x 2 if 2 x < 0 4 x if 2 x 6


 Emil Singleton
 1 years ago
 Views:
Transcription
1 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6
2 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) () f ( ) (3) f (.5) and sketch the graph of f. 4 x if x 6
3 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( ) (3) f (.5) and sketch the graph of f. 4 x if x 6
4 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( (3) f (.5) ) = = and sketch the graph of f. 4 x if x 6
5 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f. 4 x if x 6
6 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f. 4 x if x 6 Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].
7 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].
8 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].
9 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Find the value of () f ( ) = ( ) = () f ( ) = = (3) f (.5) = 4.5 =.5 and sketch the graph of f Solution To draw the graph of f, divide the domain [, 6] into three subintervals: [, 0), [0, ) and [, 6].
10 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0
11 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () =
12 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3)
13 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3
14 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3 a is the distance from a to 0.
15 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3 a is the distance from a to 0. 3units { }} { units 3 { }} { 0 >
16 Definition The absolute value of a real number x, denoted by x, is defined by x if x 0 x = x if x < 0 Example () = () 3 = ( 3) = 3 a is the distance from a to 0. 3units { }} { units 3 0 { }} { > a is always nonnegative
17 a = a 3
18 3 a = a { }} {{ }} { a 0 a >
19 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b.
20 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b =
21 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3
22 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5
23 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 =
24 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to
25 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a
26 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 =
27 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 = 3
28 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 = 3 ( 4) = 6 = 4 =
29 3 a = a { }} {{ }} { a 0 a > a b is the distance from a to b. Example a = 3, b = 3 = 5 = 5 = distance from 3 to a = a Example 3 = 9 = 3 = 3 ( 4) = 6 = 4 = 4
30 Graph of the absolute value function f (x) = x 4
31 4 Graph of the absolute value function f (x) = x Divide the real number line into two subintervals [0, ) and (, 0) f (x) = x if x 0 x if x < 0
32 4 Graph of the absolute value function f (x) = x Divide the real number line into two subintervals [0, ) and (, 0) f (x) = x if x 0 x if x <
33 4 Graph of the absolute value function f (x) = x Divide the real number line into two subintervals [0, ) and (, 0) f (x) = x if x 0 x if x <
34 Example Graph of y = x 5
35 5 Example Graph of y = x y = x if x 0 ( x) if x < 0
36 5 Example Graph of y = x y = x if x ( x) if x <
37 5 Example Graph of y = x y = x if x ( x) if x <
38 5 Example Graph of y = x y = x if x ( x) if x < y = x
39 5 Example Graph of y = x y = x if x ( x) if x < y = x y = x
40 5 Example Graph of y = x y = x if x ( x) if x < y = x y = x y = x +
41 Example Graph y = x 6
42 6 Example Graph y = x y = x if x 0 (x ) if x < 0
43 6 Example Graph y = x y = x if x 0 (x ) if x <
44 6 Example Graph y = x y = x if x 0 (x ) if x <
45 6 Example Graph y = x y = x if x 0 (x ) if x <
46 6 Example Graph y = x y = x if x 0 (x ) if x <
47 6 Example Graph y = x y = x if x 0 (x ) if x <
48 Squareroot Function f (x) = x 7 Graph of y = x?
49 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x.
50 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. 4 y = x
51 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. 4 3 y = x x = y
52 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. 4 3 y = x x = y
53 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always nonnegative. 4 3 y = x x = y
54 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always nonnegative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x x = y
55 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always nonnegative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x Note y = x y = x, y x = y
56 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always nonnegative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x Note y = x y = x, y Reason a = b = a = b  x = y
57 Squareroot Function f (x) = x 7 Graph of y = x? First, square both sides to get y = x. Its graph is a parabola. Squarring introduces extra points. x is always nonnegative. Graph of y = x is the upper half of the parabola. 4 3 y = x y = x Note y = x y = x, y Reason a = b = a = b a = b and a, b 0 = a = b  x = y
58 8 Example Sketch the graph of the following () y = x Solution
59 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down.
60 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down y = x
61 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down y = x
62 8 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units down y = x y = x
63 9 Example Sketch the graph of the following () y = x Solution
64 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right.
