Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011"

Transcription

1 Management Decision Making Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011

2 Management decision making Decision making Spreadsheet exercise Data visualization, graphs Business analytics Automated DM Probabilistic reasoning Examples Data mining Machine learning Data mining tools Weka Example in class Conclusion Agenda

3 Management Decision Making What is MIS? A management information system (MIS) is a system that provides information needed to manage organizations effectively. Management information systems involve three primary resources: technology, information, and people. Types: Decision support systems (DSS) Human resource management Enterprise resource planning (ERP) Supply chain management (SCM) Customer relation management (CRM) Project management

4 Decision Making What is decision making? selection of a course of action among several alternative scenarios/choices Why is it important? Risk management Any managerial DM Issues: Huge amount of data Certainty vs. uncertainty Deterministic vs. indeterministic Future planning: foreseeing future outcomes

5 Process: Decision Making

6 Data, Information, Knowledge

7 Concerns Huge amount of raw data How to handle huge amount of data? How to analyze and infer? How to process the data into meaningful numbers?

8 Spreadsheet Exercise Simple excel exercise A company sales 3 different products The manager wants to place new order for each type of products The manager s task is to analyze and make decision based on previous sales history Manager wants to maximize the company s profit Of course, assuming no other factors would affect the sales line Go to spreadsheet:

9 Business Analytics Definition: BA: the skills, technologies, applications and practices for continuous iterative exploration and investigation of past business performance to gain insight and drive business planning. Business Intelligence (BI): computer-based techniques used in identifying, extracting, and analyzing business data, such as sales revenue by products and/or departments, or by associated costs and incomes. Types of analytics: Descriptive, Modeling, Predictive, Affinity grouping, etc. Domains: Retail Sales analytics Financial Services analytics Risk & Credit analytics Marketing analytics Collections analytics Fraud analytics Pricing analytics Telecommunications Supply Chain analytics Transportation analytics

10 Different Analysis Automated decision making Statistical/Quantitative analysis Predictive modeling Data mining Risk analysis

11 Probabilistic Reasoning Human factor Hard to consider probabilities Foreseeing future outcomes/choices AI researchers address these problems Probability theory/ decision theory Learning (machine learning/ reinforcement learning) Game theory

12 Example: Decision Scenario with Probabilities Datasoft, an electronics producer/distributor, has decided to go into production with the new BA Data-2D model computer. The task before management now is the decision of how many models to produce. The success of the endeavour depends greatly on whether their competitors are successful in duplicating the technology. They consider three investment options: high, medium and low. Based on past history and knowledge of its competitors staff and capabilities, Datasoft manages to predict that there is a 70% chance that their competitors will be successful in duplicating their technology. If the competitors are successful and Datasoft decides to sell off its inventory, they predict that there is a 60% chance of making a profit of $200,000 and a 40% chance of losing $50,000 Which investment decision will provide the maximum payoff?

13 Probabilistic Reasoning: Allais s paradox Experiment 1 Experiment 2 Gamble 1A Gamble 1B Gamble 2A Gamble 2B Winnin gs $1 million Chance Winnin gs 100% $1 million Chance Brief solution on board Winnin gs Chance 89% Nothing 89% Nothing 1% $1 $5 million 10% million 11% Winnin gs Chance Nothing 90% $5 million 10%

14 Probabilistic Reasoning: St. Petersburg Paradox you pay a fixed fee to enter a fair coin is tossed repeatedly until a tail appears, ending the game. The pot starts at 1 dollar and is doubled every time a head appears. You win whatever is in the pot after the game ends. Thus you win 1 dollar if a tail appears on the first toss, 2 dollars if a head appears on the first toss and a tail on the second, 4 dollars if a head appears on the first two tosses and a tail on the third, 8 dollars if a head appears on the first three tosses and a tail on the fourth. What would be a fair price to pay for entering the game?

15 St. Petersburg analysis Decision tree: So you should be willing to pay any amount, as it will eventually pay off. This is why we need more precise mechanism to take all future possibilities and utilities into account.

