Group PFPS Control Muscle Pretest Posttest Pretest Posttest Vastus lateralis and VMO onset timing difference Ascending Descending Vastus lateralis onset Ascending Descending VMO onset Ascending Descending Gluteus medius onset Ascending Descending Gluteus medius duration Ascending Descending NOTE. Values are mean SD (in milliseconds). scores. The model used for these 2 measures was 1 betweensubjects factor (group: PFPS, controls) and 1 within-subjects factor (time: baseline, weeks 1, 2, 3, 4, 5, 6). Significant differences from each ANOVA were examined further using a Bonferroni post hoc analysis. We analyzed all data using SPSS c with the level of significance set at the.05 level. RESULTS Means and SDs for each electromyographic variable are presented in table 1. Vastus Lateralis and VMO Onset Timing Difference Post hoc analysis showed that the PFPS group had vastus lateralis and VMO onset timing differences that were significantly lower than those of the control group at the pretest during the ascent and descent phases (F 1, , P.001; effect size, 1.9) (fig 3). At the initial testing, subjects diagnosed with PFPS activated the VMO 36ms later than the vastus lateralis, and subjects in the control group activated the VMO 59ms earlier than the vastus lateralis. The PFPS group s vastus lateralis and VMO onset timing difference significantly increased after the intervention (F 1, , P.001; effect size, 1.9). The VMO was activated 39.04ms earlier than the vastus lateralis in the posttest condition (see fig 3). Intrarater reliability for vastus lateralis and VMO onset timing SE of measurement was ms for the ascent phase and ms for the descent phase of the stair-stepping task. Vastus Lateralis Onset and VMO Onset The vastus lateralis onset did not change significantly from pretest to posttest in the PFPS or control groups (F 1,26.482, P.494). The VMO onset was significantly earlier after the rehabilitation program in the PFPS group (F 1, , P.012). Across groups, the vastus lateralis onset (F 1, , P.004) and VMO onset (F 1, , P.018) were both significantly earlier during the descent phase of the stair-stepping task compared with the ascent phase of the stair-stepping task. Gluteus Medius Onset and Duration Gluteus medius onset occurred significantly earlier during the descent phase of the stair-stepping task compared with the ascent phase of the stair-stepping task (F 1, , P.001). The gluteus medius duration during the concentric phase (609.64ms) was significantly longer than gluteus medius duration during the eccentric phase (338.43ms) of the stair-stepping task (F 1, , P.001). The pretest and posttest values for both gluteus medius onset (F 1, , P.077) and gluteus medius duration (F 1,26.934, P.343) did not differ significantly. Also, gluteus medius onset (F 1,26.776, P.386) and gluteus medius duration (F 1,26.514, P.480) did not differ significantly between the PFPS and control groups. Intrarater reliability for gluteus medius onset SE of measurement was ms for the ascent phase and ms for the descent phase of the stair- (ms) difference timing VL-VMO onset * Pretest Posttest PFPS Fig 3. Mean vastus lateralis (VL) and VMO onset timing difference pretest and posttest for subjects with PFPS and control subjects (CS). Timing differences are significantly different at pretest and are similar at posttest. Positive values indicate VMO activation before vastus lateralis activation. Error bars refer to SDs for the vastus lateralis and VMO onset timing differences in each group during the pretests and posttests. * Significant difference (P<.05) between control group and PFPS group pretest. Significant difference (P<.05) between PFPS group pretest and posttest. CS
5 1432 PATELLOFEMORAL PAIN INTERVENTION, Boling Fig 4. Mean VAS scores for subjects with PFPS and control subjects. Pain was significantly different between baseline and weeks 4 to 6 for subjects with PFPS. Error bars refer to SDs for the VAS scores in each group over the 6-week intervention. * Significant difference (P<.05) from baseline in the PFPS group. stepping task. Intrarater reliability for gluteus medius duration SE of measurement was ms for the ascent phase and ms for the descent phase of the stair-stepping task. Pain and Function A significant test by group interaction effect was present for VAS scores (F 6, , P.001). The PFPS group had significantly lower pain starting at week 4 of the rehabilitation program (fig 4). A significant test by group interaction effect was present for function as measured by the FIQ (F 6, , P.001). Post hoc analysis showed a significant increase in FIQ scores for the PFPS group from baseline starting at week 2(fig 5). Post hoc analyses also showed that the control group s VAS scores and FIQ scores did not significantly change during this investigation. Rehabilitation Compliance Based on subject documentation in the exercise log, the PFPS group had 98.3% compliance for the rehabilitation program. DISCUSSION The results of this study indicate that subjects with PFPS had decreased pain, increased function, and altered vastus lateralis and VMO onset timing differences after the weight-bearing rehabilitation program. These results are similar to those reported by Cowan et al 9 after a McConnell-based rehabilitation program. This investigation differed from a few of the previous investigations because there was no focus on specific VMO activation. 9,23-28 This program integrated balance, stretching, and strengthening exercises to affect pain, function, and muscle activation patterns. These results suggest that a weight-bearing rehabilitation program normalized the onset of the VMO relative to the vastus lateralis, decreased pain, and increased function in subjects diagnosed with PFPS. Vastus Lateralis and VMO Onset Timing Differences As stated previously, VMO and vastus lateralis neuromuscular timing in patients diagnosed with PFPS has been a controversial area in the literature. Researchers 7 have stated that the VMO should activate earlier than or at the same time as the vastus lateralis because a delay in VMO activation may lateralize the patella and result in PFPS. Neptune et al 29 stated that as little as a 5-ms delay in VMO activation may cause an increase in the compressive forces on the lateral patellofemoral joint. Results from the present study agree with the findings of Cowan et al. 2,3,9 Our symptomatic subjects had vastus lateralis and VMO onset timing difference changes from 22.36ms to 40.83ms during the ascent phase and 50.56ms to 37.26ms during the descent phase of the stair-stepping task after the intervention program. Proposed mechanisms for the changes in the motor recruitment pattern of the VMO and vastus lateralis are discussed below. Recent research 11,30-32 has suggested the importance of gluteus medius strengthening in the rehabilitation of knee dysfunction. These researchers believe that gluteus medius weakness increases both femoral internal rotation and knee valgus angle. Although we did not measure the strength or activation amplitude of the gluteus medius, improvements in these parameters may have a meaningful effect on knee kinematics by improving patellar tracking on the femur and thus reducing pain caused by abnormal tracking. Therefore, a decrease in pain might have reversed possible VMO inhibition 33 that subjects experienced at the beginning of the intervention. We did not examine these parameters specifically; therefore, future studies should investigate influences from the hip musculature. Motor unit synchronization may be another mechanism that contributed to the change in vastus lateralis and VMO onset timing difference in our study. Duchateau and Enoka 34 defined motor unit synchronization as a measure of the correlation in the discharge times of action potentials by pairs of motor units. When surface electromyography is used, compound motor unit action potentials are being measured. The computer algorithm that we used to determine the onset of electromyographic activity depends on a certain number of simultaneous motor unit activations to reach onset criteria. If a lower number of motor units did not activate simultaneously at the pretest because of muscle inhibition, they might not have met the threshold for muscle activation, thereby delaying the detection of Fig 5. Mean FIQ scores for subjects with PFPS and control subjects. Function was significantly better from baseline at weeks 2 to 6 for subjects with PFPS. Error bars refer to SDs for the FIQ scores in each group over the 6-week intervention. * Significant difference (P<.05) from baseline in the PFPS group.
