Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies
|
|
- Bryan Chambers
- 2 years ago
- Views:
Transcription
1 Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: Image Recognition System in Hadoop K. AshaRani 1 Asst.Professor Department Of Computer Science Engineering GPREC, Kurnool - India ISSN: (Online) S. Subbalakshmi 2 Asst.Professor Department Of Computer Science Engineering GPREC, Kurnool - India Abstract: Big Data is the word used to describe massive volumes of structured and unstructured data that are so large that it is very difficult to process this data using traditional databases and software technologies. It helps to manage and process a huge amount of data efficiently. Hadoop has become a widely used open source framework for large scale data processing. Hadoop Map Reduce frame-work that allows processing of extremely large video files or image file on data nodes. By using this, Here we propose smarter way for object or image recognition, where we use a CCTV camera to be fixed at various junctions, which automatically captures the image of the person and checks the observed image with the database.this aims at processing these input images in real-time using low-end computers. The input image received from the user will direct the node-head to search for a particular object within the stored files and return the output with the files in which the object will be found. The input storage may be extended to terabytes of storage files without degrading the systems performance. Keywords: Bigdata, Hadoop, HDFS, MapReduce. I. INTRODUCTION An Image Recognition System is used to automatically identify or verify a person or an object from a digital image or a video frame from a video source. One of the ways to do this is by comparing selected image features from the database.this used for retrieving the corresponding images from the database based on their feature of images which derived the image itself. The retrieval of the image is based on the content of an image and it is more effective than the text based which is called content based image retrieval that are used for a various applications like vision techniques of computer. Traditionally, search of the images are using text, tags or keywords or annotation assigned to the image while storing into the databases. Where as if the image which is stored in the database are not uniquely or specifically tagged or wrongly described then it s insufficient, laborious and extremely time consuming job for searching the particular image in the large set of databases. For getting most accurate result Image Recognition Systems are used which searches and retrieve the query images from the large databases based on the image content which is derived from image itself by using image processing techniques. To store such colossal amount of data instead of using a simple Client Server architecture it ll be better to use architecture where in the data exhibits the property of logical independence. A system where in the data must be distributed on a large number of workstations so that it may reduce the burden of analysis on a single machine. Video processing is very well suited to distributed system implementation. Processing in the Hadoop is inherently distributed. Hadoop supports parallel running of applications on large clusters of commodity hardware. Big data is being generated by everything around us at all times. Every digital process Systems, sensors and mobile devices transmit it. Big data is arriving from multiple sources at an alarming velocity, volume and variety. To extract meaningful value from big data, you need optimal processing power, analytics capabilities and skills. 2015, IJARCSMS All Rights Reserved 60 P a g e
2 II. BIG DATA Big Data is the word used to describe massive volumes of structured and unstructured data that are so large that it is very difficult to process this data using traditional databases and software technologies. The term Big Data is believed to be originated from the Web search companies who had to query loosely structured very large distributed data. The three main terms that signify Big Data have the following properties: a) Volume: Many factors contribute towards increasing Volume - storing transaction data, live streaming data and data collect from sensors etc., b) Variety: Today data comes in all types of formats from traditional databases, text documents, s, video, audio, transaction s etc., c) Velocity: This means how fast the data is being produced and how fast the data needs to be processed to meet the demand. III. HADOOP Hadoop, which is a free, Java-based programming framework supports the processing of large sets of data in a distributed computing environment. Hadoop cluster uses a Master/Slave structure. Using Hadoop, large data sets can be processed across a cluster of servers and applications can be run on systems with thousands of nodes involving thousands of terabytes. Distributed file system in Hadoop helps in rapid data transfer rates and allows the system to continue its normal operation even in the case of some node failures. Hadoop framework has two main sub components Hadoop Distributed File System (HDFS)and Map Reduce. There are two elements of MapReduce, namely JobTracker and TaskTracker, and two elements of HDFS, namely DataNode and NameNode. Hadoop with HDFS and MapReduce Hadoop Distributed File System (HDFS) HDFS is a file system that spans all the nodes in a Hadoop cluster for data storage. It links together file systems on local nodes to make it into one large file system. HDFS improves reliability by replicating data across multiple sources to overcome node failures. In this proposal HDFS is used to collect data from various digital sources such as cc cameras at hospitals, airports, and traffic junction s e.t.c. Map Reduce Hadoop Map Reduce is a framework used to write applications that process large amounts of data in parallel on clusters of commodity hardware resources in a reliable, fault-tolerant manner. A Map Reduce job first divides the data into individual chunks which are processed by Map jobs in parallel. The outputs of the maps sorted by the framework are then input to the 2015, IJARCSMS All Rights Reserved ISSN: (Online) 61 P a g e
