x 2 if 2 x < 0 4 x if 2 x 6

Size: px
Start display at page:

Download "x 2 if 2 x < 0 4 x if 2 x 6"

Transcription

1 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6

2 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) () f ( ) (3) f (.5) and sketch the graph of f. 4 x if x 6

3 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( ) (3) f (.5) and sketch the graph of f. 4 x if x 6

4 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( (3) f (.5) ) = = and sketch the graph of f. 4 x if x 6

5 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f. 4 x if x 6

6 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f. 4 x if x 6 Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].

7 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].

8 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].

9 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].

10 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0

11 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () =

12 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3)

13 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3

14 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3 a is the distance from a to 0.

15 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3 a is the distance from a to 0. 3units { }} { units 3 { }} { 0 >

16 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3 a is the distance from a to 0. 3units { }} { units 3 0 { }} { > a is always nonnegative

17 a = a 3

18 3 a = a { }} {{ }} { a 0 a >

19 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b.

20 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b =

21 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3

22 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5

23 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 =

24 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to

25 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a

26 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 =

27 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 = 3

28 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 = 3 ( 4) = 6 = 4 =

29 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 = 3 ( 4) = 6 = 4 = 4

30 Graph of the absolute value function f (x) = x 4

31 4 Graph of the absolute value function f (x) = x Divide the real number line into two subintervals [0, ) and (, 0) f (x) = x if x 0 x if x < 0

32 4 Graph of the absolute value function f (x) = x Divide the real number line into two subintervals [0, ) and (, 0) f (x) = x if x 0 x if x <

33 4 Graph of the absolute value function f (x) = x Divide the real number line into two subintervals [0, ) and (, 0) f (x) = x if x 0 x if x <

34 Example Graph of y = x 5

35 5 Example Graph of y = x y = x if x 0 ( x) if x < 0

36 5 Example Graph of y = x y = x if x ( x) if x <

37 5 Example Graph of y = x y = x if x ( x) if x <

38 5 Example Graph of y = x y = x if x ( x) if x < y = x

39 5 Example Graph of y = x y = x if x ( x) if x < y = x y = x

40 5 Example Graph of y = x y = x if x ( x) if x < y = x y = x y = x +

41 Example Graph y = x 6

42 6 Example Graph y = x y = x if x 0 (x ) if x < 0

43 6 Example Graph y = x y = x if x 0 (x ) if x <

44 6 Example Graph y = x y = x if x 0 (x ) if x <

45 6 Example Graph y = x y = x if x 0 (x ) if x <

46 6 Example Graph y = x y = x if x 0 (x ) if x <

47 6 Example Graph y = x y = x if x 0 (x ) if x <

48 Square-root Function f (x) = x 7 Graph of y = x?

49 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x.

50 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. 4 y = x

51 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. 4 3 y = x x = y

52 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. 4 3 y = x x = y

53 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always non-negative. 4 3 y = x x = y

54 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always non-negative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x x = y

55 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always non-negative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x Note y = x y = x, y x = y

56 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always non-negative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x Note y = x y = x, y Reason a = b = a = b - x = y

57 Square-root Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always non-negative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x Note y = x y = x, y Reason a = b = a = b a = b and a, b 0 = a = b - x = y

58 8 Example Sketch the graph of the following () y = x Solution

59 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down.

60 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down y = x

61 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down y = x

62 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down y = x y = x

63 9 Example Sketch the graph of the following () y = x Solution

64 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right.

65 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x 4 9 6

66 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x 4 9 6

67 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x y = x 4 9 6

68 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x y = x x is defined for x only

69 Composition of Functions 0 To combine functions.

70 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x )

71 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x )

72 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) )

73 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Remark To consider composition, some conditions are needed.

74 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Example Let f and g be functions given by f (x) = x g(x) = sin x Then g f : R R is Remark To consider composition, some conditions are needed.

75 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Example Let f and g be functions given by f (x) = x g(x) = sin x Then g f : R R is (g f )(x) = g(x ) Remark To consider composition, some conditions are needed.