6 PATELLOFEMORAL PAIN INTERVENTION, Boling 1433 electromyographic onset. If this occurred at the pretest, it may account for the delayed onset of the VMO compared with the onset of the vastus lateralis. The decrease in pain that subjects with PFPS reported may be the most viable mechanism for the change in the vastus lateralis and VMO onset timing difference. Researchers have reported an association between increased pain and quadriceps muscle inhibition in subjects with PFPS. 33,35 If our subjects with PFPS experienced less pain during the posttest, which they reported, they may have had less VMO inhibition, which would account for the changes in the vastus lateralis and VMO timing differences. Unfortunately we do not know if muscle pattern changes occurred before or after changes in pain, because we collected electromyographic data only during the pretest and posttest. Gluteus Medius Onset and Duration Previous research has reported subjects with PFPS have weak hip musculature and altered timing characteristics of the gluteus medius compared with healthy people. 10,12 Subjects in our investigation performed a stair-stepping task similar to the task described by Brindle et al. 12 Our results, however, indicated that gluteus medius electromyographic timing characteristics were not altered in subjects diagnosed with PFPS at the pretest compared with control subjects. The gluteus medius concentric and eccentric onsets reported by Brindle 12 in the PFPS group were similar to those in our PFPS group, but we did not find a significant difference between our PFPS group and control group. One explanation for the differing results from Brindle 12 is that we controlled the speed at which subjects performed the stair-stepping task. We controlled for speed during the stair-stepping task because the speed at which a task is performed can affect the timing of muscle activation. Another explanation is that the variability of this measure may have accounted for the finding of no differences. Because Brindle 12 is the only study to report this, further replication is necessary to support this finding. Our results also indicated that gluteus medius onset and duration were not altered after a weight-bearing rehabilitation program. We cannot determine from this investigation why the gluteus medius onset and duration did not change and the vastus lateralis and VMO onset did change after the weightbearing rehabilitation program. However, as stated previously, pain inhibits muscle activation. In patients diagnosed with PFPS, pain in the hip is not a common complaint. Therefore, if pain is not inhibiting the activation of the gluteus medius, we may not find a change in gluteus medius onset or duration after the weight-bearing rehabilitation program. Subjective Pain Because of the subjective nature of PFPS diagnosis, previous investigators 9,23,24,26-28 have used a VAS scale to monitor pain throughout a rehabilitation program, consistent with the methods used in our investigation. Our results showed that VAS scores improved from 4.85 to 1.92 after 4 weeks of rehabilitation, which is consistent with other investigations. Other researchers 24,27 have also reported a significant decrease in scores on the VAS after 4 weeks of rehabilitation. Perceived Function Researchers 23,24,27 have used the FIQ to determine changes in function during rehabilitation programs for subjects with PFPS. Our results indicate that function significantly increased from baseline measures at week 2 and for the remainder of the study. Rehabilitation studies that used the FIQ for a measure of function report significant improvements in FIQ scores ranging from 4 weeks up to 12 months. 23,24,27 One reason our findings differed may be due to the frequency of our assessments. Subjects in the present study completed the VAS and FIQ each week, whereas previous researchers did not reassess these parameters until 4 weeks into the rehabilitation program. Study Limitations The present study has limitations. One limitation of this study is the moderate reliability of the electromyographic measures. This may reduce the credibility of our results; however, we calculated an effect size of 1.9 for the interaction effect of the vastus lateralis and VMO onset timing difference. This provides support for the significant change in vastus lateralis and VMO onset timing difference from pretest to posttest in patients with PFPS. Another limitation of this study is the lack of a control group who had PFPS. Future investigations should perform a randomized controlled trial to determine if the rehabilitation is effective in altering electromyographic measures, reducing pain, and increasing function in patients with PFPS. Although we believe the rehabilitation program was effective in altering the timing characteristics of the vastus lateralis and VMO, patients with PFPS who do not perform rehabilitation may also show changes in the timing characteristics of the vastus lateralis and VMO after a 6-week period. Clinical Implications The use of non weight-bearing and weight-bearing exercises for the rehabilitation of patients diagnosed with PFPS has been widely discussed in the literature. 9,23-28 We decided to use only weight-bearing exercises for our rehabilitation program because patellar compressive forces are decreased in the first 40 of knee range of motion. 16,16,36 Weight-bearing exercises in this range of knee flexion also simulate everyday functional tasks and require activation of additional musculature other than the quadriceps. 16 The findings of decreased pain and increased function in our subjects support the use of weightbearing exercises for the rehabilitation of PFPS. With the rising costs of health care, home exercise programs supervised by a qualified health care provider may become a necessity for patients who require rehabilitation. Roddey et al 37 concluded that no differences exist between self-reported outcomes for rotator-cuff repair patients participating in a home rehabilitation program using video instruction or personal instruction from a therapist. Harrison et al 24 also compared a home rehabilitation program with supervised treatment. Harrison concluded that the home rehabilitation program was as effective as the supervised treatment for the improvement of symptoms and function in patients with PFPS. Subjects in our investigation performed the exercises once a week under the supervision of the principal investigator and twice a week at home. They received a video and written instruction of all the exercises in the rehabilitation program. Our findings of decreased pain and increased function after the rehabilitation program provided additional evidence for the effectiveness of a supervised home rehabilitation program. These findings also suggested that 6 weeks of supervised home rehabilitation provided sufficient time to decrease pain and increase function in patients diagnosed with PFPS. CONCLUSIONS Our investigation has provided evidence that the vastus lateralis and VMO onset timing difference may change after a