65 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x 4 9 6
66 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x 4 9 6
67 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x y = x 4 9 6
68 9 Example Sketch the graph of the following () y = x Solution The graph is obtained by moving that of y = x two units to the right. 4 3 y = x y = x x is defined for x only
69 Composition of Functions 0 To combine functions.
70 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x )
71 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x )
72 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) )
73 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Remark To consider composition, some conditions are needed.
74 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Example Let f and g be functions given by f (x) = x g(x) = sin x Then g f : R R is Remark To consider composition, some conditions are needed.
75 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Example Let f and g be functions given by f (x) = x g(x) = sin x Then g f : R R is (g f )(x) = g(x ) Remark To consider composition, some conditions are needed.
76 Composition of Functions 0 To combine functions. Eg. we may combine the square function and sine function to get sin(x ) x x sin(x ) Definition Let f and g be functions. The composition of g with f, denoted by g f, is the function defined by (g f )(x) = g ( f (x) ) Example Let f and g be functions given by f (x) = x g(x) = sin x Then g f : R R is (g f )(x) = g(x ) = sin(x ) Remark To consider composition, some conditions are needed.
77 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) () ( f g)(6) (3) ( f g)()
78 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) () ( f g)(6) (3) ( f g)()
79 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) () ( f g)(6) (3) ( f g)()
80 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) (3) ( f g)()
81 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) (3) ( f g)()
82 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) (3) ( f g)()
83 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)()
84 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() )
85 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() ) = f ( )
86 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() ) = f ( ) undefined
87 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x. Find the following (if defined) () (g f )(9) = g ( f (9) ) = g(3) = () ( f g)(6) = f ( g(6) ) = f (4) = (3) ( f g)() = f ( g() ) = f ( ) undefined Remark In order that ( f g)(x) be defined, need g(x) dom ( f ).
88 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x)
89 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x))
90 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + )
91 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + )
92 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x +
93 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x))
94 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x)) = g(x )
95 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x)) = g(x ) = x +
96 Definition (g f )(x) = g ( f (x) ) Example Let f (x) = x and g(x) = x +. Find () ( f g)(x) () (g f )(x) Solution () ( f g)(x) = f (g(x)) = f (x + ) = (x + ) = 4x + 4x + () (g f )(x) = g( f (x)) = g(x ) = x + Note f g g f in general.
97 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) () (g f )(x) f (x) = x +, g(x) = x.
98 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x.
99 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x. Definition A function ϕ from a set X into itself satisfying ϕ(x) = x for all x X is called the identity function on X.
100 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x. Definition A function ϕ from a set X into itself satisfying ϕ(x) = x for all x X is called the identity function on X. Remark functions on R. The above example means that ( f g) and (g f ) are the identity
101 3 Exercise Let f : R R and g : R R be functions given by Find () ( f g)(x) = x () (g f )(x) = x f (x) = x +, g(x) = x. Definition A function ϕ from a set X into itself satisfying ϕ(x) = x for all x X is called the identity function on X. Remark functions on R. The above example means that ( f g) and (g f ) are the identity Question Given a function f : X Y, when can we find a function g : Y X such that (g f )(x) = x for all x X?
102 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X?
103 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A
104 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A Then (g f )(A) = A
105 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C Then (g f )(A) = A
106 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C Then (g f )(A) = A (g f )(C) = C
107 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D Then (g f )(A) = A (g f )(C) = C
108 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D Then (g f )(A) = A (g f )(C) = C (g f )(D) = D
109 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A Then (g f )(A) = A (g f )(C) = C (g f )(D) = D
110 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B Then (g f )(A) = A (g f )(C) = C (g f )(D) = D
111 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D
112 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B g(6) = A Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D
113 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B g(6) = A g(7) = E Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D
114 4 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Yes. Define g() = A g() = C g(3) = D g(4) = A g(5) = B g(6) = A g(7) = E Then (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E
115 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution
116 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A
117 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B
118 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C
119 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D
120 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E
121 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E In particular, g() = A
122 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E In particular, g() = A g() = C
123 5 Example Let f : X Y be represented by A B C D E Is there any g : Y X satisfying (g f )(x) = x for all x X? Solution Need (g f )(A) = A (g f )(B) = B (g f )(C) = C (g f )(D) = D (g f )(E) = E In particular, g() = A g() = C No such function g.