3 reduce tasks. Generally the input and the output of the job are both stored in a file-system. Here we implement logic to compare input image with the image present in the HDFS by using image processing algorithms. Process performing the Map and Reduce Phases The Map and Reduce functions of MapReduce are both defined with respect to data structured in key-value pairs. In short, we can perform distributed processing by creating key-value pairs in MapReduce form. However, for unstructured data such as video data, it can be assumed that it is more difficult to create key-value pairs and perform the processing than processing structured data Video database processing is performed by splitting the data in a video database and creating key-value pairs. For example, the frame number can be used as a key for a video frame. In the case of parallel processing of a video frame, the video frame is divided into multiple parts, and the part numbers can be the keys (identifiers) for these different parts. Sorting is carried out using the key number, and joining separated frames or separated parts are performed by the Reduce function. IV. OBJECTIVES Main objective is Assume there is a very large video data base. Giving a set of video frames or image, we hope to find it from that database. The idea is simple but it is very useful in different aspects. The key point of this project is building application with high scalability. When database is increased, the application can still handle it as we are using HDFS framework for storage. And we implement logic in mapreduce by using some image processing algorithms so that it tries to find a face with in large database of faces. The system returns a possible list of faces from the database. It can be used for identifying malicious persons, most wanted persons, criminals, missing objects etc. V. MOTIVATION Earlier, the images were stored with associated labels and searching was done on the basis of these labels. But, such a method is prone to many errors. If the images are wrongly annotated, irrelevant images might be retrieved. Moreover, it is a laborious task to search for an image which has been assigned a wrong label. As From the study of various sources, it was concluded that in today s era the amount of digital images are growing in a very explosive manner. The storage requirement for storing these images is also increasing from gigabyte to petabyte. Searching and retrieval of particular images from the massive database is not possible when the images in the database are wrongly annotated and described. For getting the correct image, during the search, Image recognition system can be used to search and retrieve the images from the massive collection of images. The query image is compared with database images. This can improve efficiency of searching and retrieval. 2015, IJARCSMS All Rights Reserved ISSN: (Online) 62 P a g e
4 VI. ARCHITECTURE Gather videos from cctv s n store in HDFS Extract image frames Convert Image binary data information into a class Convert images into hadoop sequence file read binary Image from sequence file into Array Storage HDFS Mapreduce Output Apply your classifier (training data) on this image Draw rectangle on detected face System Architecture Bundle detected images into single hadoop sequence file This system provides the application interface for users. The system incorporates two phases 1) Upload the images and 2) Search the image from the database. Both modules are deployed on Hadoop cluster. For uploading phase, the data is inputted for storage of HDFS and Query Image is searched from the database. Upload Images System allows user to upload one or more images at a single point into the system. In this proposed system, adding the image into the databases has sub processes. The user uploads the images on database of Hadoop which is called HDFS. Searching of Images Like uploading phase, system provides GUI for user to search and retrieve the images from the database by the query image. When a user wishes to search a particular image, he/she has to provide the search image path. The processes included in upload phase are same for search process. Framework HDFS is also used for storing images. In HDFS storage, data is stored in the format of text. Data is broken down into smaller pieces (called blocks) and these chunks are distributed throughout the Hadoop cluster. Hadoop provides us the facility to read/write binary files. As a result, anything which can be converted into bytes can be stored into HDFS. This provides the 2015, IJARCSMS All Rights Reserved ISSN: (Online) 63 P a g e