7 1434 PATELLOFEMORAL PAIN INTERVENTION, Boling weight-bearing rehabilitation program. This investigation also showed the effectiveness of a supervised home rehabilitation program to decrease pain and increase function in subjects diagnosed with PFPS. Future research should investigate the different components of a rehabilitation program (quadriceps strengthening, gluteus medius strengthening, lower-extremity neuromuscular control) and its effect on the change in vastus lateralis and VMO onset timing difference. Monitoring changes in electromyographic activity weekly would aid in determining if a decrease in pain is responsible for the alteration of the vastus lateralis and VMO onset timing difference in subjects with PFPS. Acknowledgments: We thank the National Athletic Trainers Association for funding this investigation. We also thank Alcan Airex for the donation of Airex balance pads used by subjects with PFPS for the rehabilitation program. APPENDIX 1: PFPS WEIGHT-BEARING REHABILITATION PROGRAM Stretches (All exercise sessions) Sitting hamstring stretch Standing quadriceps stretch Standing calf stretch Week 1 Exercises Wall slides (0 40 of knee flexion) Lateral step downs off 4-in step Single-leg heel raises Activity Thera-band d front pull (subjects perform a single-leg stance on injured limb and perform standing, resisted hip flexion with the contralateral limb) Week 2 Exercises Wall slides (0 40 of knee flexion) with Thera-band resistance around knees Single-leg heel raises on Airex e balance pad Lateral step down off 6-in step Thera-band diagonal pull (subjects perform a single-leg stance on injured limb and perform standing resisted hip flexion in a diagonal pattern) Week 3 Exercises Wall slides (0 40 of knee flexion) standing on Airex balance pad with Thera-band resistance around knees Mini-squat (0 30 of knee flexion) Lateral step down off 4-in step with Thera-band resistance behind knee pulling anteriorly Single-leg stance on Airex balance pad bouncing ball off wall Week 4 Exercises Mini-squat (0 30 of knee flexion) on Airex balance pad Lateral step down off 6-in step with Thera-band resistance behind knee pulling anteriorly Backward walk with Thera-band resistance around ankles (subjects stand with slight knee flexion and take steps backward with resistance between ankles) Forward lunges onto 8-in step without push-off (subjects lunge onto 8-in step to 40 of knee flexion) Week 5 Exercises Single-leg mini-squat (0 30 of knee flexion) Lateral step down off 4-in step standing on Airex balance pad with Thera-band resistance behind knee pulling anteriorly Side stepping with Thera-band resistance around ankles (subjects stand with slight knee flexion and take steps laterally with resistance between ankles) Forward lunges onto 8-in step with push-off (subjects lunge onto step to 40 of knee flexion and push off to starting position) Week 6 Exercises Single-leg mini-squat (0 30 of knee flexion) standing on Airex balance pad Lateral step down off 6-in step standing on Airex balance pad with Thera-band resistance behind knee pulling anteriorly Monster walks with Thera-band resistance around ankles (subjects stand with 30 of knee flexion and walk forward with resistance between ankles) Forward lunges to ground level (subjects lunge on level surface to 40 of knee flexion) Duration 5 repetitions/20-s hold 15 repetitions/5-s hold 15 repetitions/5-s hold 15 repetitions/5-s hold 3 sets of 20 ball tosses to left and right References 1. Fulkerson J. Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med 2002;30: Cowan S, Hodges PW, Bennell K, Crossley K. Altered vastii recruitment when people with patellofemoral pain syndrome complete a postural task. Arch Phys Med Rehabil 2002;83: Cowan S, Bennell K, Hodges PW, Crossley K, McConnell J. Delayed onset of electromyographic activity of the vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil 2001;82: Karst GM, Willet GM. Onset timing of electromyographic activity in the vastus medialis oblique and vastus lateralis muscles in subjects with and without patellofemoral pain syndrome. Phys Ther 1995;75: Owings TM, Grabiner MD. Motor control of the vastus medialis oblique and vastus lateralis muscles is disrupted during eccentric
8 PATELLOFEMORAL PAIN INTERVENTION, Boling 1435 contractions in subjects with patellofemoral pain. Am J Sports Med 2002;30: Powers CM, Landel R, Perry J, et al. Timing and intensity of vastus muscle activity during functional activities in subjects with and without patellofemoral pain syndrome. Phys Ther 1996;76: Voight ML, Wieder DL. Comparative reflex response times of the vastus medialis obliquus and vastus lateralis in normal subjects and subjects with extensor mechanism. Am J Sports Med 1991; 19: Witvrouw E, Sneyers C, Lysens R, Victor J, Bellemans J. Reflex response times of vastus medialis oblique and vastus lateralis in normal subjects and in subjects with patellofemoral pain syndrome. J Orthop Sports Phys Ther 1996;24: Cowan S, Bennell K, Crossley K, Hodges PW, McConnell J. Physical therapy alters recruitment of the vasti in patellofemoral pain syndrome. Med Sci Sports Exerc 2002;34: Ireland M, Willson J, Ballantyne B, Davis I. Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther 2003;33: Mascal C, Landel R, Powers C. Management of patellofemoral pain targeting hip, pelvis, and trunk muscle function: 2 case reports. J Orthop Sports Phys Ther 2003;33: Brindle TJ, Mattacola CG, McCrory JL. Electromyographic changes in the gluteus medius during stair ascent and descent in subjects with anterior knee pain. Knee Surg Sports Traumatol Arthrosc 2003;11: Bizzini M, Childs JD, Piva SR, Delitto A. Systematic review of the quality of randomized controlled trials for patellofemoral pain syndrome. J Orthop Sports Phys Ther 2003;33: Crossley K, Bennell K, Green S, McConnell J. A systematic review of physical interventions for patellofemoral pain syndrome. Clin J Sports Med 2001;11: Prentice W, Voight M, editors. Techniques in musculoskeletal rehabilitation. New York: McGraw-Hill; Bynum B, Barrack R, Alexander A. Open versus closed chain kinetic exercises after anterior cruciate ligament reconstruction. Am J Sports Med 1995;23: Selseth A, Dayton M, Cordova M, Ingersoll CD, Merrick M. Quadriceps concentric EMG activity is greater than eccentric EMG activity during the lateral step-up exercise. J Sport Rehabil 2000;9: Powers CM. Rehabilitation of patellofemoral joint disorders: a critical review. J Orthop Sports Phys Ther 1998;28: Chesworth BM, Culham EG, Tata GE, Peat M. Validation of outcome measures in patients with patellofemoral syndrome. J Orthop Sports Phys Ther 1989;10: Bennell K, Bartam S, Crossley K, Green S. Outcome measures in patellofemoral pain syndrome: test-retest reliability and interrelationships. Phys Ther Sport 2000;1: Cram JR, Kasman GS, Holtz J. Electrode placements: introduction to surface electromyography. Gaithersburg: Aspen; p Cowan S, Bennell K, Hodges P. The test-retest reliability of the onset of concentric and eccentric vastus medialis obliquus and vastus lateralis electromyographic activity in a stair stepping task. Phys Ther Sport 2000;1: Crossley K, Bennell K, Green S, Cowan S, McConnell J. Physical therapy for patellofemoral pain. Am J Sports Med 2002; 30: Harrison EL, Sheppard MS, McQuarrie AM. A randomized control trial of physical therapy treatment programs in patellofemoral pain syndrome. Physiother Can 1999;47: Steine HA, Brosky T, Reinking MF, Nyland J, Mason MB. A comparison of closed kinetic chain and isokinetic joint isolation exercise in patients with patellofemoral dysfunction. J Orthop Sports Phys Ther 1996;24: Witvrouw E, Lysens R, Bellemans J, Peers K, Vanderstraeten G. Open versus closed kinetic chain exercises for patellofemoral pain. Am J Sports Med 2000;28: Dursun N, Dursun E, Ziynet K. Electromyographic biofeedbackcontrolled exercise versus conservative care for patellofemoral pain syndrome. Arch Phys Med Rehabil 2001;82: Cowan S, Bennell K, Hodges P, Crossley K, McConnell J. Simultaneous feedforward recruitment of the vasti in untrained postural tasks can be restored by physical therapy. J Orthop Res 2003;21: Neptune R, Wright I, van den Bogert A. The influence of orthotic devices and vastus medialis strength and timing on patellofemoral loads during running. Clin Biomech (Bristol, Avon) 2000;15: Fredericson M, Cookingham C, Chaudhari A, Dowdell B, Oestreicher N, Sahrmann S. Hip abductor weakness in distance runners with iliotibial band syndrome. Clin J Sports Med 2000;10: Powers C. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther 2003;33: Powers C, Ward S, Fredericson M, Guillet M, Shellock F. Patellofemoral kinematics during weight-bearing and non-weightbearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther 2003;33: Suter E, Herzog W, De Souza K, Bray R. Inhibition of the quadriceps muscles in patients with anterior knee pain. J Appl Biomech 1998;14: Duchateau J, Enoka R. Neural adaptations with chronic activity patterns in able-bodied humans. Am J Phys Med Rehabil 2002; 81: Graven-Neilsen T, Lund H, Arendt-Nielsen L, Danneskiold- Samsoe B, Bliddal H. Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve 2002;26: Steinkamp L, Dillingham M, Markel M, Hill J, Kaufman K. Biomechanical considerations in patellofemoral joint rehabilitation. Am J Sports Med 1993;21: Roddey T, Olson S, Gartsman G, Hanten W, Cook K. A randomized controlled trial comparing 2 instructional approaches to home exercise instruction following arthroscopic full-thickness rotator cuff repair surgery. J Orthop Sports Phys Ther 2002;32: Suppliers a. Medicotest, 1775 Winnetka Cir, Rolling Meadows, IL b. Run Technologies, Via Santa Maria, Mission Viejo, CA c. Version 12.0; SPSS Inc, 233 S Wacker Dr, 11th Fl, Chicago, IL d. Hygenic Corp, 1245 Home Ave, Akron, OH e. Alcan Airex AG, Specialty Foams, CH-5643 Sins, Switzerland.
Exercise Instructions. PFPS Exercises: 6-week program. Hamstring Stretch (5x20sec) Week 1. Calf Stretch (5x20 seconds)
Exercise Instructions PFPS Exercises: 6-week program Adapted from: Boling, MC, Bolgla, LA, Mattacola, CG. Uhl, TL, Hosey, RG. Outcomes of a weight-bearing rehabilitation program for patients diagnosed
The Effectiveness of Electromyographic Biofeedback Supplementation During Knee Rehabilitation After Injury
Journal of Sport Rehabilitation, 2010, 19, 343-351 2010 Human Kinetics, Inc. Critically Appraised Topic The Effectiveness of Electromyographic Biofeedback Supplementation During Knee Rehabilitation After
Patellofemoral pain syndrome (PFPS) is a common
Physical therapy alters recruitment of the vasti in patellofemoral pain syndrome SALLIE M. COWAN, KIM L. BENNELL, KAY M. CROSSLEY, PAUL W. HODGES, and JENNY MCCONNELL Centre for Sports Medicine Research
Rehabilitation after ACL Reconstruction: From the OR to the Playing Field. Mark V. Paterno PT, PhD, MBA, SCS, ATC
Objectives Rehabilitation after ACL Reconstruction: From the OR to the Playing Field Mark V. Paterno PT, PhD, MBA, SCS, ATC Coordinator of Orthopaedic and Sports Physical Therapy Cincinnati Children s
Patellofemoral/Chondromalacia Protocol
Patellofemoral/Chondromalacia Protocol Anatomy and Biomechanics The knee is composed of two joints, the tibiofemoral and the patellofemoral. The patellofemoral joint is made up of the patella (knee cap)
Clinical Movement Analysis to Identify Muscle Imbalances and Guide Exercise
CLINICAL EVALUATION & TESTING Darin A. Padua, PhD, ATC, Column Editor Clinical Movement Analysis to Identify Muscle Imbalances and Guide Exercise Christopher J. Hirth, MS, ATC, PT, PES University of rth
What is petellofemoral Pain syndrome?
Jackie Davis What is petellofemoral Pain syndrome? Patellofemoral Syndrome can be defined as retropatellar or peripatellar pain resulting from physical and biochemical changes in the patellofemoral joint.