16 Risk Analysis Risk attitudes: Risk averse Risk neutral Risk taking Depending on policies/situation, managers might take any of these attitudes while decision making

17 the process of extracting patterns from large data sets by combining methods from statistics and artifi cial intelligence with databa se management. Main DM types: Classification Clustering Data Mining

18 Machine Learning Learning from large data sets or sensors Types: Supervised learning Training data set Unsupervised learning No data set available, learning by trial and error

19 Data Mining Tools SQL Server Analysis Services By Microsoft Incorporate in Excel as an Add-in Can be used by anyone Weka Free open source software Implements many different DM, ML algorithms More professional use, should have AI knowledge

20 Weka Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Example Maybe a test using Weka!

21 Quick demo Weka Example

22 Conclusion Management Decision Making Large amount of data Certainty vs. uncertainty Predicting future outcomes Reasoning Decision Making Simple analytical/summarizing tools Probabilistic reasoning such as decision trees, etc. Data mining/ Machine learning

23 Thanks Contact me if you have any questions/comments in this regard: Hadi Hosseini address: Office: DC 2537

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

More information

CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics

CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics Session map Session1 Session 2 Introduction The new focus on customer loyalty CRM and Business Intelligence CRM Marketing initiatives Session

More information

How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK

How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK Agenda Analytics why now? The process around data and text mining Case Studies The Value of Information

More information

Galaxy BI Consulting Services. Listening to Business, Applying Technology

Galaxy BI Consulting Services. Listening to Business, Applying Technology Galaxy BI Consulting Services Listening to Business, Applying Technology Who we are Incorporated in 1987. An ISO 9000:2008 organization. Amongst the most respected Information Technology Integrators. Leading

More information

MIS 2101 Project 1 Business Applications

MIS 2101 Project 1 Business Applications MIS 2101 Project 1 Business Applications Name David Dupell PART A Customer Relationship Management Developing a CRM strategy is discussed in chapter 8 of the Jessup book. What changes are necessary for

More information

Technology-Driven Demand and e- Customer Relationship Management e-crm

Technology-Driven Demand and e- Customer Relationship Management e-crm E-Banking and Payment System Technology-Driven Demand and e- Customer Relationship Management e-crm Sittikorn Direksoonthorn Assumption University 1/2004 E-Banking and Payment System Quick Win Agenda Data

More information

.4 120 +.1 80 +.5 100 = 48 + 8 + 50 = 106.

.4 120 +.1 80 +.5 100 = 48 + 8 + 50 = 106. Chapter 16. Risk and Uncertainty Part A 2009, Kwan Choi Expected Value X i = outcome i, p i = probability of X i EV = pix For instance, suppose a person has an idle fund, $100, for one month, and is considering

More information

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired

More information

Overview, Goals, & Introductions

Overview, Goals, & Introductions Improving the Retail Experience with Predictive Analytics www.spss.com/perspectives Overview, Goals, & Introductions Goal: To present the Retail Business Maturity Model Equip you with a plan of attack

More information

TEACHING AN APPLIED BUSINESS INTELLIGENCE COURSE

TEACHING AN APPLIED BUSINESS INTELLIGENCE COURSE TEACHING AN APPLIED BUSINESS INTELLIGENCE COURSE Stevan Mrdalj (smrdalj@emich.edu) ABSTRACT This paper reports on the development of an applied Business Intelligence (BI) course for a graduate program.

More information

Choice Under Uncertainty

Choice Under Uncertainty Decision Making Under Uncertainty Choice Under Uncertainty Econ 422: Investment, Capital & Finance University of ashington Summer 2006 August 15, 2006 Course Chronology: 1. Intertemporal Choice: Exchange

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

B2B opportunity predictiona Big Data and Advanced. Analytics Approach. Insert

B2B opportunity predictiona Big Data and Advanced. Analytics Approach. Insert B2B opportunity predictiona Big Data and Advanced Analytics Approach Vodafone Global Enterprise Manu Kumar, Head of Targeting, Optimization & Data Science Insert Agenda Why B2B opportunities are hard to

More information

Economics 1011a: Intermediate Microeconomics

Economics 1011a: Intermediate Microeconomics Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore

More information

Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

More information

Analytics in the Finance Organization

Analytics in the Finance Organization Analytics in the Finance Organization Kathleen Wilhide Industry Analyst - GRC & Performance Management, Better-Insight Background In an era of new economic challenges, how companies manage the quality