5 scalability that is desirable for large data processing. First after gathering videos from CCTV s, and store it in HDFS database. 1. Write one mapreduce algorithm to extract video sequence level information that is present only in the first chunk of large video file and store it as text file in HDFS. 2. Write custom recorder to read data upto end of particular Group of pictures in video file using previous text output file. 3. Implement LIBMPEG tool in custom RecordReader to extract Image frames. 4. Convert Image binary data information into a class that implement writtable like Text class. 5. Convert images into hadoop sequence file 6. Write a MapReduce Program that read binary Image from sequence file into Byte Array in map Function. 7. Convert Image in Byte array to IplImage (Image Object in Opencv) 8. Apply your classifier (training data) on this image 9. Draw rectangle on detected face 10. Bundle detected images into single hadoop sequence file 11. Store the sequence file to HDFS. 12. Extract Detected Images from sequence file. VII. CONCLUSION An Image recognition system is used to automatically identify or verify a person or an object from a digital image or a video frame from a video source. One of the ways to do this is by comparing selected image features from the database. We propose a system with four aspects. One is uploading, second is search query image. Third is the query image search and fourth is to store all encrypted image value to database which provides security. Images are growing through the various digital devices and these images are added to the image databases and internet for various applications. These images need to be stored and retrieved in effective and efficient manner. The searching time is the most important for any search method while searching it in large datasets of images. References 1. Sitalakhmi and S. kulkarni MapReduce neural network framework for efficient content based image retrieval from large datasets in the cloud IEEE Transactions on Hybrid Intelligent Systems, pp , Ryszard S. Choras Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems International Journal of Biology and Biomedical Engineering, Vol. 1, Oberoi Ashish, Bakshi Varun, Sharma Rohini and Singh Manpreet A Framework for Medical Image Retrieval Using Local Tetra Pattern, International Journal of Engineering Science & Technology, Vol. 5, pp.27, Feb Muneto Yamamoto and Kunihiko Kaneko, Parallel Image Database Processing With MapReduce And Performance Evaluation In Pseudo Distributed Mode, International Journal of Electronic Commerce Studies,Vol.3, No.2, pp , Apache Avro TM Hadoop MapReduce Guide 6. Hadoop Image Processing Interface Java doc 7. Parallel Image Database Processing With Mapreduce And Performance Evaluation In Pseudo Distributed Mode. International Journal of Electronic Commerce Studies Vol.3, No.2, pp , 2012 doi: /ijecs S. Chris, L. Liu, A. Sean, and L. Jason, HIPI: A hadoop image processing interface for image-based map reduce tasks, B.S. Thesis. University of Virginia, Department of Computer Science, , IJARCSMS All Rights Reserved ISSN: (Online) 64 P a g e
6 AUTHOR(S) PROFILE K. AshaRani received B.Tech degree in Computer Science and Engineering from JNT University, Hyderabad and M.Tech degree in Computer Science from JNT University, Anantapuram. She is working as Assistant Professor in Computer Science & Engineering Department in G. PullaReddy Engineering College, Kurnool. Her research interest includes BigData, Cloud Computing, Computer Network Security. She presented 3 papers in International Journals. S. Subbalakshmi received B.Tech degree in Computer Science and Engineering from Sri Krishnadevara University, Anatapuramu and M.Tech degree in Computer Science from JNT University, Anantapuramu. She is working as Assistant Professor in Computer Science & Engineering Department in G.PullaReddy Engineering College, Kurnool. Her research interest includes wireless mesh networks, Computer Network Security. She presented 3 papers in International Journals. 2015, IJARCSMS All Rights Reserved ISSN: (Online) 65 P a g e
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
Big Data on Cloud Computing- Security Issues
Big Data on Cloud Computing- Security Issues K Subashini, K Srivaishnavi UG Student, Department of CSE, University College of Engineering, Kanchipuram, Tamilnadu, India ABSTRACT: Cloud computing is now
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Big Data and Hadoop. Sreedhar C, Dr. D. Kavitha, K. Asha Rani
Big Data and Hadoop Sreedhar C, Dr. D. Kavitha, K. Asha Rani Abstract Big data has become a buzzword in the recent years. Big data is used to describe a massive volume of both structured and unstructured
Private Content Based Image Retrieval Using Hadoop
Private Content Based Image Retrieval Using Hadoop Dissertation Submitted in partial fulfillment of the requirement for the degree of Master of Technology in Computer Engineering By Swapnil P. Dravyakar
A Database Hadoop Hybrid Approach of Big Data
A Database Hadoop Hybrid Approach of Big Data Rupali Y. Behare #1, Prof. S.S.Dandge #2 M.E. (Student), Department of CSE, Department, PRMIT&R, Badnera, SGB Amravati University, India 1. Assistant Professor,
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop Kanchan A. Khedikar Department of Computer Science & Engineering Walchand Institute of Technoloy, Solapur, Maharashtra,
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON HIGH PERFORMANCE DATA STORAGE ARCHITECTURE OF BIGDATA USING HDFS MS.