Hip Rehab: Things to Consider. Sue Torrence, MS, PT, ATC Lead Physical Therapist
Hip Rehab: Things to Consider Sue Torrence, MS, PT, ATC Lead Physical Therapist Where to Start? Objectives: Discuss injuries related to hip dysfunction Review commonly used functional tests for posteriolateral
Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research. Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD
A Gender Comparison of Lower Extremity Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD Anterior Cruciate Ligament
Movement Pa+ern Analysis and Training in Athletes 02/13/2016
Objec:ves Movement Pa+ern Analysis and Training in Athletes Department of Physical Therapy and Human Movement Sciences Appreciate the importance of movement pa+ern analysis and training in treahng athletes
PATELLOFEMORAL TRACKING AND MCCONNELL TAPING. Minni Titicula
PATELLOFEMORAL TRACKING AND MCCONNELL TAPING Minni Titicula PF tracking disorder PF tracking disorder occurs when patella shifts out of the femoral groove during joint motion. most common in the US. affects
Comparison of Lower Extremity Kinematics and Hip Muscle Activation During Rehabilitation Tasks Between Sexes
Journal of Athletic Training 2010;45(2):181 190 g by the National Athletic Trainers Association, Inc www.nata.org/jat original research Comparison of Lower Extremity Kinematics and Hip Muscle Activation
The effect of patellofemoral pain syndrome on the hip and knee neuromuscular control on dynamic postural control task
The University of Toledo The University of Toledo Digital Repository Theses and Dissertations 2009 The effect of patellofemoral pain syndrome on the hip and knee neuromuscular control on dynamic postural
Inland Orthopaedic Surgery & Sports Medicine
Inland Orthopaedic Surgery & Sports Medicine Dr. Ed Tingstad 825 SE Bishop Blvd., Suite 120 Pullman, WA 99163 (509)332-2828 ACL Rehabilitation Guidelines General Guidelines: The following ACL rehabilitation
Vastus Medialis Activation During Knee Extension Exercises: Evidence for Exercise Prescription
Journal of Sport Rehabilitation, 2008, 17, 1-10 2008 Human Kinetics, Inc. ORIGINAL RESEARCH Vastus Medialis Activation During Knee Extension Exercises: Evidence for Exercise Prescription Lori A. Bolgla,
Physical Therapy in Sport
Physical Therapy in Sport 15 (2014) 15e19 Contents lists available at SciVerse ScienceDirect Physical Therapy in Sport journal homepage: www.elsevier.com/ptsp Clinical approach Gluteus medius strengthening
ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION REHAB
ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION REHAB OVERVIEW The following is a guide to your ACL rehabilitation. This program should be done in conjunction with a physiotherapist to guide you and monitor
Patellofemoral Syndrome
Patellofemoral Syndrome Patellofemoral Syndrome (PFS) typically presents as front knee pain that results from inefficient patellar (kneecap) tracking. This malalignment can result from several factors
Runner's Injury Prevention
JEN DAVIS DPT Runner's Injury Prevention Jen Davis DPT Orthopedic Physical Therapy Foot Traffic 7718 SE 13th Ave Portland, OR 97202 (503) 482-7232 Jen@runfastpt.com www.runfastpt.com!1 THE AMAZING RUNNER
Relationship Between Isokinetic Average Force, Peak Force, Average Torque, and Peak Torque of the Shoulder Internal and External Rotator Muscle Groups
Relationship Between Isokinetic Average Force, Peak Force, Average Torque, and Peak Torque of the Shoulder Internal and External Rotator Muscle Groups By: David H. Perrin, PhD, ATC *, Laurie L. Tis, PhD,
By Agnes Tan (PT) I-Sports Rehab Centre Island Hospital
By Agnes Tan (PT) I-Sports Rehab Centre Island Hospital Physiotherapy Provides aids to people Deals with abrasion and dysfunction (muscles, joints, bones) To control and repair maximum movement potentials
Hip Bursitis/Tendinitis
Hip Bursitis/Tendinitis Anatomy and Biomechanics The hip is a ball and socket joint that occurs between the head of the femur (ball) and the acetabulum of the pelvis (socket). It is protected by several
Post Operative Total Hip Replacement Protocol Brian J. White, MD
Post Operative Total Hip Replacement Protocol Brian J. White, MD www.western-ortho.com The intent of this protocol is to provide guidelines for progression of rehabilitation. It is not intended to serve
William J. Robertson, MD UT Southwestern Orthopedics 1801 Inwood Rd. Dallas, TX 75390-8882 Office: (214) 645-3300 Fax: (214) 3301 billrobertsonmd.
Anterior Cruciate Ligament Reconstruction Postoperative Rehab Protocol You will follow-up with Dr. Robertson 10-14 days after surgery. At this office visit you will also see one of his physical therapists.
Mary LaBarre, PT, DPT,ATRIC
Aquatic Therapy and the ACL Current Concepts on Prevention and Rehab Mary LaBarre, PT, DPT,ATRIC Anterior Cruciate Ligament (ACL) tears are a common knee injury in athletic rehab. Each year, approximately
adj., departing from the norm, not concentric, utilizing negative resistance for better client outcomes
Why Eccentrics? What is it? Eccentric adj., departing from the norm, not concentric, utilizing negative resistance for better client outcomes Eccentrics is a type of muscle contraction that occurs as the
ACL Non-Operative Protocol
ACL Non-Operative Protocol Anatomy and Biomechanics The knee is a hinge joint connecting the femur and tibia bones. It is held together by several important ligaments. The most important ligament to the
Rehabilitation Documentation and Proper Coding Guidelines
Rehabilitation Documentation and Proper Coding Guidelines Purpose: 1) Develop a guide for doctors in South Dakota to follow when performing reviews on rehabilitation cases. 2) Provide doctors in South
Review epidemiology of knee pain. Discuss etiology and the biomechanics of knee pain utilizing current literature/evidence
Jenny Kempf, MPT Review epidemiology of knee pain Discuss etiology and the biomechanics of knee pain utilizing current literature/evidence Review commonly seen knee injuries Discuss treatment strategies
Knee Kinematics and Kinetics
Knee Kinematics and Kinetics Definitions: Kinematics is the study of movement without reference to forces http://www.cogsci.princeton.edu/cgi-bin/webwn2.0?stage=1&word=kinematics Kinetics is the study
Physical & Occupational Therapy
In this section you will find our recommendations for exercises and everyday activities around your home. We hope that by following our guidelines your healing process will go faster and there will be
Noyes Knee Institute Rehabilitation Protocol for Primary ACL Reconstruction: Early Return to Strenuous Activities
Noyes Knee Institute Rehabilitation Protocol for Primary ACL Reconstruction: Early Return to Strenuous Activities 1-2 3-4 5-6 7-8 9-12 4 5 6 7-12 Brace: immobilizer for patient comfort () minimum goals:
Knee Conditioning Program. Purpose of Program
Prepared for: Prepared by: OrthoInfo Purpose of Program After an injury or surgery, an exercise conditioning program will help you return to daily activities and enjoy a more active, healthy lifestyle.