76 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Example Let f and g be functions given by f (x) = x g(x) = sin x Then g f : R R is (g f )(x) = g(x ) = sin(x ) Remark To consider composition, some conditions are needed.

77 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) () ( f g)(6) (3) ( f g)()

78 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) () ( f g)(6) (3) ( f g)()

79 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) () ( f g)(6) (3) ( f g)()

80 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) (3) ( f g)()

81 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) (3) ( f g)()

82 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) (3) ( f g)()

83 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)()

84 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() )

85 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() ) = f ( )

86 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() ) = f ( ) undefined

87 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() ) = f ( ) undefined Remark In order that ( f g)(x) be defined, need g(x) dom ( f ).

88 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x)

89 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x))

90 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + )

91 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + )

92 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x +

93 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x))

94 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x)) = g(x )

95 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x)) = g(x ) = x +

96 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x)) = g(x ) = x + Note f g g f in general.

97 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) () (g f )(x) f (x) = x +, g(x) = x.

98 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x.

99 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x. Definition A function ϕ from a set X into itself satisfying ϕ(x) = x for all x X is called the identity function on X.

100 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x. Definition A function ϕ from a set X into itself satisfying ϕ(x) = x for all x X is called the identity function on X. Remark functions on R. The above example means that ( f g) and (g f ) are the identity

101 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x. Definition A function ϕ from a set X into itself satisfying ϕ(x) = x for all x X is called the identity function on X. Remark functions on R. The above example means that ( f g) and (g f ) are the identity Question Given a function f : X Y, when can we find a function g : Y X such that (g f )(x) = x for all x X?

102 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X?

103 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A

104 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A Then (g f )(A) = A

105 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C Then (g f )(A) = A

106 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C Then (g f )(A) = A (g f )(C) = C

107 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D Then (g f )(A) = A (g f )(C) = C

108 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D Then (g f )(A) = A (g f )(C) = C (g f )(D) = D

109 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A Then (g f )(A) = A (g f )(C) = C (g f )(D) = D

110 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B Then (g f )(A) = A (g f )(C) = C (g f )(D) = D

111 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D

112 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B g(6) = A Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D

113 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B g(6) = A g(7) = E Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D

114 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B g(6) = A g(7) = E Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E

115 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution

116 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A

117 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B

118 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C

119 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D

120 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E

121 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E In particular, g() = A

122 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E In particular, g() = A g() = C

123 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E In particular, g() = A g() = C No such function g.

124 6 Definition A function f : X Y is said to be injective if x x = f (x ) f (x )

125 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x )

126 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) 4 3

127 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) 4 3 x x = x x

128 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective 4 3 x x = x x

129 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective x x = x x

130 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective x x = x x but ( ) =

131 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective x x = x x but ( ) = Remark Geometrically, f is injective means that graph of f intersects every horizontal line in at most one point.

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

2.8. Function Operations and Composition. Arithmetic Operations on Functions The Difference Quotient Composition of Functions and Domain

2.8. Function Operations and Composition. Arithmetic Operations on Functions The Difference Quotient Composition of Functions and Domain 2.8 Function Operations and Composition Arithmetic Operations on Functions The Difference Quotient Composition of Functions and Domain 2.8-1 Operations of Functions Given two functions ƒ and g, then for

More information

x = y + 2, and the line

x = y + 2, and the line WS 8.: Areas between Curves Name Date Period Worksheet 8. Areas between Curves Show all work on a separate sheet of paper. No calculator unless stated. Multiple Choice. Let R be the region in the first

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Inverse Trig Functions

Inverse Trig Functions MATH 7 Inverse Trig Functions Dr. Neal, WKU A function y = f (x) is one to one if it is always the case that different x values are assigned to different y values. For example, y = x + 4 is one to one,

More information

Objective: Use calculator to comprehend transformations.

Objective: Use calculator to comprehend transformations. math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given

More information

McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).

McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s). 1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

The graph of. horizontal line between-1 and 1 that the sine function is not 1-1 and therefore does not have an inverse.

The graph of. horizontal line between-1 and 1 that the sine function is not 1-1 and therefore does not have an inverse. Inverse Trigonometric Functions The graph of If we look at the graph of we can see that if you draw a horizontal line between-1 and 1 that the sine function is not 1-1 and therefore does not have an inverse.

More information

( ) 2 in the space provided. You should enter the function f in ( ) 2.

( ) 2 in the space provided. You should enter the function f in ( ) 2. 1 TASK 4.1.2: UNDOING A SQUARE ROOT AND UNDOING A SQUARE? Solutions For the following functions (1-4), use your calculator to help you sketch the graph of f(x), g(x) = ( f (x)) 2, and h(x) = f (x) Y 1,

More information

TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

More information

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

More information

Advanced Math Study Guide

Advanced Math Study Guide Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular

More information

Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

More information

Comal Independent School District Pre-AP Pre-Calculus Scope and Sequence

Comal Independent School District Pre-AP Pre-Calculus Scope and Sequence Comal Independent School District Pre- Pre-Calculus Scope and Sequence Third Quarter Assurances. The student will plot points in the Cartesian plane, use the distance formula to find the distance between

More information

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved. 1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

More information

Practice Test - Chapter 1

Practice Test - Chapter 1 Determine whether the given relation represents y as a function of x. 1. y 3 x = 5 2. When x = 1, y = ±. Therefore, the relation is not one-to-one and not a function. The graph passes the Vertical Line

More information

SECTION 1.5: PIECEWISE-DEFINED FUNCTIONS; LIMITS AND CONTINUITY IN CALCULUS

SECTION 1.5: PIECEWISE-DEFINED FUNCTIONS; LIMITS AND CONTINUITY IN CALCULUS (Section.5: Piecewise-Defined Functions; Limits and Continuity in Calculus).5. SECTION.5: PIECEWISE-DEFINED FUNCTIONS; LIMITS AND CONTINUITY IN CALCULUS LEARNING OBJECTIVES Know how to evaluate and graph

More information

Partial Inverse Trigonometric Functions

Partial Inverse Trigonometric Functions Partial nverse Trigonometric Functions Although the three basic trigonometric functions sin, cos, and tan do not have inverse functions, they do have what can be called partial inverses. These partial

More information

29 Wyner PreCalculus Fall 2016

29 Wyner PreCalculus Fall 2016 9 Wyner PreCalculus Fall 016 CHAPTER THREE: TRIGONOMETRIC EQUATIONS Review November 8 Test November 17 Trigonometric equations can be solved graphically or algebraically. Solving algebraically involves

More information

21-114: Calculus for Architecture Homework #1 Solutions

21-114: Calculus for Architecture Homework #1 Solutions 21-114: Calculus for Architecture Homework #1 Solutions November 9, 2004 Mike Picollelli 1.1 #26. Find the domain of g(u) = u + 4 u. Solution: We solve this by considering the terms in the sum separately:

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

Practice Test - Chapter 1

Practice Test - Chapter 1 Determine whether the given relation represents y as a function of x. 1. y 3 x = 5 When x = 1, y = ±. Therefore, the relation is not one-to-one and not a function. not a function 2. The graph passes the

More information

Math 21A Brian Osserman Practice Exam 1 Solutions

Math 21A Brian Osserman Practice Exam 1 Solutions Math 2A Brian Osserman Practice Exam Solutions These solutions are intended to indicate roughly how much you would be expected to write. Comments in [square brackets] are additional and would not be required.

