

 Derrick Nicholson
 1 years ago
 Views:
Transcription
1 Revista Matematica Iberoamericana Vol. 14, N. o 1, 1998 A proof of the smoothing properties of the positive part of Boltzmann's kernel Francois Bouchut and Laurent Desvillettes Abstract. We give two direct proofs of Sobolev estimates for the positive part of Boltzmann's kernel. The rst deals with a cross section with separated variables no derivative is needed in this case. The second is concerned with a general cross section having one derivative in the angular variable. Resume. Nous donnons deux preuves directes des estimations de Sobolev pour la partie positive du noyau de Boltzmann. La premiere concerne les sections ecaces a variables separees aucune derivee n'est necessaire dans ce cas. La deuxieme traite des sections ecaces generales ayant une derivee dans la variable angulaire. 1. Introduction. The Boltzmann quadratic kernel Q models binary collisions occurring in a rareed monatomic gas (cf. [3], [4], [9]). It can be written under the form (1.1) Q(f)(v) Q + (f)(v) ; f(v) Lf(v) where Lf is a linear convolution operator, and Q + is the positive part 47
2 48 F. Bouchut and L. Desvillettes of Q, dened by Q + (f)(v) (1.) v R N S N;1 v + v f ; jv ; v j v + v f B jv ; v j v ; v jv ; v j d dv : + jv ; v j The nonnegative cross section B depends on the type of interaction between the particles of the gas. In a gas in which particles interact with respect to forces proportional to r ;s, s, the cross section B writes (1.3) B(x u) b(x) (u) where (1.4) b(x) x (s;5)(s;1) and has a strong singularity near u 1. The classical assumption of angular cuto of Grad [6] (that is L 1 (];1 1[)) is used to remove this singularity. It will always be made in this paper. To get an idea of the properties of Q when this assumption is not made, we refer the reader for example to [5] or [8]. The properties of Q + (with the assumption of angular cuto of Grad) have rst been investigated by P.L. Lions in [7]. In this work, it is proved that if B is a very smooth function with support avoiding certain points, then there exists C N B such that (1.5) kq + (f)k _ H (N;1) (R N v ) C N B kfk L 1 (R N v ) kfk L (R N v ) for any f L 1 \ L (RN v ). The proof of this estimate used the theory of Fourier integral operators. The very restricting conditions on B were not a serious inconvenience since in the application to the inhomogeneous Boltzmann equation, only the strong compactness in L 1 of Q + (f) was used, and not the estimate itself, so that these smoothness assumptions could be relaxed by suitable approximations of B. Notice that the use of the Fourier transform in the velocity variable in the context of the Boltzmann equation was already used by Bobylev in [].