Patella Stabilisation Surgery
Patella Stabilisation Surgery A comprehensive rehabilitation programme post operatively has been developed to improve your mobility and strength. Its purpose is to help you return to your normal activities
Anterior Cruciate Ligament Reconstruction Rehabilitation Protocol
Anterior Cruciate Ligament Reconstruction Rehabilitation Protocol GENERAL CONSIDERATIONS * This handout serves as a general outline for you as a patient to better understand guidelines and time frames
The Insall Scott Kelly Center for Orthopaedics and Sports Medicine 210 East 64th Street, 4 th Floor, New York, NY 10065
ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION POST-OPERATIVE REHABILITATION PROTOCOL 2003 AUTOGRAFT BONE-PATELLA TENDON-BONE and ALLOGRAFT PROTOCOL PHASE I-EARLY FUNCTIONAL (WEEKS 1-2) Goals: 1. Educate re:
Theodore B. Shybut, M.D. 7200 Cambridge St. #10A Houston, Texas 77030 Phone: 713-986-5590 Fax: 713-986-5521. Sports Medicine
Anterior Cruciate Ligament Reconstruction Accelerated Rehab This rehabilitation protocol has been designed for patients with ACL reconstruction who anticipate returning to a high level of activity as quickly
Standard of Care: Non-Surgical Management of the ACL Deficient Knee
Department of Rehabilitation Services Physical Therapy Case Type / Diagnosis: Anterior Cruciate Ligament Tear: 844.2 APTA Practice Pattern: 4D. Anterior Cruciate Ligament Tears Non-surgical treatment Indications
Open vs. Closed Kinetic Chain Exercises for Patellofemoral Pain Syndrome: An Evidence Based Review
Open vs. Closed Kinetic Chain Exercises for Patellofemoral Pain Syndrome: An Evidence Based Review Thomas Tsai, DPTc DPT Candidate Spring Symposium 2012 Significance of Patellofemoral Pain Syndrome (PFPS)
BP MS 150 lunch and learn: Stretching and injury prevention. Dr. Bart Kennedy (Sports Chiropractor) and Josh Thompson February 04, 2015
BP MS 150 lunch and learn: Stretching and injury prevention Dr. Bart Kennedy (Sports Chiropractor) and Josh Thompson February 04, 2015 Epidemiology Overuse injuries most common, traumatic event second
ACCELERATED REHABILITATION PROTOCOL FOR POST OPERATIVE POSTERIOR CRUCIATE LIGAMENT RECONSTRUCTION DR LEO PINCZEWSKI DR JUSTIN ROE
ACCELERATED REHABILITATION PROTOCOL FOR POST OPERATIVE POSTERIOR CRUCIATE LIGAMENT RECONSTRUCTION DR LEO PINCZEWSKI DR JUSTIN ROE January 2005 Rationale of Accelerated Rehabilitation Rehabilitation after
Pre - Operative Rehabilitation Program for Anterior Cruciate Ligament Reconstruction
Pre - Operative Rehabilitation Program for Anterior Cruciate Ligament Reconstruction This protocol is designed to assist you with your preparation for surgery and should be followed under the direction
The Effect of Preoperative Quadriceps Strength on Strength and Function After Anterior Cruciate Ligament Reconstruction
Journal of Sport Rehabilitation, 2012, 21, 89-93 2012 Human Kinetics, Inc. The Effect of Preoperative Quadriceps Strength on Strength and Function After Anterior Cruciate Ligament Reconstruction Carrie
Rehabilitation. Rehabilitation. Walkers, Crutches, Canes
Walkers, Crutches, Canes These devices provide support through your arms to limit the amount of weight on your operated hip. Initially, after a total hip replacement you will use a walker to get around.
Goals of Post-operative operative Rehab. Surgical Procedures. Phase 1 Maximum protection and Mobility (1-4 weeks)
Hip Arthroscopy - Post-Operative Care and Rehabilitation Franz Valenzuela, DPT, OCS Surgery corrects mechanical problems Rehabilitation corrects functional deficits Surgical Procedures Requires little
Trunk Strengthening and Muscle and Coordination Exercises for Lower Limb Amputees
Trunk Strengthening and Muscle and Coordination Exercises for Lower Limb Amputees Part One: Trunk Strengthening Trunk Extension Needed: Sturdy chair or stool, Theraband, and a Theraball if necessary. Sit
Rehabilitation Guidelines for Medial Patellofemoral Ligament Repair and Reconstruction
UW Health Sports Rehabilitation Rehabilitation Guidelines for Medial Patellofemoral Ligament Repair and Reconstruction The knee consists of four bones that form three joints. The femur is the large bone
Introduction. Anatomy
below the patella. The tendon together with the patella is called the quadriceps mechanism. Though we think of it as a single device, the quadriceps mechanism has two separate tendons, the quadriceps tendon
Hip Adduction Does not Affect VMO EMG Amplitude or VMO:VL Ratios During a Dynamic Squat Exercise
J Sport Rehabil. 2006,15, 195-205 2006 Human Kinetics, Inc. Hip Adduction Does not Affect VMO EMG Amplitude or VMO:VL Ratios During a Dynamic Squat Exercise Michelle Boling, Darin Padua, J. Troy Blackburn,
Anterior Cruciate Ligament Reconstruction. ACL Rehab Protocol
Anterior Cruciate Ligament Reconstruction Rehab Protocol This rehabilitation protocol has been designed for patients following ACL reconstruction who anticipate returning to a high level of activity as
ACL Reconstruction Rehabilitation Program
ACL Reconstruction Rehabilitation Program 1. Introduction to Rehabilitation 2. The Keys to Successful Rehabilitation 3. Stage 1 (to the end of week 1) 4. Stage 2 (to the end of week 2) 5. Stage 3 (to the
PREOPERATIVE: POSTOPERATIVE:
PREOPERATIVE: ACL RECONSTRUCTION RECOVERY & REHABILITATION PROTOCOL If you have suffered an acute ACL injury and surgery is planned, the time between injury and surgery should be used to regain knee motion,
Strength Training for the Knee
Strength Training for the Knee This handout is to help you rebuild the strength of the muscles surrounding the knee after injury. It is intended as a guideline to help you organize a structured approach
Hip Conditioning Program. Purpose of Program
Prepared for: Prepared by: OrthoInfo Purpose of Program After an injury or surgery, an exercise conditioning program will help you return to daily activities and enjoy a more active, healthy lifestyle.