More information

Official Math 112 Catalog Description

Official Math 112 Catalog Description Official Math 112 Catalog Description Topics include properties of functions and graphs, linear and quadratic equations, polynomial functions, exponential and logarithmic functions with applications. A

More information

Partial differentiation

Partial differentiation Chapter 1 Partial differentiation Example 1.1 What is the maximal domain of the real function g defined b g(x) = x 2 + 3x + 2? : The ke point is that the square root onl gives a real result if the argument

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

Objective 1: Identify the characteristics of a quadratic function from its graph

Objective 1: Identify the characteristics of a quadratic function from its graph Section 8.2 Quadratic Functions and Their Graphs Definition Quadratic Function A quadratic function is a second-degree polynomial function of the form, where a, b, and c are real numbers and. Every quadratic

More information

2.5 Transformations of Functions

2.5 Transformations of Functions 2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [

More information

Pre-Calculus Review Lesson 1 Polynomials and Rational Functions

Pre-Calculus Review Lesson 1 Polynomials and Rational Functions If a and b are real numbers and a < b, then Pre-Calculus Review Lesson 1 Polynomials and Rational Functions For any real number c, a + c < b + c. For any real numbers c and d, if c < d, then a + c < b

More information

September 14, Conics. Parabolas (2).notebook

September 14, Conics. Parabolas (2).notebook 9/9/16 Aim: What is parabola? Do now: 1. How do we define the distance from a point to the line? Conic Sections are created by intersecting a set of double cones with a plane. A 2. The distance from the

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Practice Problems for Midterm 2

Practice Problems for Midterm 2 Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

More information

Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson

Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson Class Notes for MATH 2 Precalculus Fall 2012 Prepared by Stephanie Sorenson Table of Contents 1.2 Graphs of Equations... 1 1.4 Functions... 9 1.5 Analyzing Graphs of Functions... 14 1.6 A Library of Parent

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-005 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

Math 119 Pretest Review Answers

Math 119 Pretest Review Answers Math 9 Pretest Review Answers Linear Equations Find the slope of the line passing through the given points:. (, -5); (0, ) -7/. (, -4); (, 0) Undefined. (-, -); (, 4) 4. Find the equation of the line with

More information

Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola?

Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola? Name Period Date: Topic: 9-3 Parabolas Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola? Standard: G-GPE.2 Objective: Derive the equation of a parabola

More information

Math 115 Spring 2014 Written Homework 10-SOLUTIONS Due Friday, April 25

Math 115 Spring 2014 Written Homework 10-SOLUTIONS Due Friday, April 25 Math 115 Spring 014 Written Homework 10-SOLUTIONS Due Friday, April 5 1. Use the following graph of y = g(x to answer the questions below (this is NOT the graph of a rational function: (a State the domain

More information

2.1 QUADRATIC FUNCTIONS AND MODELS. Copyright Cengage Learning. All rights reserved.

2.1 QUADRATIC FUNCTIONS AND MODELS. Copyright Cengage Learning. All rights reserved. 2.1 QUADRATIC FUNCTIONS AND MODELS Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic functions. Write quadratic functions in standard form and use the results

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

Math 234 February 28. I.Find all vertical and horizontal asymptotes of the graph of the given function.

Math 234 February 28. I.Find all vertical and horizontal asymptotes of the graph of the given function. Math 234 February 28 I.Find all vertical and horizontal asymptotes of the graph of the given function.. f(x) = /(x 3) x 3 = 0 when x = 3 Vertical Asymptotes: x = 3 H.A.: /(x 3) = 0 /(x 3) = 0 Horizontal

More information

1. [20 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Exist.

1. [20 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Exist. Answer Key, Math, Final Eamination, December 9, 9. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Eist. (a lim + 6

More information

How to roughly sketch a sinusoidal graph

How to roughly sketch a sinusoidal graph 34 CHAPTER 17. SINUSOIDAL FUNCTIONS Definition 17.1.1 (The Sinusoidal Function). Let A,, C and D be fixed constants, where A and are both positive. Then we can form the new function ( ) π y = A sin (x

More information

Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

Chapter V.G The Definite Integral and Area: Two Views

Chapter V.G The Definite Integral and Area: Two Views Chapter V.G The Definite Integral and Area: Two Views In is section we will look at e application of e definite integral to e problem of finding e area of a region in e plane. In particular e regions in