3 A proof of the smoothing properties 49 An extension of this work to the case of the relativistic Boltzmann kernel can be found in [1]. Then, another proof of (1.5) was given by Wennberg [10] with the help of the regularizing properties of the (generalized) Radon transform. The hypothesis on B were considerably diminished, so that for example forces in r ;s with angular cuto and s 9 were included. Considerations on related kernels (for example the relativistic kernel) can also be found in [11]. This work is intended to give yet another proof of (1.5)like estimates, using only elementary properties of the Fourier transform. Moreover, we prove that the estimate holds for a large class of cross sections B, including all hard potentials with cuto (that is when s 5) and also soft potentials up to s>135. One of the drawbacks of our proof is that instead of having a L 1 norm times a L norm in the righthand side of (1.5), we only get a L norm to the square. In Section, we deal with the case when B is a tensor product (that is of the form (1.3)). Then, we present in Section 3 the case of general dependence for B with a reasonable smoothness assumption. The following notations will be used throughout the paper. For any p 1, q 0, L p q(rn ) is the weighted space embedded with the norm 1p (1.6) kfk p Lq (R N ) jf(v)j p (1 + jvj) pq dv vr N and if 0 < s < N, _H s (RN ) is the homogeneous Sobolev space of functions f of L N(N;s) (RN ) such that Its norm is given by bf L 1 loc(rn ) and jj s b f() L (RN ) : (1.7) kfk _ H s (R N ) R N j b f()j jj s d 1 : We shall use the two following formulas to compute some integrals on the sphere S N;1 (N ). The rst deals with functions which only depend on one component: for any function dened on ] ; 1 1[, (1.8) SN;1 (! N ) d! (N;1) N ; 1 ; 1 ;1 (u)(1; u ) (N;3) du :
4 50 F. Bouchut and L. Desvillettes The second is concerned with the change of variables (!)! ;, for a xed S N;1. We have for any function ' dened on S N;1 (1.9) '() d '( (!)! ; ) j!j N; d! : S N;1 S N;1 Finally, constants will be denoted by C, or C N when they depend on the dimension N.. The case of separated variables. We investigate here the properties of Q + when (.1) B jv ; v j v ; v v ; jv ; v j v b (jv ; v j) jv ; v j where b and are Borel functions dened on ]0 1[ and ] ; 1 1[ respectively. We consider the multidimensional case N. Let us state the main result of this section. Theorem.1. Assume that there exists K 0, 0 such that (.) jb(x)j K(1 + x) for all x>0 and that (.3) L (]; 1 1[ (1 ; u ) (N;3) du) : Then for any f L 1+(RN ), Q + (f) _H (N;1) (RN ) and (.4) kq + (f)k _ H (N;1) (R N ) C N K kk L (];1 1[ (1;u ) (N;3) du)kfk L 1+ (RN ) : In order to prove Theorem.1, let us dene the operator Q+ e for functions of two variables F (v 1 v ), v 1 v RN by v + v eq + (F )(v) F ; jv ; v j v + v + jv ; v j v R N (.5) S N;1 v ; v jv ; v j d dv :
5 A proof of the smoothing properties 51 Proposition.. For the linear operator (:5), we have i) If L 1 (];1 1[ (1;u ) (N;3) du), then for any F L 1 (RN RN ), e Q + (F ) L 1 (RN ) and k Q+ e (F )k L 1 (R N ) (.6) (N;1) N ; 1 kk L 1 (];1 1[ (1;u ) (N;3) du) kf k L 1 (R N R N ) : ; Moreover, (:6) is an equality if and F are nonnegative. ii) If L (];1 1[ (1;u ) (N;3) du), then for any F L (RN RN ) such that (v ;v 1 )F L (RN RN ), the integral (:5) is absolutely convergent for almost every v, e Q + (F ) _ H (N;1) (RN ) and k Q+ e (F )k H _ (N;1) (R N ) (.7) C N kk L (];1 1[ (1;u ) (N;3) du) kf k 1 k(v L ; v 1 )F k 1 : L.1. Let us postpone the proof of Proposition. and deduce Theorem Proof of Theorem.1. Let us dene (.8) F (v 1 v )f(v 1 ) f(v ) b(jv ; v 1 j) : Then, denitions (1.), (1.3) and (.5) yield Q + (f) e Q+ (F ). Now, by (.) we have (.9) jf (v 1 v )jjf(v 1 )jjf(v )j K (1 + jv ; v 1 j) K jf(v 1 )jjf(v )j (1 + jv 1 j + jv j) K j(1 + jv 1 j) f(v 1 )jj(1 + jv j) f(v )j : Therefore, (.10) kf k L 1 K kfk L 1 kf k L K kfk L