A Patient s Guide to Quadriceps Tendonitis
A Patient s Guide to Quadriceps Tendonitis 2350 Royal Boulevard Suite 200 Elgin, IL 60123 Phone: 847.931.5300 Fax: 847.931.9072 DISCLAIMER: The information in this booklet is compiled from a variety of
ACCELERATED REHABILITATION FOLLOWING ACL-PTG RECONSTRUCTION
9180 KATY FREEWAY, STE. 2001 Therapist: Phone: ACCELERATED REHABILITATION FOLLOWING ACL-PTG RECONSTRUCTION PREOPERATIVE PHASE Diminish inflammation, swelling, and pain Restore normal range of motion (especially
Post Operative Total Knee Replacement Protocol Brian White, MD www.western-ortho.com
Post Operative Total Knee Replacement Protocol Brian White, MD www.western-ortho.com The intent of this protocol is to provide guidelines for progression of rehabilitation. It is not intended to serve
Post Surgery Rehabilitation Program for Knee Arthroscopy
Post Surgery Rehabilitation Program for Knee Arthroscopy This protocol is designed to assist you with your rehabilitation after surgery and should be followed under the direction of a physiotherapist May
Rehabilitation Protocol: Total Hip Arthroplasty (THA)
Rehabilitation Protocol: Total Hip Arthroplasty (THA) Department of Orthopaedic Surgery Lahey Hospital & Medical Center, Burlington 781-744-8650 Lahey Outpatient Center, Lexington 781-372-7020 Lahey Medical
Rehabilitation Guidelines for Patellar Tendon and Quadriceps Tendon Repair
UW Health Sports Rehabilitation Rehabilitation Guidelines for Patellar Tendon and Quadriceps Tendon Repair The knee consists of four bones that form three joints. The femur is the large bone in the thigh
Lower Body Exercise One: Glute Bridge
Lower Body Exercise One: Glute Bridge Lying on your back hands by your side, head on the floor. Position your feet shoulder width apart close to your glutes, feet facing forwards. Place a theraband/mini
Lumbar Disc Herniation/Bulge Protocol
Lumbar Disc Herniation/Bulge Protocol Anatomy and Biomechanics The lumbar spine is made up of 5 load transferring bones called vertebrae. They are stacked in a column with an intervertebral disc sandwiched
Rehabilitation after Injury to the Medial Collateral Ligament of the Knee
1 Rehabilitation after Injury to the Medial Collateral Ligament of the Knee Phase 1: The first six weeks after injury (grade 2 and 3) three weeks after injury (grade 1) The knee should be protected with
Rehabilitation Guidelines for Patellar Realignment
Rehabilitation Guidelines for Patellar Realignment The knee consists of four bones that form three joints. The femur is the large bone in your thigh, and attaches by ligaments and a capsule to your tibia,
KNEE EXERCISE PROGRAM
KNEE PROGRAM INTRODUCT ION Welcome to your knee exercise program. The exercises in the program are designed to improve your knee stability and strength of the muscles around your knee and hip. The strength
12. Physical Therapy (PT)
1 2. P H Y S I C A L T H E R A P Y ( P T ) 12. Physical Therapy (PT) Clinical presentation Interventions Precautions Activity guidelines Swimming Generally, physical therapy (PT) promotes health with a
The Effect of Stretching and Strengthening on Patellofemoral Pain Syndrome
Hamline University DigitalCommons@Hamline Departmental Honors Projects Spring 2014 The Effect of Stretching and Strengthening on Patellofemoral Pain Syndrome Heather Hollinger Follow this and additional
Noyes Knee Institute Rehabilitation Protocol for ACL Reconstruction: Revision Knees, Allografts, Complex Knees
Noyes Knee Institute Rehabilitation Protocol for ACL Reconstruction: Revision Knees, Allografts, Complex Knees 1-2 3-4 5-6 7-8 9-12 4 5 6 7-12 Brace: postoperative & functional () minimum goals: 0-90 0-120
Progression to the next phase is based on Clinical Criteria and/or Time Frames as appropriate.
BRIGHAM AND WOMEN S HOSPITAL Department of Rehabilitation Services Phyp Physical Therapy Total Hip Arthroplasty/ Hemiarthroplasty Protocol: The intent of this protocol is to provide the clinician with
total hip replacement
total hip replacement EXCERCISE BOOKLET patient s name: date of surgery: physical therapist: www.jointpain.md Get Up and Go Joint Program Philosophy: With the development of newer and more sophisticated
EXCESSIVE LATERAL PATELLAR COMPRESSION SYNDROME (Chondromalacia Patella)
EXCESSIVE LATERAL PATELLAR COMPRESSION SYNDROME (Chondromalacia Patella) Description Maintain appropriate conditioning: Excessive lateral patellar compression syndrome is characterized by pain in the knee
American Osteopathic Academy of Sports Medicine James McCrossin MS ATC, CSCS Philadelphia Flyers April 23 rd, 2015
American Osteopathic Academy of Sports Medicine James McCrossin MS ATC, CSCS Philadelphia Flyers April 23 rd, 2015 Coming together is a beginning; keeping together is progress; working together is success.
Kelly Corso MS, ATC, CES, FMSC, CSST
ACL Injury Prevention Program Kelly Corso MS, ATC, CES, FMSC, CSST What is the ACL??? The ACL or anterior cruciate ligament, attaches the front top portion of the shin bone (tibia) to the back bottom portion
ACL Injury Prevention Through Proprioceptive & Neuromuscular Training Arlington Soccer Club April 1, 2010
ACL Injury Prevention Through Proprioceptive & Neuromuscular Training Arlington Soccer Club April 1, 2010 Matthew R. McManus, PT Co-Owner & Regional Clinical Director - Massachusetts ProEx Physical Therapy
Gluteal muscle weakness has been associated with several
LINDSAY J. DISTEFANO, PhD, ATC¹ ATC, PhD² PhD³ ATC, PhD 4 Gluteal Muscle Activation During Common Therapeutic Exercises Gluteal muscle weakness has been associated with several lower extremity injuries,
28. APPENDIX G: REHABILITATION PROCEDURE. Rehabilitation procedure
Frobell BR, Lohmander LS, Roos HP, Roos EM: Surgical vs. Non- Surgical Treatment of ACL-injuries A Randomized study. Draft date 2001-08-31, version 10 Page: 52 28. APPENDIX G: REHABILITATION PROCEDURE
Post-Operative ACL Reconstruction Functional Rehabilitation Protocol
Post-Operative ACL Reconstruction Functional Rehabilitation Protocol Patient Guidelines Following Surgery The post-op brace is locked in extension initially for the first week with the exception that it
ILIOTIBIAL BAND SYNDROME
ILIOTIBIAL BAND SYNDROME Description The iliotibial band is the tendon attachment of hip muscles into the upper leg (tibia) just below the knee to the outer side of the front of the leg. Where the tendon
PERFORMANCE RUNNING. Piriformis Syndrome
Piriformis Syndrome Have you started to experience pain in your hip or down your leg while beginning or advancing your fitness program? This pain may be stemming from the piriformis muscle in your hip.