More information

MATH Area Between Curves

MATH Area Between Curves MATH - Area Between Curves Philippe Laval September, 8 Abstract This handout discusses techniques used to nd the area of regions which lie between two curves. Area Between Curves. Theor Given two functions

More information

1.5 ANALYZING GRAPHS OF FUNCTIONS. Copyright Cengage Learning. All rights reserved.

1.5 ANALYZING GRAPHS OF FUNCTIONS. Copyright Cengage Learning. All rights reserved. 1.5 ANALYZING GRAPHS OF FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals on which

More information

Graphs of Polar Equations

Graphs of Polar Equations Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate

More information

7.3 Volumes Calculus

7.3 Volumes Calculus 7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are

More information

INTEGRATION FINDING AREAS

INTEGRATION FINDING AREAS INTEGRTIN FINDING RES Created b T. Madas Question 1 (**) = 4 + 10 3 The figure above shows the curve with equation = 4 + 10, R. Find the area of the region, bounded b the curve the coordinate aes and the

More information

Trigonometry. The inverse trig functions

Trigonometry. The inverse trig functions Trigonometry The inverse trig functions If you re trying to answer the question, What angle has a sine (or cosine, or tangent) equal to a given value? - say sin x =.3456 you need an inverse operation to

More information

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

AP CALCULUS AB 2008 SCORING GUIDELINES

AP CALCULUS AB 2008 SCORING GUIDELINES AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

More information

Objectives: To graph exponential functions and to analyze these graphs. None. The number A can be any real constant. ( A R)

Objectives: To graph exponential functions and to analyze these graphs. None. The number A can be any real constant. ( A R) CHAPTER 2 LESSON 2 Teacher s Guide Graphing the Eponential Function AW 2.6 MP 2.1 (p. 76) Objectives: To graph eponential functions and to analyze these graphs. Definition An eponential function is a function

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

Student Performance Q&A:

Student Performance Q&A: Student Performance Q&A: AP Calculus AB and Calculus BC Free-Response Questions The following comments on the free-response questions for AP Calculus AB and Calculus BC were written by the Chief Reader,

More information

GRAPHING CALCULATORS AND COMPUTERS

GRAPHING CALCULATORS AND COMPUTERS GRAPHING CALCULATORS AND COMPUTERS x=a (a, d ) y=d (b, d ) (a, c ) y=c (b, c) (a) _, by _, x=b FIGURE 1 The viewing rectangle a, b by c, d In this section we assume that you have access to a graphing calculator

More information

To differentiate logarithmic functions with bases other than e, use

To differentiate logarithmic functions with bases other than e, use To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

More information

PRACTISE MATHEMATICS ASSESSMENT TEST

PRACTISE MATHEMATICS ASSESSMENT TEST PRACTISE MATHEMATICS ASSESSMENT TEST DOUGLAS COLLEGE (Updated September 2012) NOTE TO STUDENTS: Some students may be required to write the Douglas Mathematics Assessment Test in order to be eligible to

More information

Quadratic Functions and Models

Quadratic Functions and Models Quadratic Functions and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: analyze the graphs of quadratic functions, write

More information

Lesson 6: Linear Functions and their Slope

Lesson 6: Linear Functions and their Slope Lesson 6: Linear Functions and their Slope A linear function is represented b a line when graph, and represented in an where the variables have no whole number eponent higher than. Forms of a Linear Equation

More information

Extra Problems for Midterm 2

Extra Problems for Midterm 2 Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y,

More information

CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often

CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often 7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.