More information

DBTech Pro Workshop. Knowledge Discovery from Databases (KDD) Including Data Warehousing and Data Mining. Georgios Evangelidis

DBTech Pro Workshop. Knowledge Discovery from Databases (KDD) Including Data Warehousing and Data Mining. Georgios Evangelidis DBTechNet DBTech Pro Workshop Knowledge Discovery from Databases (KDD) Including Data Warehousing and Data Mining Dimitris A. Dervos dad@it.teithe.gr http://aetos.it.teithe.gr/~dad Georgios Evangelidis

More information

Hexaware E-book on Predictive Analytics

Hexaware E-book on Predictive Analytics Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,

More information

Automated Predictive Analysis. Tomer Steinberg

Automated Predictive Analysis. Tomer Steinberg Automated Predictive Analysis Tomer Steinberg Analytics solutions from SAP SAP Analytics Portfolio Cloud Mobile Agile Visualization Advanced Analytics Big Data Enterprise Business Intelligence Collaboration

More information

Chapter 4 Getting Started with Business Intelligence

Chapter 4 Getting Started with Business Intelligence Chapter 4 Getting Started with Business Intelligence Learning Objectives and Learning Outcomes Learning Objectives Getting started on Business Intelligence 1. Understanding Business Intelligence 2. The

More information

PAGE 1 l Teradata Magazine l Q1/2011 l 2011 Teradata Corporation l AR-6309

PAGE 1 l Teradata Magazine l Q1/2011 l 2011 Teradata Corporation l AR-6309 PAGE 1 l Teradata Magazine l Q1/2011 l 2011 Teradata Corporation l AR-6309 It s going mainstream, and it s your next opportunity. by Merv Adrian Enterprises have never had more data, and it s no surprise

More information

Data Mining Techniques in CRM

Data Mining Techniques in CRM Data Mining Techniques in CRM Inside Customer Segmentation Konstantinos Tsiptsis CRM 6- Customer Intelligence Expert, Athens, Greece Antonios Chorianopoulos Data Mining Expert, Athens, Greece WILEY A John

More information

Why include analytics as part of the School of Information Technology curriculum?

Why include analytics as part of the School of Information Technology curriculum? Why include analytics as part of the School of Information Technology curriculum? Lee Foon Yee, Senior Lecturer School of Information Technology, Nanyang Polytechnic Agenda Background Introduction Initiation

More information

WHITE PAPER. Harnessing the Power of Advanced Analytics How an appliance approach simplifies the use of advanced analytics

WHITE PAPER. Harnessing the Power of Advanced Analytics How an appliance approach simplifies the use of advanced analytics WHITE PAPER Harnessing the Power of Advanced How an appliance approach simplifies the use of advanced analytics Introduction The Netezza TwinFin i-class advanced analytics appliance pushes the limits of

More information

Harnessing the power of advanced analytics with IBM Netezza

Harnessing the power of advanced analytics with IBM Netezza IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced

More information

Prerequisites. Course Outline

Prerequisites. Course Outline MS-55040: Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot Description This three-day instructor-led course will introduce the students to the concepts of data mining,

More information

B.Sc. in Computer Information Systems Study Plan

B.Sc. in Computer Information Systems Study Plan 195 Study Plan University Compulsory Courses Page ( 64 ) University Elective Courses Pages ( 64 & 65 ) Faculty Compulsory Courses 16 C.H 27 C.H 901010 MATH101 CALCULUS( I) 901020 MATH102 CALCULUS (2) 171210

More information

Please circle A or B or I in the third column to indicate your chosen option in this table.