6 5 F. Bouchut and L. Desvillettes and since j(v ; v 1 )F (v 1 v )jjv 1 jjf (v 1 v )j + jv jjf (v 1 v )j Kj(1 + jv 1 j) 1+ f(v 1 )jj(1 + jv j) f(v )j + Kj(1 + jv 1 j) f(v 1 )jj(1 + jv j) 1+ f(v )j we have also (.11) k(v ; v 1 )F k L Kkfk L kfk L 1+ : Therefore, we can apply Proposition..ii), and we get Q + (f) e Q + (F ) _H (N;1), (.1) kq + (f)k H _ C (N;1) N kk L Kkfk 3 L kfk1 : L 1+ Finally, (.4) follows since kfk L kfk L 1+ : Proof of Proposition.. Estimate i) is easy with (1.8), and we only prove ii). Let us rst assume that F L 1 (RN RN ). We perform the change of variables v ; v (.13) jv ; v j!! ; v ; v jv ; v j : According to (1.9), eq + (F )(v) F (v ; (v ; v )!! v +(v ; v )!!) (.14) v R N!S N;1 v;v jv;v j! v;v ; 1 jv;v j! N; dv d! : Since by i) e Q+ (F ) L 1, we can compute its Fourier transform, which
7 A proof of the smoothing properties 53 is given by \eq + (F )() e ;iv F (v ; (v ; v )!! v +(v ; v )!!) v v R N!S N;1 v 1 v R N!S N;1 v ; v jv ; v j! v ; v ; 1 jv ; v j! N; dv dv d! e ;i(v 1;(v 1 ;v )!!) F (v 1 v ) v1 ; v jv 1 ; v j! v 1 ; v ; 1 jv 1 ; v j! N; dv1 dv d! by the usual prepost collisional change of variables. Next we perform a change of variables in!, given by an orthogonal hyperplane symmetry which exchanges the unitary vectors We obtain \eq + (F )() v 1 ; v jv 1 ; v j and jj : e ;i(v 1;(v 1 ;v )!!) F (v 1 v ) v 1 v R N!S N;1 jj! ; 1 jj! N; dv1 dv d!!s N;1 b F ( ;!!!!) jj! ; 1 jj! N; d! with F b the Fourier transform of F in both variables. Finally, we make the change of variables jj!! ; jj
8 54 F. Bouchut and L. Desvillettes and get according \ to (1.9) (.15) eq+ (F )() S N;1 F b ;jj + jj jj d : Now, in order to estimate (.15) we assume that F C 1 c (RN RN ), so that F b is smooth. This assumption can easily be relaxed by cuto and convolution of F to get (.7) in the general case. We have by CauchySchwarz's inequality (.16) (.17) S N;1 j\ eq+ (F )()j S N;1 b F S N;1 ;jj + jj d jj d and the last integral can be computed using (1.8), jj d Then, S N;1 b F ;jj S N;1 S N;1 jj>jj (N;1) N ; 1 ; + jj d rjj 1 ;1 1 b ; r F 1 F b ; r F b ; j(u)j (1 ; u ) (N;3) du : + r d dr + r (r F b ;r1f b ; r ) + (r F b ;r1f b ; ) + + r d dr d jj N;1
9 A proof of the smoothing properties 55 where r 1 b F and r b F denote the gradients of b F with respect to the rst and second variables. Therefore, R N jj N;1 d R N b F S N;1 b F ; + ;jj N kjb F jjr b F ;r1 b F jkl 1 (R N R N ) + jj d (r F b ;r1f b ; ) + d d N k b F kl (R N R N ) kr b F ;r1 b F kl (R N R N ) N () N kf k L (R N R N ) k(v ; v 1 )F k L (R N R N ) and together with (.16)(.17), we obtain (.7). Remark.1. A slightly weaker version of Theorem.1 is still true when one deals with (not too) soft potentials (with the angular cuto of Grad). Namely, fora cross section satisfying assumption (.1) with and L (]; 1 1[ (1 ; u ) (N;3) du) (.18) b(x) x ; 0 << N for any f L N(N;) 1 (RN ), we have that with Q + (f) _H (N;1) (RN ) (.19) kq + (f)k _ H (N;1) (R N ) C N kk L (];1 1[ (1;u ) (N;3) du)kfk L N(N;) 1 : Actually, dening F (v 1 v )f(v 1 )f(v ) jv ; v 1 j ;