124 6 Definition A function f : X Y is said to be injective if x x = f (x ) f (x )
125 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x )
126 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) 4 3
127 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) 4 3 x x = x x
128 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective 4 3 x x = x x
129 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective x x = x x
130 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective x x = x x but ( ) =
131 6 Definition A function f : X Y is said to be injective if Example f (x) = x is injective x x = f (x ) f (x ) g(x) = x is NOT injective x x = x x but ( ) = Remark Geometrically, f is injective means that graph of f intersects every horizontal line in at most one point.
Section 2.7 OnetoOne Functions and Their Inverses
Section. OnetoOne Functions and Their Inverses OnetoOne Functions HORIZONTAL LINE TEST: A function is onetoone if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
More informationx 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
More informationObjective: Use calculator to comprehend transformations.
math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More informationFINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
More informationAdvanced Math Study Guide
Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular
More informationLecture 3: Derivatives and extremes of functions
Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16
More information1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
More informationInverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a onetoone function if it never takes on the same value twice; that
More informationMath 21A Brian Osserman Practice Exam 1 Solutions
Math 2A Brian Osserman Practice Exam Solutions These solutions are intended to indicate roughly how much you would be expected to write. Comments in [square brackets] are additional and would not be required.
More informationConnecting Transformational Geometry and Transformations of Functions
Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.
More information2.5 Transformations of Functions
2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More informationPractice Problems for Midterm 2
Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationGRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
More informationALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationMath 1050 Khan Academy Extra Credit Algebra Assignment
Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In
More informationMA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
More informationGraphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
More informationBookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina  Beaufort Lisa S. Yocco, Georgia Southern University
More information7.3 Volumes Calculus
7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are
More informationTo differentiate logarithmic functions with bases other than e, use
To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More informationAP CALCULUS AB 2008 SCORING GUIDELINES
AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line
More informationPractice Problems for Exam 1 Math 140A, Summer 2014, July 2
Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other
More informationFunctions Modeling Change: A Precalculus Course. Marcel B. Finan Arkansas Tech University c All Rights Reserved
Functions Modeling Change: A Precalculus Course Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 PREFACE This supplement consists of my lectures of a freshmenlevel mathematics class offered
More informationCreating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
More informationRELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items
Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 276996314 Fall 2014 N Final Exam Precalculus Student ooklet opyright 2014
More informationAP Calculus AB 2011 FreeResponse Questions
AP Calculus AB 11 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationPrentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More information4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have
SECTION 4.4 CURE SKETCHING 4.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x and yintercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal
More informationax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )
SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as
More informationAlgebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More information5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
More informationLecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
More informationMath Review Large Print (18 point) Edition Chapter 2: Algebra
GRADUATE RECORD EXAMINATIONS Math Review Large Print (18 point) Edition Chapter : Algebra Copyright 010 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRADUATE RECORD EXAMINATIONS,
More informationThe Distance Formula and the Circle
10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,
More information1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x and yintercepts of graphs of equations. Use symmetry to sketch graphs
More informationContinuity. DEFINITION 1: A function f is continuous at a number a if. lim
Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.
More informationAP Calculus AB 2005 FreeResponse Questions
AP Calculus AB 25 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationStudents Currently in Algebra 2 Maine East Math Placement Exam Review Problems
Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write
More informationAlgebra 2: Themes for the Big Final Exam
Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,
More informationMathematics PreTest Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}
Mathematics PreTest Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {1, 1} III. {1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following
More informationPre Calculus Math 40S: Explained!
www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing
More informationEstimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
More information2.5 Library of Functions; Piecewisedefined Functions
SECTION.5 Librar of Functions; Piecewisedefined Functions 07.5 Librar of Functions; Piecewisedefined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,
More information(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation
(1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval
More information1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
1. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
More informationWhat is a parabola? It is geometrically defined by a set of points or locus of points that are
Section 61 A Parable about Parabolas Name: What is a parabola? It is geometrically defined by a set of points or locus of points that are equidistant from a point (the focus) and a line (the directrix).