Please circle A or B or I in the third column to indicate your chosen option in this table. The choice of A means that the payoff to you will be 80 rupees if heads lands up from the coin toss and 130 rupees if tails lands up from the coin toss if this table is randomly chosen The choice of B

More information

Decision Making under Uncertainty

Decision Making under Uncertainty 6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how

More information

Business Analytics and Data Mining for CRM Business Analytics and Data Mining for CRM: Jumpstart workshop

Business Analytics and Data Mining for CRM Business Analytics and Data Mining for CRM: Jumpstart workshop : Jumpstart workshop Date and Place: Bangalore, Sep 1 st (Sat) and 2 nd (Sun) 2012 Registration Link: http://compegence.com/open-programs.php http://compegence.com/workshop-analytics-for-crm.php Audience:

More information

KNOWLEDGE BASE DATA MINING FOR BUSINESS INTELLIGENCE

KNOWLEDGE BASE DATA MINING FOR BUSINESS INTELLIGENCE KNOWLEDGE BASE DATA MINING FOR BUSINESS INTELLIGENCE Dr. Ruchira Bhargava 1 and Yogesh Kumar Jakhar 2 1 Associate Professor, Department of Computer Science, Shri JagdishPrasad Jhabarmal Tibrewala University,

More information

No BI without Machine Learning

No BI without Machine Learning No BI without Machine Learning Francis Pieraut francis@qmining.com http://fraka6.blogspot.com/ 10 March 2011 MTI-820 ETS Too Much Data Supervised Learning (classification) Unsupervised Learning (clustering)

More information

POWERFUL, FLEXIBLE, AND AFFORDABLE ERP SOLUTION

POWERFUL, FLEXIBLE, AND AFFORDABLE ERP SOLUTION POWERFUL, FLEXIBLE, AND AFFORDABLE ERP SOLUTION Let Xeo Software show you how our Hybrid ERP gives you the best of all worlds INDEX What is ERP and Why Does it Matter for SMBs?....................... 2

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

COURSE SYLLABUS COURSE TITLE:

COURSE SYLLABUS COURSE TITLE: 1 COURSE SYLLABUS COURSE TITLE: FORMAT: CERTIFICATION EXAMS: 55040 Data Mining: Predictive Analytics with Microsoft SQL Server Analysis Services and Excel Using PowerPivot and the Data Mining Add-Ins Instructor-Led

More information

Real World Application and Usage of IBM Advanced Analytics Technology

Real World Application and Usage of IBM Advanced Analytics Technology Real World Application and Usage of IBM Advanced Analytics Technology Anthony J. Young Pre-Sales Architect for IBM Advanced Analytics February 21, 2014 Welcome Anthony J. Young Lives in Austin, TX Focused

More information

Data Mining + Business Intelligence. Integration, Design and Implementation

Data Mining + Business Intelligence. Integration, Design and Implementation Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution

More information

Lecture: Mon 13:30 14:50 Fri 9:00-10:20 ( LTH, Lift 27-28) Lab: Fri 12:00-12:50 (Rm. 4116)

Lecture: Mon 13:30 14:50 Fri 9:00-10:20 ( LTH, Lift 27-28) Lab: Fri 12:00-12:50 (Rm. 4116) Business Intelligence and Data Mining ISOM 3360: Spring 203 Instructor Contact Office Hours Course Schedule and Classroom Course Webpage Jia Jia, ISOM Email: justinjia@ust.hk Office: Rm 336 (Lift 3-) Begin

More information

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be

More information

Fundamentals of Information Systems, Fifth Edition. Chapter 1 An Introduction to Information Systems in Organizations

Fundamentals of Information Systems, Fifth Edition. Chapter 1 An Introduction to Information Systems in Organizations Fundamentals of Information Systems, Fifth Edition Chapter 1 An Introduction to Information Systems in Organizations 1 Principles and Learning Objectives The value of information is directly linked to

More information

Email: justinjia@ust.hk Office: LSK 5045 Begin subject: [ISOM3360]...

Email: justinjia@ust.hk Office: LSK 5045 Begin subject: [ISOM3360]... Business Intelligence and Data Mining ISOM 3360: Spring 2015 Instructor Contact Office Hours Course Schedule and Classroom Course Webpage Jia Jia, ISOM Email: justinjia@ust.hk Office: LSK 5045 Begin subject:

More information

BI & ANALYTICS FOR NAV & AX - RETAIL

BI & ANALYTICS FOR NAV & AX - RETAIL BI & ANALYTICS FOR NAV & AX - RETAIL 63% of American consumers were planning on doing the majority of their holiday shopping online in 2012. And 32% of consumers under the age of 35 said they d be doing

More information

Predictive Analytics: Turn Information into Insights

Predictive Analytics: Turn Information into Insights Predictive Analytics: Turn Information into Insights Pallav Nuwal Business Manager; Predictive Analytics, India-South Asia pallav.nuwal@in.ibm.com +91.9820330224 Agenda IBM Predictive Analytics portfolio

More information

not possible or was possible at a high cost for collecting the data.

not possible or was possible at a high cost for collecting the data. Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day

More information

This presentation is for informational purposes only and may not be incorporated into a contract or agreement.