10 56 F. Bouchut and L. Desvillettes we have kf k L (R N R N ) jf(v 1 )j jf(v )j jv ; v 1 j ; dv 1 dv We choose r N, so that kjfj k L r 0 kjfj jvj ; k L r : kjfj jvj ; k L r C N kjfj k L N(N;) and we obtain kf k L C N kjfj k L N(N;) : Therefore, kf k L (R N R N ) C N kfk L N(N;) and similarly k(v ; v 1 )F k L (R N R N ) C N kvfk L N(N;)kfk L N(N;) : We conclude by applying Proposition..ii). 3. The general case. We now concentrate on the case when B is not a tensor product. The estimate is not as straightforward as in Section, and we have to make a regularity assumption on B. Moreover, we only treat here the threedimensional case. Theorem 3.1. Let B be a continuous function from ]0 1[[;1 1] to R, admitting a continuous derivative in the second variable. We assume that (3.1) jb(x (x u) K(1 + x) for all x > 0 and u [;1 1]. Then, for any " > 0, there exists a constant C " only depending on " such that for any f L 1 1(R3 ) \ L (3+") (R3 )
11 A proof of the smoothing properties 57 Q + (f) _ H 1 (R3 ) with (3.) kq + (f)k _ H 1 (R 3 ) C "Kkfk L (3+") : Proof. Since jb(x u)j K (1 + x) the result of Proposition..i) ensures that the integral (1.) dening Q + (f) is absolutely convergent for almost every v, and that Q + (f) L 1 (R3 ), (3.3) kq + (f)k L 1 4Kkfk L 1 : 1 Therefore, we can compute the Fourier transform of Q + (f), v + v \Q + (f)() e ;iv f ; jv ; v j v + v f + jv ; v j (3.4) v v R 3 S v v R 3 S B jv ; v j v ; v jv ; v j d dv dv e ;i(v+v ;jv;v j) f(v)f(v ) B jv ; v j v ; v jv ; v j d dv dv according to the prepost collisional change of variables. Thus we obtain (3.5) \Q + (f)() e ;i(v+v ) f(v)f(v ) D(v;v ) dv dv v v R 3 where for any w R3 nf0g D(w ) (3.6) S e ijwj B jwj w jwj d +1 e ijwjjjs s;1 B '0 s jwj s jj w jwj +p 1;s 1; jj w jwj cos ' d' ds
12 58 F. Bouchut and L. Desvillettes with spherical coordinates and (3.7) s Integrating by parts, we get D(w ) ; (3.8) and therefore (3.9) +1 s;1 '0 + eijwjjj i jwjjj ; e;ijwjjj i jwjjj jd(w )j e ijwjjjs i jwjjj jj w jwj ; jj : s p 1 ; jwj jj w jwj s 1 ; jj w jwj + p 1;s s1; jj w jwj B jwj jj w jwj B jwj ; jj w jwj 4 +1 jwjjj K(1 + jwj) ;1 + 8 K(1 + jwj) jwjjj 4 K 1+ 1 : jj jwj Coming back to (3.5) and using the variables (3.10) z v + v we get (3.11) \Q + (f)() wr 3 1+ w v ; v W (f)(w ) D(w ) dw cos ' cos ' d' ds jsj p ds 1 ; s
13 A proof of the smoothing properties 59 where (3.1) W (f)(w ) zr 3 e ;iz f z + w f z ; w dz is a Wignertype transform of f. Then, according to CauchySchwarz's inequality, we get for any ">0 j\q + (f)()j jw (f)(w )j (1 + jwj) 3+" dw (3.13) wr 3 jd(w )j dw (1 + jwj) 3+" wr 3 K C " jw (f)(w )j (1 + jwj) 3+" dw : jj wr 3 Finally, using Plancherel's identity, we obtain jj j\q + (f)()j d R 3 C " K jw (f)(w )j d (1 + jwj) 3+" dw (3.14) wr 3 C " K () 3 R 3 f z + w f z ; w dz (1 + jwj) 3+" dw wr 3 zr 3 C " K () 3 v v R 3 jf(v)f(v )j (1 + jv ; v j) 3+" dv dv C " K () 3 kfk 4 L (3+") by the same estimate as in (.9) and the proof is complete. Remark 3.1. As in Section, one could here also treat singular B (in the rst variable) if one allowed to replace the weighted L norms of f in (3.) by suitable (weighted) L p norms, with p>.