Enhancing MapReduce Functionality for Optimizing Workloads on Data Centers
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 10, October 2013,
Data Refinery with Big Data Aspects
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data
Manifest for Big Data Pig, Hive & Jaql
Manifest for Big Data Pig, Hive & Jaql Ajay Chotrani, Priyanka Punjabi, Prachi Ratnani, Rupali Hande Final Year Student, Dept. of Computer Engineering, V.E.S.I.T, Mumbai, India Faculty, Computer Engineering,
PARALLEL IMAGE DATABASE PROCESSING WITH MAPREDUCE AND PERFORMANCE EVALUATION IN PSEUDO DISTRIBUTED MODE
International Journal of Electronic Commerce Studies Vol.3, No.2, pp.211-228, 2012 doi: 10.7903/ijecs.1092 PARALLEL IMAGE DATABASE PROCESSING WITH MAPREDUCE AND PERFORMANCE EVALUATION IN PSEUDO DISTRIBUTED
Improving Data Processing Speed in Big Data Analytics Using. HDFS Method
Improving Data Processing Speed in Big Data Analytics Using HDFS Method M.R.Sundarakumar Assistant Professor, Department Of Computer Science and Engineering, R.V College of Engineering, Bangalore, India
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: ikons@cslab.ece.ntua.gr Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
International Journal of Innovative Research in Computer and Communication Engineering
FP Tree Algorithm and Approaches in Big Data T.Rathika 1, J.Senthil Murugan 2 Assistant Professor, Department of CSE, SRM University, Ramapuram Campus, Chennai, Tamil Nadu,India 1 Assistant Professor,
Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics
Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics Dharmendra Agawane 1, Rohit Pawar 2, Pavankumar Purohit 3, Gangadhar Agre 4 Guide: Prof. P B Jawade 2
R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5
Distributed data processing in heterogeneous cloud environments R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5 1 uskenbaevar@gmail.com, 2 abu.kuandykov@gmail.com,
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)
ISSN: 2321-7782 (Online) Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
International Journal of Advance Research in Computer Science and Management Studies
Volume 2, Issue 8, August 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: simmibagga12@gmail.com
Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework
Recognization of Satellite Images of Large Scale Data Based On Map- Reduce Framework Vidya Dhondiba Jadhav, Harshada Jayant Nazirkar, Sneha Manik Idekar Dept. of Information Technology, JSPM s BSIOTR (W),
Hadoop Technology for Flow Analysis of the Internet Traffic
Hadoop Technology for Flow Analysis of the Internet Traffic Rakshitha Kiran P PG Scholar, Dept. of C.S, Shree Devi Institute of Technology, Mangalore, Karnataka, India ABSTRACT: Flow analysis of the internet
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON BIG DATA MANAGEMENT AND ITS SECURITY PRUTHVIKA S. KADU 1, DR. H. R.