This presentation is for informational purposes only and may not be incorporated into a contract or agreement. This presentation is for informational purposes only and may not be incorporated into a contract or agreement. The following is intended to outline our general product direction. It is intended for information

More information

FINANCIAL REPORTING WITH BUSINESS ANALYTICS

FINANCIAL REPORTING WITH BUSINESS ANALYTICS www.ifsworld.com FINANCIAL REPORTING WITH BUSINESS ANALYTICS LEIF JOHANSSON BUSINESS SOLUTIONS CONSULTANT BILL NOBLE IMPLEMENTATION MANAGER 2009 IFS AGENDA FINANCIAL REPORTING WITH BA Architecture Business

More information

Enhancing Decision Making

Enhancing Decision Making Enhancing Decision Making Content Describe the different types of decisions and how the decision-making process works. Explain how information systems support the activities of managers and management

More information

KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES

KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within

More information

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization BIG DATA STRATEGY Rama Kattunga Chair at American institute of Big Data Professionals Building Big Data Strategy For Your Organization In this session What is Big Data? Prepare your organization Building

More information

Big Data Scenario mit Power BI vs. SAP HANA Gerhard Brückl

Big Data Scenario mit Power BI vs. SAP HANA Gerhard Brückl Big Data Scenario mit Power BI vs. SAP HANA Gerhard Brückl About me Gerhard Brückl Working with Microsoft BI since 2006 Started working with SAP HANA in 2013 focused on Analytics and Reporting Blog: email:

More information

Chapter 6 - Enhancing Business Intelligence Using Information Systems

Chapter 6 - Enhancing Business Intelligence Using Information Systems Chapter 6 - Enhancing Business Intelligence Using Information Systems Managers need high-quality and timely information to support decision making Copyright 2014 Pearson Education, Inc. 1 Chapter 6 Learning

More information

CHEMICAL REACTIONS: Unleashing Your Most Valuable Asset

CHEMICAL REACTIONS: Unleashing Your Most Valuable Asset Today s chemical companies face extraordinary business challenges, from the massive volatility in raw materials and input costs, to currency fluctuations and a globally competitive marketplace. The selling

More information

People. Performance. Profits

People. Performance. Profits 1 People. Performance. Profits Increasing Firm Profitability with BI and OLAP Cubes Tom Jones: Director, Product Marketing, ADERANT Agenda OLAP / Cube Introduction Cube basics Modifying cubes Expert Analytics

More information

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information

More information

An Introduction to Advanced Analytics and Data Mining

An Introduction to Advanced Analytics and Data Mining An Introduction to Advanced Analytics and Data Mining Dr Barry Leventhal Henry Stewart Briefing on Marketing Analytics 19 th November 2010 Agenda What are Advanced Analytics and Data Mining? The toolkit

More information

CUSTOMER Presentation of SAP Predictive Analytics

CUSTOMER Presentation of SAP Predictive Analytics SAP Predictive Analytics 2.0 2015-02-09 CUSTOMER Presentation of SAP Predictive Analytics Content 1 SAP Predictive Analytics Overview....3 2 Deployment Configurations....4 3 SAP Predictive Analytics Desktop

More information

Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms

Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms Data Mining Techniques forcrm Data Mining The non-trivial extraction of novel, implicit, and actionable knowledge from large datasets. Extremely large datasets Discovery of the non-obvious Useful knowledge

More information

Model-driven Business Intelligence Building Multi-dimensional Business and Financial Models from Raw Data

Model-driven Business Intelligence Building Multi-dimensional Business and Financial Models from Raw Data Model-driven Business Intelligence Visual analytics software receives a lot of well-deserved attention these days because it has advanced to the point where it allows business users to make sense out of