14 60 F. Bouchut and L. Desvillettes Remark 3.. As in [10], one could deduce from Theorems.1 and 3.1 regularity properties for the homogeneous Boltzmann equation. Notice that such properties give also counterexamples. For example one can prove that if f is the solution of the homogeneous Boltzmann equation and if f(0) is not smooth (the exact smoothness considered here depends on the properties of B), then for any t>0, f(t) will also not be smooth. This behavior is completely opposite to that of the Boltzmann equation without angular cuto (cf. [5], [8]). References. [1] Andreasson, H., Regularity of the gain term and strong L 1 convergence to equilibrium for the relativistic Boltzmann equation. SIAM J. Math. Anal. 7 (1996), [] Bobylev, A. V., Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas. Teor. Math. Phys. 60 (1984), [3] Cercignani, C., The Boltzmann equation and its applications. Springer, [4] Chapman, S., Cowling, T. G., The mathematical theory of non uniform gases. Cambridge Univ. Press, 195. [5] Desvillettes, L., About the regularity properties of the non cuto Kac equation. Comm. Math. Phys. 168 (1995), [6] Grad, H., Principles of the kinetic theory of gases. Flugge's handbuch der Physik 1 (1958), [7] Lions, P.L., Compactness in Boltzmann's equation via Fourier integral operators and applications, Parts I, II and III. J. Math. Kyoto Univ. 34 (1994), and [8] Proutiere, A., New results of regularization for weak solutions of Boltzmann equation. Preprint (1996). [9] Truesdell, C., Muncaster, R., Fundamentals of Maxwell's kinetic theory of a simple monatomic gas. Academic Press, [10] Wennberg, B., Regularity in the Boltzmann equation and the Radon transform. Comm. Partial Di. Equations 19 (1994),
15 A proof of the smoothing properties 61 [11] Wennberg, B., The geometry of binary collisions and generalized Radon transforms. To appear in Arch. Rational Mech. Anal. Recibido: 1 de septiembre de Revisado: 1 de enero de Francois Bouchut and Laurent Desvillettes Universite d'orleans et CNRS, UMR 668 Departement de Mathematiques BP Orleans cedex, FRANCE
On the Constitution of Atoms and Molecules. N. Bohr, Dr. phil. Copenhagen (Received July 1913)
N. Bohr, Philos. Mag. 26, 1 1913 Introduction On the Constitution of Atoms and Molecules N. Bohr, Dr. phil. Copenhagen (Received July 1913) In order to explain the results of experiments on scattering
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationControllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationSpaceTime Approach to NonRelativistic Quantum Mechanics
R. P. Feynman, Rev. of Mod. Phys., 20, 367 1948 SpaceTime Approach to NonRelativistic Quantum Mechanics R.P. Feynman Cornell University, Ithaca, New York Reprinted in Quantum Electrodynamics, edited
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289. Compressed Sensing. David L. Donoho, Member, IEEE
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289 Compressed Sensing David L. Donoho, Member, IEEE Abstract Suppose is an unknown vector in (a digital image or signal); we plan to
More informationAn Elementary Introduction to Modern Convex Geometry
Flavors of Geometry MSRI Publications Volume 3, 997 An Elementary Introduction to Modern Convex Geometry KEITH BALL Contents Preface Lecture. Basic Notions 2 Lecture 2. Spherical Sections of the Cube 8
More informationDecoding by Linear Programming
Decoding by Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles, CA 90095
More informationSome Applications of Laplace Eigenvalues of Graphs
Some Applications of Laplace Eigenvalues of Graphs Bojan MOHAR Department of Mathematics University of Ljubljana Jadranska 19 1111 Ljubljana, Slovenia Notes taken by Martin Juvan Abstract In the last decade
More informationOnedimensional wave turbulence
Physics Reports 398 (4) 65 www.elsevier.com/locate/physrep Onedimensional wave turbulence Vladimir Zakharov a;b,frederic Dias c;, Andrei Pushkarev d a Landau Institute for Theoretical Physics, Moscow,
More informationWHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? 1. Introduction
WHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER Abstract. Consider an election in which each of the n voters casts a vote consisting of
More informationErgodicity and Energy Distributions for Some Boundary Driven Integrable Hamiltonian Chains
Ergodicity and Energy Distributions for Some Boundary Driven Integrable Hamiltonian Chains Peter Balint 1, Kevin K. Lin 2, and LaiSang Young 3 Abstract. We consider systems of moving particles in 1dimensional
More informationSome open problems and research directions in the mathematical study of fluid dynamics.