Total Hip Replacement Exercise Guide
Total Hip Replacement Exercise Guide This exercise booklet contains the approved exercise program for your hip joint replacement. This booklet is only a guide and does NOT replace any advice or instructions
Knee Arthroscopy Exercise Programme
Chester Knee Clinic & Cartilage Repair Centre Nuffield Health, The Grosvenor Hospital Chester Wrexham Road Chester CH4 7QP Hospital Telephone: 01244 680 444 CKC Website: www.kneeclinic.info Email: office@kneeclinic.info
Patellofemoral Pain Syndrome
Patellofemoral Pain Syndrome The patello-femoral joint refers to a specific part of the knee joint. Medically, the kneecap is known as the patella and the thigh bone is called the femur. The knee joint
Common Causes. Identification. Treatment
Anterior Cruciate Ligament Tear Rupture of the anterior cruciate ligament (ACL) occurs more often in females than in males, from adolescents to older adults. Noncontact injuries to the knee are responsible
Screening Examination of the Lower Extremities BUY THIS BOOK! Lower Extremity Screening Exam
Screening Examination of the Lower Extremities Melvyn Harrington, MD Department of Orthopaedic Surgery & Rehabilitation Loyola University Medical Center BUY THIS BOOK! Essentials of Musculoskeletal Care
PILATES FOR INJURY PREVENTION: DECREASING KNEE JOINT LAXITY
PILATES FOR INJURY PREVENTION: DECREASING KNEE JOINT LAXITY Prepared By Claire Lieberum September 2014 La Playa Pilates and Wellness Center Santa Barbara, CA ABSTRACT Knee pain and knee injuries are a
Anterior Cruciate Ligament Reconstruction Rehabilitation Protocol
The First Two Weeks After Surgery You will go home with crutches and be advised to use ice. Goals 1. Protect reconstruction 2. Ensure wound healing 3. Maintain full knee extension 4. Gain knee flexion
OPTIMAL CORE TRAINING FOR FUNCTIONAL GAINS AND PEAK PERFORMANCE: CXWORX
OPTIMAL CORE TRAINING FOR FUNCTIONAL GAINS AND PEAK PERFORMANCE: CXWORX Jinger S. Gottschall 1, Jackie Mills 2, and Bryce Hastings 2 1 The Pennsylvania State University, University Park, USA 2 Les Mills
Lumbar/Core Strength and Stability Exercises
Athletic Medicine Lumbar/Core Strength and Stability Exercises Introduction Low back pain can be the result of many different things. Pain can be triggered by some combination of overuse, muscle strain,
UHealth Sports Medicine
UHealth Sports Medicine Rehabilitation Guidelines for Meniscal Repair The rehabilitation guidelines are presented in a criterion based progression. Specific time frames, restrictions and precautions are
Anterior Cruciate Ligament Reconstruction Progression Rehabilitation Program By Jenna Hennebry, Erin Stiefel, and Lauren Schmidt
Anterior Cruciate Ligament Reconstruction Progression Rehabilitation Program By Jenna Hennebry, Erin Stiefel, and Lauren Schmidt Case Study: 18 year old female soccer player Isolated ACL rupture (planted
Rehabilitation Protocol: Tibial Tubercle Transfer and Lateral Release
Rehabilitation Protocol: Tibial Tubercle Transfer and Lateral Release Department of Orthopaedic Surgery Lahey Hospital & Medical Center, Burlington 781.744.8650 Lahey Outpatient Center, Lexington 781.372.7020
Rehabilitation of the Knee After Medial Patellofemoral Ligament Reconstruction
Rehabilitation of the Knee After Medial Patellofemoral Ligament Reconstruction Donald C. Fithian, MD a,b,c, *, Christopher M. Powers, PhD, PT d,e, Najeeb Khan, MD b,c KEYWORDS Medial patellofemoral ligament
Women athletes who participate in pivoting and
Effect of Functional Stabilization Training on Lower Limb Biomechanics in Women RODRIGO DE MARCHE BALDON 1, DANIEL FERREIRA MOREIRA LOBATO 1,LÍVIA PINHEIRO CARVALHO 1, PALOMA YAN LAM WUN 1, PAULO ROBERTO
Multi-ligament knee reconstruction rehabilitation Kyle F. Chun, MD
Multi-ligament knee reconstruction rehabilitation Kyle F. Chun, MD Preoperative Treatment: 1. Full Active Range of Motion (Flexion and Extension) 2. Restore Quadriceps Strength 3. 0 Minimal swelling 4.
Rehabilitation after shoulder dislocation
Physiotherapy Department Rehabilitation after shoulder dislocation Information for patients This information leaflet gives you advice on rehabilitation after your shoulder dislocation. It is not a substitute
RETURN TO PLAY AFTER ACL RECONSTRUCTION
RETURN TO PLAY AFTER ACL RECONSTRUCTION 7/29/2016 Grant Bowman, MD Orthopaedic Surgery and Sports Medicine 1 Disclosures I have no relevant financial disclosures or other conflicts of interest pertaining
Rehabilitation for Patellar Tendinitis (jumpers knee) and Patellofemoral Syndrome (chondromalacia patella)
Rehabilitation for Patellar Tendinitis (jumpers knee) and Patellofemoral Syndrome (chondromalacia patella) Patellar Tendinitis The most common tendinitis about the knee is irritation of the patellar tendon.
A GUIDE TO THE FOAM ROLLER
A GUIDE TO THE FOAM ROLLER Presented By: Sports Medicine Institute International 260 Sheridan Avenue, Suite B40 Palo Alto, CA 94306 For Appointment (650) 322-2809 ext.301 Fax (650) 325-6980 www.smiweb.org
Stance Control Gait Training
PHYSICAL THERAPY Stance Control Gait Training Mr. Marcelo Lofiego, P.T. 635 Executive Drive Troy, Michigan 48083 U.S.A. p 800-521-2192 248-588-7480 f 800-923-2537 248-588-2960 BeckerOrthopedic.com Stance
ACL Rehabilitation Pathway. Expediating Safe Return to Optimum Performance. www.sportssurgeryclinic.com
Specialists in Joint Replacement, Spinal Surgery, Orthopaedics and Sport Injuries ACL Rehabilitation Pathway Expediating Safe Return to Optimum Performance www.sportssurgeryclinic.com Contents Introduction...