More information

Pentaho Data Mining Last Modified on January 22, 2007

Pentaho Data Mining Last Modified on January 22, 2007 Pentaho Data Mining Copyright 2007 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest information, please visit our web site at www.pentaho.org

More information

Using Tableau Software with Hortonworks Data Platform

Using Tableau Software with Hortonworks Data Platform Using Tableau Software with Hortonworks Data Platform September 2013 2013 Hortonworks Inc. http:// Modern businesses need to manage vast amounts of data, and in many cases they have accumulated this data

More information

Business Intelligence: Effective Decision Making

Business Intelligence: Effective Decision Making Business Intelligence: Effective Decision Making Bellevue College Linda Rumans IT Instructor, Business Division Bellevue College lrumans@bellevuecollege.edu Current Status What do I do??? How do I increase

More information

birt Analytics data sheet Reduce the time from analysis to action

birt Analytics data sheet Reduce the time from analysis to action Reduce the time from analysis to action BIRT Analytics is the newest addition to ActuateOne. This new analytics product is fast and agile, and adds to the already rich Actuate BIRT product lineup the simpleto-use

More information

Business Intelligence: How better analytics can lead your business to higher profits.

Business Intelligence: How better analytics can lead your business to higher profits. Business Intelligence: How better analytics can lead your business to higher profits. Introduction The economic downturn is forcing business leaders to rethink strategic plans. To remain competitive, businesses

More information

ASIAN JOURNAL OF MANAGEMENT RESEARCH Online Open Access publishing platform for Management Research

ASIAN JOURNAL OF MANAGEMENT RESEARCH Online Open Access publishing platform for Management Research Online Open Access publishing platform for Management Research Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Review Article ISSN 2229 3795 Business analytics a tool to business

More information

Bayesian networks - Time-series models - Apache Spark & Scala

Bayesian networks - Time-series models - Apache Spark & Scala Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly

More information

Retail POS Data Analytics Using MS Bi Tools. Business Intelligence White Paper

Retail POS Data Analytics Using MS Bi Tools. Business Intelligence White Paper Retail POS Data Analytics Using MS Bi Tools Business Intelligence White Paper Introduction Overview There is no doubt that businesses today are driven by data. Companies, big or small, take so much of

More information

An interdisciplinary model for analytics education

An interdisciplinary model for analytics education An interdisciplinary model for analytics education Raffaella Settimi, PhD School of Computing, DePaul University Drew Conway s Data Science Venn Diagram http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

More information

Course Description Bachelor in Management Information Systems

Course Description Bachelor in Management Information Systems Course Description Bachelor in Management Information Systems 1605215 Principles of Management Information Systems (3 credit hours) Introducing the essentials of Management Information Systems (MIS), providing

More information

Introduction to Management Information Systems

Introduction to Management Information Systems IntroductiontoManagementInformationSystems Summary 1. Explain why information systems are so essential in business today. Information systems are a foundation for conducting business today. In many industries,

More information

INTELLIGENT DECISION SUPPORT SYSTEMS FOR ADMISSION MANAGEMENT IN HIGHER EDUCATION INSTITUTES

INTELLIGENT DECISION SUPPORT SYSTEMS FOR ADMISSION MANAGEMENT IN HIGHER EDUCATION INSTITUTES INTELLIGENT DECISION SUPPORT SYSTEMS FOR ADMISSION MANAGEMENT IN HIGHER EDUCATION INSTITUTES Rajan Vohra 1 & Nripendra Narayan Das 2 1. Prosessor, Department of Computer Science & Engineering, Bahra University,

More information

Competing with SPSS Predictive Analytics

Competing with SPSS Predictive Analytics Competing with SPSS Predictive Analytics Ioanna Koutrouvis Managing Director SPSS BI GREECE SA Athens, April 10 th 2008 Agenda Definition of Predictive Analytics and Brief Historical overview Why competing

More information

Predictive Dynamix Inc Turning Business Experience Into Better Decisions

Predictive Dynamix Inc Turning Business Experience Into Better Decisions Overview Geospatial Data Mining for Market Intelligence By Paul Duke, Predictive Dynamix, Inc. Copyright 2000-2001. All rights reserved. Today, there is a huge amount of information readily available describing