Apache Hadoop new way for the company to store and analyze big data
Apache Hadoop new way for the company to store and analyze big data Reyna Ulaque Software Engineer Agenda What is Big Data? What is Hadoop? Who uses Hadoop? Hadoop Architecture Hadoop Distributed File
Processing of Hadoop using Highly Available NameNode
Processing of Hadoop using Highly Available NameNode 1 Akash Deshpande, 2 Shrikant Badwaik, 3 Sailee Nalawade, 4 Anjali Bote, 5 Prof. S. P. Kosbatwar Department of computer Engineering Smt. Kashibai Navale
Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science
A Seminar report On Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org
An Efficient Analysis of Web Server Log Files for Session Identification using Hadoop Mapreduce
Proc. of Int. Conf. on Advances in Communication, Network, and Computing, CNC An Efficient Analysis of Web Server Log Files for Session Identification using Hadoop Mapreduce Savitha K 1 and Vijaya MS 2
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
Design of Electric Energy Acquisition System on Hadoop
, pp.47-54 http://dx.doi.org/10.14257/ijgdc.2015.8.5.04 Design of Electric Energy Acquisition System on Hadoop Yi Wu 1 and Jianjun Zhou 2 1 School of Information Science and Technology, Heilongjiang University
Hadoop Big Data for Processing Data and Performing Workload
Hadoop Big Data for Processing Data and Performing Workload Girish T B 1, Shadik Mohammed Ghouse 2, Dr. B. R. Prasad Babu 3 1 M Tech Student, 2 Assosiate professor, 3 Professor & Head (PG), of Computer
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
Distributed Framework for Data Mining As a Service on Private Cloud
RESEARCH ARTICLE OPEN ACCESS Distributed Framework for Data Mining As a Service on Private Cloud Shraddha Masih *, Sanjay Tanwani** *Research Scholar & Associate Professor, School of Computer Science &
Generic Log Analyzer Using Hadoop Mapreduce Framework
Generic Log Analyzer Using Hadoop Mapreduce Framework Milind Bhandare 1, Prof. Kuntal Barua 2, Vikas Nagare 3, Dynaneshwar Ekhande 4, Rahul Pawar 5 1 M.Tech(Appeare), 2 Asst. Prof., LNCT, Indore 3 ME,
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Prerita Gupta Research Scholar, DAV College, Chandigarh Dr. Harmunish Taneja Department of Computer Science and
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Log Mining Based on Hadoop s Map and Reduce Technique
Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, anujapandit25@gmail.com Amruta Deshpande Department of Computer Science, amrutadeshpande1991@gmail.com
BIG DATA CHALLENGES AND PERSPECTIVES
BIG DATA CHALLENGES AND PERSPECTIVES Meenakshi Sharma 1, Keshav Kishore 2 1 Student of Master of Technology, 2 Head of Department, Department of Computer Science and Engineering, A P Goyal Shimla University,
Mobile Storage and Search Engine of Information Oriented to Food Cloud
Advance Journal of Food Science and Technology 5(10): 1331-1336, 2013 ISSN: 2042-4868; e-issn: 2042-4876 Maxwell Scientific Organization, 2013 Submitted: May 29, 2013 Accepted: July 04, 2013 Published:
MapReduce. Tushar B. Kute, http://tusharkute.com
MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity
Integration of Hadoop Cluster Prototype and Analysis Software for SMB
Vol.58 (Clound and Super Computing 2014), pp.1-5 http://dx.doi.org/10.14257/astl.2014.58.01 Integration of Hadoop Cluster Prototype and Analysis Software for SMB Byung-Rae Cha 1, Yoo-Kang Ji 2, Jong-Won
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
Fault Tolerance in Hadoop for Work Migration
1 Fault Tolerance in Hadoop for Work Migration Shivaraman Janakiraman Indiana University Bloomington ABSTRACT Hadoop is a framework that runs applications on large clusters which are built on numerous
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
Big Data With Hadoop
With Saurabh Singh singh.903@osu.edu The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
White Paper. Big Data and Hadoop. Abhishek S, Java COE. Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP
White Paper Big Data and Hadoop Abhishek S, Java COE www.marlabs.com Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP Table of contents Abstract.. 1 Introduction. 2 What is Big
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan humbetov@gmail.com Abstract Every day, we create 2.5 quintillion
A very short Intro to Hadoop
4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,
Big Data - Infrastructure Considerations
April 2014, HAPPIEST MINDS TECHNOLOGIES Big Data - Infrastructure Considerations Author Anand Veeramani / Deepak Shivamurthy SHARING. MINDFUL. INTEGRITY. LEARNING. EXCELLENCE. SOCIAL RESPONSIBILITY. Copyright
Suresh Lakavath csir urdip Pune, India lsureshit@gmail.com.