Some open problems and research directions in the mathematical study of fluid dynamics. Peter Constantin Department of Mathematics The University of Chicago Abstract This is an essay in the literal sense:
More informationMUSTHAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS
MUSTHAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS William Neilson Department of Economics University of Tennessee Knoxville September 29 289 by William Neilson web.utk.edu/~wneilson/mathbook.pdf Acknowledgments
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationA Tutorial on Spectral Clustering
A Tutorial on Spectral Clustering Ulrike von Luxburg Max Planck Institute for Biological Cybernetics Spemannstr. 38, 7276 Tübingen, Germany ulrike.luxburg@tuebingen.mpg.de This article appears in Statistics
More informationGeneralized compact knapsacks, cyclic lattices, and efficient oneway functions
Generalized compact knapsacks, cyclic lattices, and efficient oneway functions Daniele Micciancio University of California, San Diego 9500 Gilman Drive La Jolla, CA 920930404, USA daniele@cs.ucsd.edu
More informationTHE PROBLEM OF finding localized energy solutions
600 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997 Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Reweighted Minimum Norm Algorithm Irina F. Gorodnitsky, Member, IEEE,
More informationCOSAMP: ITERATIVE SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE SAMPLES
COSAMP: ITERATIVE SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE SAMPLES D NEEDELL AND J A TROPP Abstract Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect
More informationOptimization with SparsityInducing Penalties. Contents
Foundations and Trends R in Machine Learning Vol. 4, No. 1 (2011) 1 106 c 2012 F. Bach, R. Jenatton, J. Mairal and G. Obozinski DOI: 10.1561/2200000015 Optimization with SparsityInducing Penalties By
More informationPanel Unit Root Tests in the Presence of CrossSectional Dependency and Heterogeneity 1
Panel Unit Root Tests in the Presence of CrossSectional Dependency and Heterogeneity 1 Yoosoon Chang and Wonho Song Department of Economics Rice University Abstract An IV approach, using as instruments
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationL (with coefficients oscillating with period e), and a family of solutions u which,
SIAM J. MATH. ANAL. Vol. 23, No. 6, pp. 14821518, November 1992 (C) 1992 Society for Industrial and Applied Mathematics 006 HOMOGENIZATION AND TWOSCALE CONVERGENCE* GRIGOIRE ALLAIRE Abstract. Following
More informationRandom matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs
Random matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs Jeong Han Kim Microsoft Research One Microsoft Way Redmond, WA 9805 USA jehkim@microsoft.com Nicholas
More informationProbability in High Dimension
Ramon van Handel Probability in High Dimension ORF 570 Lecture Notes Princeton University This version: June 30, 2014 Preface These lecture notes were written for the course ORF 570: Probability in High
More informationSubspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity
Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at UrbanaChampaign
More informationNew Results on Hermitian Matrix RankOne Decomposition
New Results on Hermitian Matrix RankOne Decomposition Wenbao Ai Yongwei Huang Shuzhong Zhang June 22, 2009 Abstract In this paper, we present several new rankone decomposition theorems for Hermitian
More informationSemiSimple Lie Algebras and Their Representations
i SemiSimple Lie Algebras and Their Representations Robert N. Cahn Lawrence Berkeley Laboratory University of California Berkeley, California 1984 THE BENJAMIN/CUMMINGS PUBLISHING COMPANY Advanced Book
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationSampling Signals With Finite Rate of Innovation
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 50, NO 6, JUNE 2002 1417 Sampling Signals With Finite Rate of Innovation Martin Vetterli, Fellow, IEEE, Pina Marziliano, and Thierry Blu, Member, IEEE Abstract
More information