More information

KnowledgeSEEKER Marketing Edition

KnowledgeSEEKER Marketing Edition KnowledgeSEEKER Marketing Edition Predictive Analytics for Marketing The Easiest to Use Marketing Analytics Tool KnowledgeSEEKER Marketing Edition is a predictive analytics tool designed for marketers

More information

Data Mining Solutions for the Business Environment

Data Mining Solutions for the Business Environment Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania ruxandra_stefania.petre@yahoo.com Over

More information

ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

5 REASONS WHY SMALL BUSINESSES SHOULD IMPLEMENT BUSINESS INTELLIGENCE!

5 REASONS WHY SMALL BUSINESSES SHOULD IMPLEMENT BUSINESS INTELLIGENCE! 5 REASONS WHY SMALL BUSINESSES SHOULD IMPLEMENT BUSINESS INTELLIGENCE! BUSINESS INTELLIGENCE FOR SMALL BUSINESSES 1 Introduction 5 reasons why small should implement Business Intelligence! The opportunity

More information

Data Mining: Overview. What is Data Mining?

Data Mining: Overview. What is Data Mining? Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,

More information

SharePoint BI. Grace Ahn, Design Architect at AOS

SharePoint BI. Grace Ahn, Design Architect at AOS SharePoint BI Grace Ahn, Design Architect at AOS 1 SharePoint Saturday St. Louis 2015 Session Evaluations Schedule and evaluate each session you attend via our mobile app that can be used across devices

More information

Qi Liu Rutgers Business School ISACA New York 2013

Qi Liu Rutgers Business School ISACA New York 2013 Qi Liu Rutgers Business School ISACA New York 2013 1 What is Audit Analytics The use of data analysis technology in Auditing. Audit analytics is the process of identifying, gathering, validating, analyzing,

More information

Animation. Intelligence. Business. Computer. Areas of Focus. Master of Science Degree Program

Animation. Intelligence. Business. Computer. Areas of Focus. Master of Science Degree Program Business Intelligence Computer Animation Master of Science Degree Program The Bachelor explosive of growth Science of Degree from the Program Internet, social networks, business networks, as well as the

More information

White Paper: Extending Your Business Intelligence Investment with SQL Server Master Data Services. Prepared for: Intellinet August 29, 2011

White Paper: Extending Your Business Intelligence Investment with SQL Server Master Data Services. Prepared for: Intellinet August 29, 2011 White Paper: Extending Your Business Intelligence Investment with SQL Server Master Data Services Prepared for: Intellinet August 29, 2011 Two Concourse Pkwy Atlanta, GA 30328 404.442.8000 fax 404.442.8001

More information

Business Intelligence intro Matti Rossi, Professor Aalto University School of Economics Information Systems

Business Intelligence intro Matti Rossi, Professor Aalto University School of Economics Information Systems Business Intelligence intro Matti Rossi, Professor Aalto University School of Economics Information Systems BI definition Business Intelligence (BI) refers to skills, technologies, applications and practices

More information

The Role of the Analyst in Business Analytics. Neil Foshay Schwartz School of Business St Francis Xavier U

The Role of the Analyst in Business Analytics. Neil Foshay Schwartz School of Business St Francis Xavier U The Role of the Analyst in Business Analytics Neil Foshay Schwartz School of Business St Francis Xavier U Contents Business Analytics What s it all about? Development Process Overview BI Analyst Role Questions

More information

CRM: Retaining Your Customers: Preventing Your Competitors

CRM: Retaining Your Customers: Preventing Your Competitors CRM: Retaining Your Customers: Preventing Your Competitors Krittapon Victor Indarakris Founder & CEO Blue Intelligence (Thailand) Co., Ltd. October 30, 2007 Microsoft CRM October 30 th, 2007 1 Core Microsoft

More information

Data Analysis. Management Information Systems 13

Data Analysis. Management Information Systems 13 Data Analysis Management Information Systems 13 166137-01+02 Management Information Systems Spring 2014 Sync Sangwon Lee, Ph. D D. of Information & Electronic Commerce WONKWANG University Prof. Dr. SSL