A Big Data Hadoop Architecture for Online Analysis. Suresh Lakavath csir urdip Pune, India lsureshit@gmail.com. Ramlal Naik L Acme Tele Power LTD Haryana, India ramlalnaik@gmail.com. Abstract Big Data
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
LARGE-SCALE DATA PROCESSING USING MAPREDUCE IN CLOUD COMPUTING ENVIRONMENT
LARGE-SCALE DATA PROCESSING USING MAPREDUCE IN CLOUD COMPUTING ENVIRONMENT Samira Daneshyar 1 and Majid Razmjoo 2 1,2 School of Computer Science, Centre of Software Technology and Management (SOFTEM),
Job Oriented Instructor Led Face2Face True Live Online I.T. Training for Everyone Worldwide
H2kInfosys H2K Infosys provides online IT training and placement services worldwide. www.h2kinfosys.com USA- +1-(770)-777-1269, UK (020) 33717615 Training@H2KINFOSYS.com / H2KInfosys@gmail.com DISCLAIMER
marlabs driving digital agility WHITEPAPER Big Data and Hadoop
marlabs driving digital agility WHITEPAPER Big Data and Hadoop Abstract This paper explains the significance of Hadoop, an emerging yet rapidly growing technology. The prime goal of this paper is to unveil
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Reduction of Data at Namenode in HDFS using harballing Technique
Reduction of Data at Namenode in HDFS using harballing Technique Vaibhav Gopal Korat, Kumar Swamy Pamu vgkorat@gmail.com swamy.uncis@gmail.com Abstract HDFS stands for the Hadoop Distributed File System.
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: ikons@cslab.ece.ntua.gr Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment
Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
An Approach to Implement Map Reduce with NoSQL Databases
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh
OPINION MINING IN PRODUCT REVIEW SYSTEM USING BIG DATA TECHNOLOGY HADOOP
OPINION MINING IN PRODUCT REVIEW SYSTEM USING BIG DATA TECHNOLOGY HADOOP 1 KALYANKUMAR B WADDAR, 2 K SRINIVASA 1 P G Student, S.I.T Tumkur, 2 Assistant Professor S.I.T Tumkur Abstract- Product Review System
ISSN: 2320-1363 CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS
CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS A.Divya *1, A.M.Saravanan *2, I. Anette Regina *3 MPhil, Research Scholar, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India Assistant
Keywords: Big Data, HDFS, Map Reduce, Hadoop
Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Configuration Tuning
Big Data: Tools and Technologies in Big Data
Big Data: Tools and Technologies in Big Data Jaskaran Singh Student Lovely Professional University, Punjab Varun Singla Assistant Professor Lovely Professional University, Punjab ABSTRACT Big data can
Keywords Big Data, NoSQL, Relational Databases, Decision Making using Big Data, Hadoop
Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Transitioning
Performance Analysis of Book Recommendation System on Hadoop Platform
Performance Analysis of Book Recommendation System on Hadoop Platform Sugandha Bhatia #1, Surbhi Sehgal #2, Seema Sharma #3 Department of Computer Science & Engineering, Amity School of Engineering & Technology,
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
Big Application Execution on Cloud using Hadoop Distributed File System
Big Application Execution on Cloud using Hadoop Distributed File System Ashkan Vates*, Upendra, Muwafaq Rahi Ali RPIIT Campus, Bastara Karnal, Haryana, India ---------------------------------------------------------------------***---------------------------------------------------------------------
SEAIP 2009 Presentation
SEAIP 2009 Presentation By David Tan Chair of Yahoo! Hadoop SIG, 2008-2009,Singapore EXCO Member of SGF SIG Imperial College (UK), Institute of Fluid Science (Japan) & Chicago BOOTH GSB (USA) Alumni Email:
A Survey on Big Data Concepts and Tools