More informationAP Calculus BC 2013 FreeResponse Questions
AP Calculus BC 013 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in
More informationhttp://www.aleks.com Access Code: RVAE4EGKVN Financial Aid Code: 6A9DBDEE3B74F5157304
MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: piercevu@utpa.edu Phone: 665.3535 Teaching Assistant Name: Indalecio
More informationCourse Outlines. 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit)
Course Outlines 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit) This course will cover Algebra I concepts such as algebra as a language,
More informationCollege Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGrawHill, 2008, ISBN: 9780072867381
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGrawHill, 2008, ISBN: 9780072867381 Course Description This course provides
More informationSolving Systems of Equations with Absolute Value, Polynomials, and Inequalities
Solving Systems of Equations with Absolute Value, Polynomials, and Inequalities Solving systems of equations with inequalities When solving systems of linear equations, we are looking for the ordered pair
More information7.1 Graphs of Quadratic Functions in Vertex Form
7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called
More informationCalculus. Contents. Paul Sutcliffe. Office: CM212a.
Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical
More informationPrerequisites: TSI Math Complete and high school Algebra II and geometry or MATH 0303.
Course Syllabus Math 1314 College Algebra Revision Date: 82115 Catalog Description: Indepth study and applications of polynomial, rational, radical, exponential and logarithmic functions, and systems
More informationG.A. Pavliotis. Department of Mathematics. Imperial College London
EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.
More informationAlgebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: AAPR.3: Identify zeros of polynomials
More information3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.
3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.
More informationSolutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
More information3.1. Quadratic Equations and Models. Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models
3.1 Quadratic Equations and Models Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models 3.11 Polynomial Function A polynomial function of degree n, where n
More informationAbsolute Value Equations and Inequalities
. Absolute Value Equations and Inequalities. OBJECTIVES 1. Solve an absolute value equation in one variable. Solve an absolute value inequality in one variable NOTE Technically we mean the distance between
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationFIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
More informationAP Calculus AB 2012 Scoring Guidelines
AP Calculus AB Scoring Guidelines The College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in 9, the College
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More information2.1 Increasing, Decreasing, and Piecewise Functions; Applications
2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.
More informationCopyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More informationwww.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
More information53 Polynomial Functions. not in one variable because there are two variables, x. and y
y. 53 Polynomial Functions State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. 1. 11x 6 5x 5 + 4x 2 coefficient of the
More informationWARM UP EXERCSE. 21 Polynomials and Rational Functions
WARM UP EXERCSE Roots, zeros, and xintercepts. x 2! 25 x 2 + 25 x 3! 25x polynomial, f (a) = 0! (x  a)g(x) 1 21 Polynomials and Rational Functions Students will learn about: Polynomial functions Behavior
More informationStart Accuplacer. Elementary Algebra. Score 76 or higher in elementary algebra? YES
COLLEGE LEVEL MATHEMATICS PRETEST This pretest is designed to give ou the opportunit to practice the tpes of problems that appear on the collegelevel mathematics placement test An answer ke is provided
More informationSection 8.4  Composite and Inverse Functions
Math 127  Section 8.4  Page 1 Section 8.4  Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =
More informationTrigonometric Functions: The Unit Circle
Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry
More information1 The Concept of a Mapping
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing
More informationSimplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 249x + 6 x  6 A) 1, x 6 B) 8x  1, x 6 x 
More informationEstimated Pre Calculus Pacing Timeline
Estimated Pre Calculus Pacing Timeline 20102011 School Year The timeframes listed on this calendar are estimates based on a fiftyminute class period. You may need to adjust some of them from time to
More informationMTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages
MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem
More informationAlgebra II Notes Piecewise Functions Unit 1.5. Piecewise linear functions. Math Background
Piecewise linear functions Math Background Previousl, ou Related a table of values to its graph. Graphed linear functions given a table or an equation. In this unit ou will Determine when a situation requiring
More informationExtra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.
Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson
More informationThis unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
More informationThnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationChapter 7  Roots, Radicals, and Complex Numbers
Math 233  Spring 2009 Chapter 7  Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationlim lim x l 1 sx 1 and so the line x 1 is a vertical asymptote. f x 2xsx 1 x 2 1 (2sx 1) x 1
SECTION 3.4 CURE SKETCHING 3.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x and yintercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal
More information1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
1.6 Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described by piecewise functions. LEARN ABOUT the Math A city parking lot
More informationFunctions and their Graphs
Functions and their Graphs Functions All of the functions you will see in this course will be realvalued functions in a single variable. A function is realvalued if the input and output are real numbers
More informationThe sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More information