More information

Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining

Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining Lluis Belanche + Alfredo Vellido Intelligent Data Analysis and Data Mining a.k.a. Data Mining II Office 319, Omega, BCN EET, office 107, TR 2, Terrassa avellido@lsi.upc.edu skype, gtalk: avellido Tels.:

More information

Business Intelligence Osvaldo Maysonet VP Marketing & Customer Knowledge Banco Popular

Business Intelligence Osvaldo Maysonet VP Marketing & Customer Knowledge Banco Popular Business Intelligence Osvaldo Maysonet VP Marketing & Customer Knowledge Banco Popular Starting Questions How many of you have more information today and spend more time gathering and preparing the information

More information

Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved

Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment

More information

Data Mining for Fun and Profit

Data Mining for Fun and Profit Data Mining for Fun and Profit Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. - Ian H. Witten, Data Mining: Practical Machine Learning Tools

More information

Decision Support and Business Intelligence Systems. Chapter 1: Decision Support Systems and Business Intelligence

Decision Support and Business Intelligence Systems. Chapter 1: Decision Support Systems and Business Intelligence Decision Support and Business Intelligence Systems Chapter 1: Decision Support Systems and Business Intelligence Types of DSS Two major types: Model-oriented DSS Data-oriented DSS Evolution of DSS into

More information

In this presentation, you will be introduced to data mining and the relationship with meaningful use.

In this presentation, you will be introduced to data mining and the relationship with meaningful use. In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine

More information

5 Big Data Use Cases to Understand Your Customer Journey CUSTOMER ANALYTICS EBOOK

5 Big Data Use Cases to Understand Your Customer Journey CUSTOMER ANALYTICS EBOOK 5 Big Data Use Cases to Understand Your Customer Journey CUSTOMER ANALYTICS EBOOK CUSTOMER JOURNEY Technology is radically transforming the customer journey. Today s customers are more empowered and connected

More information

Customer Relationship Management (CRM)

Customer Relationship Management (CRM) Customer Relationship Management (CRM) Dr A. Albadvi Asst. Prof. Of IT Tarbiat Modarres University Information Technology Engineering Dept. Affiliate of Sharif University of Technology School of Management

More information

Business Intelligence: Real ROI Using the Microsoft Business Intelligence Platform. April 6th, 2006

Business Intelligence: Real ROI Using the Microsoft Business Intelligence Platform. April 6th, 2006 Business Intelligence: Real ROI Using the Microsoft Business Intelligence Platform April 6th, 2006 Agenda Introduction Background Business Goals Microsoft Business Intelligence Platform Examples Conclusions

More information

About Terrace. Company History. 1-888-269-6200 P.O. Box 190367 San Francisco, Ca. 94119

About Terrace. Company History. 1-888-269-6200 P.O. Box 190367 San Francisco, Ca. 94119 About Terrace Business works with Terrace. Terrace designs & develops innovative technology solutions for the connected workplace - cloud, mobile, on premises and desktop. Our talented teams understand

More information

Foundations of Business Intelligence: Databases and Information Management

Foundations of Business Intelligence: Databases and Information Management Foundations of Business Intelligence: Databases and Information Management Problem: HP s numerous systems unable to deliver the information needed for a complete picture of business operations, lack of

More information

Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features

Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Charlie Berger, MS Eng, MBA Sr. Director Product Management, Data Mining and Advanced Analytics charlie.berger@oracle.com www.twitter.com/charliedatamine

More information

Beyond Traditional Management Reporting. 2013 IBM Corporation

Beyond Traditional Management Reporting. 2013 IBM Corporation Beyond Traditional Management Reporting 1 Agenda From Reporting to Business Analytics Expanding your capabilities set Workspace Authoring Statistical Analysis Predictive Modeling What-if analysis and planning

More information

SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM

SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM David Chappell SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM A PERSPECTIVE FOR SYSTEMS INTEGRATORS Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Business

More information

BUS 516 Computer Information Systems. Global E-business and Collaboration

BUS 516 Computer Information Systems. Global E-business and Collaboration BUS 516 Computer Information Systems Global E-business and Collaboration Business Functions Business Processes Collection of activities required to produce a product or service These activities are supported

More information