More information

Practice Problems for Exam 1 Math 140A, Summer 2014, July 2

Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other

More information

Sept 20, 2011 MATH 140: Calculus I Tutorial 2. ln(x 2 1) = 3 x 2 1 = e 3 x = e 3 + 1

Sept 20, 2011 MATH 140: Calculus I Tutorial 2. ln(x 2 1) = 3 x 2 1 = e 3 x = e 3 + 1 Sept, MATH 4: Calculus I Tutorial Solving Quadratics, Dividing Polynomials Problem Solve for x: ln(x ) =. ln(x ) = x = e x = e + Problem Solve for x: e x e x + =. Let y = e x. Then we have a quadratic

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions. Sketch

More information

Functions Modeling Change: A Precalculus Course. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Functions Modeling Change: A Precalculus Course. Marcel B. Finan Arkansas Tech University c All Rights Reserved Functions Modeling Change: A Precalculus Course Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 PREFACE This supplement consists of my lectures of a freshmen-level mathematics class offered

More information

MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

More information

Power Function Inverses

Power Function Inverses Math Objectives For power functions of the form f(x)=x n, where n is a positive integer and the domain is all real numbers, students will be able to identify which functions are invertible (odd powers)

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

Higher. Functions and Graphs. Functions and Graphs 18

Higher. Functions and Graphs. Functions and Graphs 18 hsn.uk.net Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 8 Sets 8 Functions 9 Composite Functions 4 Inverse Functions 5 Eponential Functions 4 6 Introduction to Logarithms

More information

Definition III: Circular Functions

Definition III: Circular Functions SECTION 3.3 Definition III: Circular Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Evaluate a trigonometric function using the unit circle. Find the value of a

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Section 2.4: Applications and Writing Functions

Section 2.4: Applications and Writing Functions CHAPTER 2 Polynomial and Rational Functions Section 2.4: Applications and Writing Functions Setting up Functions to Solve Applied Problems Maximum or Minimum Value of a Quadratic Function Setting up Functions

More information

4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have

4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have SECTION 4.4 CURE SKETCHING 4.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x- and y-intercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Lecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if

Lecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close

More information

An inequality is a mathematical statement containing one of the symbols <, >, or.

An inequality is a mathematical statement containing one of the symbols <, >, or. Further Concepts for Advanced Mathematics - FP1 Unit 3 Graphs & Inequalities Section3c Inequalities Types of Inequality An inequality is a mathematical statement containing one of the symbols , or.

More information

AP Calculus AB 2011 Free-Response Questions

AP Calculus AB 2011 Free-Response Questions AP Calculus AB 11 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

RELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items

RELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 27699-6314 Fall 2014 N Final Exam Precalculus Student ooklet opyright 2014

More information

Functions and Equations

Functions and Equations Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

More information

Sets and functions. {x R : x > 0}.

Sets and functions. {x R : x > 0}. Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Math 113 HW #2 Solutions

Math 113 HW #2 Solutions Math 3 HW # Solutions.3 : Graph the function by hand, not by plotting points, but by starting with the graph of one of the standard functions given in Section., and then applying the appropriate transformations:

More information

111. Functions and straight lines

111. Functions and straight lines . Functions and straight lines A. Functions.... Deflnltlon Afunctlon defined on a certain set of real numbers D (called the domain of the function) is a rule that associates to each element of D a real

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series)

IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series) IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series) 1. Let f(x) = 7 2x and g(x) = x + 3. Find (g f)(x). Write down g 1 (x). (c) Find (f g 1 )(5). (Total 5 marks) 2. Consider

More information

Preparatory Math Courses

Preparatory Math Courses Preparatory Math Courses For 1 st Semester ISP Students, Faculty of Economics and Management at Otto-von-Guericke University Magdeburg Lecturer: Mr. Alexandr Polujan Tutors: Ms. Juliane Selle and Ms. Mozhdeh

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Section 8.1 The Inverse Sine, Cosine, and Tangent Functions

Section 8.1 The Inverse Sine, Cosine, and Tangent Functions Section 8.1 The Inverse Sine, Cosine, and Tangent Functions You learned about inverse unctions in both college algebra and precalculus. The main characteristic o inverse unctions is that composing one

More information

2 Analysis of Graphs of

2 Analysis of Graphs of ch.pgs1-16 1/3/1 1:4 AM Page 1 Analsis of Graphs of Functions A FIGURE HAS rotational smmetr around an ais I if it coincides with itself b all rotations about I. Because of their complete rotational smmetr,

More information