A Survey on Big Data Concepts and Tools D. Rajasekar 1, C. Dhanamani 2, S. K. Sandhya 3 1,3 PG Scholar, 2 Assistant Professor, Department of Computer Science and Engineering, Sri Krishna College of Engineering
The Recovery System for Hadoop Cluster
The Recovery System for Hadoop Cluster Prof. Priya Deshpande Dept. of Information Technology MIT College of engineering Pune, India priyardeshpande@gmail.com Darshan Bora Dept. of Information Technology
III Big Data Technologies
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
HadoopRDF : A Scalable RDF Data Analysis System
HadoopRDF : A Scalable RDF Data Analysis System Yuan Tian 1, Jinhang DU 1, Haofen Wang 1, Yuan Ni 2, and Yong Yu 1 1 Shanghai Jiao Tong University, Shanghai, China {tian,dujh,whfcarter}@apex.sjtu.edu.cn
Advances in Natural and Applied Sciences
AENSI Journals Advances in Natural and Applied Sciences ISSN:1995-0772 EISSN: 1998-1090 Journal home page: www.aensiweb.com/anas Clustering Algorithm Based On Hadoop for Big Data 1 Jayalatchumy D. and
L1: Introduction to Hadoop
L1: Introduction to Hadoop Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revision: December 1, 2014 Today we are going to learn... 1 General
Storage and Retrieval of Data for Smart City using Hadoop
Storage and Retrieval of Data for Smart City using Hadoop Ravi Gehlot Department of Computer Science Poornima Institute of Engineering and Technology Jaipur, India Abstract Smart cities are equipped with
Hadoop Scheduler w i t h Deadline Constraint
Hadoop Scheduler w i t h Deadline Constraint Geetha J 1, N UdayBhaskar 2, P ChennaReddy 3,Neha Sniha 4 1,4 Department of Computer Science and Engineering, M S Ramaiah Institute of Technology, Bangalore,
Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo
Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology November-2015 Volume 2, Issue-6
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology Email: editor@ijermt.org November-2015 Volume 2, Issue-6 www.ijermt.org Modeling Big Data Characteristics for Discovering
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A COMPREHENSIVE VIEW OF HADOOP ER. AMRINDER KAUR Assistant Professor, Department
ImprovedApproachestoHandleBigdatathroughHadoop
Global Journal of Computer Science and Technology: C Software & Data Engineering Volume 14 Issue 9 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals
Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.
Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics
Improving Job Scheduling in Hadoop MapReduce
Improving Job Scheduling in Hadoop MapReduce Himangi G. Patel, Richard Sonaliya Computer Engineering, Silver Oak College of Engineering and Technology, Ahmedabad, Gujarat, India. Abstract Hadoop is a framework
The Comprehensive Performance Rating for Hadoop Clusters on Cloud Computing Platform
The Comprehensive Performance Rating for Hadoop Clusters on Cloud Computing Platform Fong-Hao Liu, Ya-Ruei Liou, Hsiang-Fu Lo, Ko-Chin Chang, and Wei-Tsong Lee Abstract Virtualization platform solutions
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Big Data Introduction
Big Data Introduction Ralf Lange Global ISV & OEM Sales 1 Copyright 2012, Oracle and/or its affiliates. All rights Conventional infrastructure 2 Copyright 2012, Oracle and/or its affiliates. All rights
Packet Flow Analysis and Congestion Control of Big Data by Hadoop
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 6, June 2015, pg.456
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
Hadoop Parallel Data Processing
MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for
Big Data Analytics(Hadoop) Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Big Data Analytics(Hadoop) Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Understanding Big Data and Big Data Analytics Getting familiar with Hadoop Technology Hadoop release and upgrades
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give