Cloud Computing. Up until now

Size: px
Start display at page:

Download "Cloud Computing. Up until now"

Transcription

1 Cloud Computing Lecture 11 Virtualization Up until now Introduction. Definition of Cloud Computing Grid Computing Content Distribution Networks Map Reduce Cycle-Sharing 1

2 Process Virtual Machines Capable of supporting an individual process. Virtualization located at ABI (app-binary interface). On top of OS and hardware. Emulates user-level ISA and OS system-calls. VM supports ends with process termination. Virtualizing software: runtime. System Virtual Machines Provides a complete system environment. Virtualization located at ISA (instruction set architecture) interface. On top of hardware, allows access to I/O, networking, display. Emulates user and system-isa of guest hardware. While alive, VM supports OS with users and processes. Virtualizing software: virtual machine monitor (VMM). Defined in early VM concept (1960s). 2

3 Examples of Process VMs High level languages virtual machines: Usually do not match an existing platform: Java,.NET, Python. Designed for portability: Follow the high level language closely. Implement very few if any HW and OS specific operations. Application installation: portable intermediate code (virtual ISA) Bytecodes instead of binary objects. Calls to standard libraries. VM executes intermediate portable code: Using interpretation, standard compilation or JIT compilation (just in time). In general, the strong execution control and encapsulation is used to create languages that are strongly typed, dynamic, with garbage collection... Examples of System VMs Hosted VMs Virtual machine monitor over the OS: VMware, VirtualPC. Pros-Cons: + Installed as an application, uses the native OS and its low-level services (E/S, drivers). - Loss of efficiency due to the additional indirection level. Challenges: Heterogeneity: provide the same low-level OS features on different platforms (timing, data formats, arithmetic precision, semantics). Emulate the ISA of the hosted system: The emulated system is just an application of the host system. How to correctly intercept system calls and convert them into native calls. Dealing with interruptions, memory management... 3

4 Applications of System VMs Multiprogramming: Each user can run a simpler single-user OS. Multiple virtual applications. Multiple secure environments (e.g. virtual hosting). Environments with mixed OSs: vintage OSs, OS development. Running old SW on new HW. Multi-platform development. Safe development (without crashing the development machine). Emulating client environments for software maintenance. Instrumentation: measurements, monitoring. Checkpointing, recovery, migration. The Versatility of Virtualization 4

5 Process VMs Process VMs: Java <->.Net Java Virtual Machine Architecture <-> CLI Similar to an ISA. Java Virtual Machine Implementation <-> CLR Equivalent to the implementation of a computer. Java bytecodes <-> Microsoft Intermediate Language (MSIL) ISA instructions. Java Platform <->.NET Framework ISA + libraries; a more abstract ABI. Key features of a high level VM: Security and protection. Network access. Instruction set model. Performance. 5

6 Process VMs Key Issues: Protection Allowing the loading/execution of programs from unreliable sources. Sandbox: Access to remote files protected by the remote system. Access to local files through reliable libraries and a security manager. Protecting the data and VM code from hosted applications: While they share the same process. Static verification by a reliable compiler. Dynamic verification by a reliable emulator. Process VMs Key Issues: Protection Jump instructions: All jumps have to be offsets within the code segment. The loader checks whether all jumps are within the process bounds. Indirections in execution flow are only method calls and method return operations. Reading and writing instructions (load/store): Checked statically by the loader: e.g., out of bounds accesses to local variables or to object fields. Checked dynamically by the execution environment: e.g., array accesses or dereferencing null pointers. 6

7 Process VMs Key Issues: Network Many modern languages are strongly geared toward a networked environment. It s important to limit the bandwidth in transmitting apps or components: The instruction set is encoded in a compact format. The virtual ISA is just a specification. Emulation converts the specification into native HW instructions. Allows dynamic class loading if needed. Distributes the class loading cost during the whole application execution. Process VMs Key Issues: Performance Cons: OO languages are slower than procedural languages. Running OO languages in a VM is even slower. Pros: There is a tendency for the HW advances to be quicker than SW optimizations. VMs are highly optimized. 7

8 JVM: Java Virtual Machine JVM Architecture Java virtual ISA: Bytecode definition. Set of predefined types. 8

9 JVM Architecture Memory and Registers: Methods area Contains the core Implicit Program Counter: There is no direct load/store at the CPU. JVM Architecture Memory and Registers: Java stacks: Store local variables, operands and method arguments. Implicit Stack Pointer (one per thread): Only accessible via pop/push. Stack size is implementation dependent: Overflow causes StackOverflowError exception. 9

10 JVM Architecture Memory and Registers : Heap: Global memory for objects and arrays. Dynamically allocated when an object or array is created. Heap size is implementation dependent: Overflow causes OutOfMemoryError exception. JVM Architecture Garbage Collection: Object lifecycle: instantiation, use, recycling... When the last reference is removed, the unreachable object becomes garbage. GC recovers heap memory occupied by unreachable objects. The Java specification does not predetermine the algorithm used. 10

11 JVM Architecture Emulation Engine: Emulates the instructions expressed by the Java bytecodes. Main techniques: Basic interpretation. Removal of calls with known results (precoding). Binary translation. Uses native methods and the implicit PC and SP. JVM Architecture Class Loader Subsystem: Converts class files into an internal representation in the VM. Locates classes: Dynamically, on demand. Locally or on the web. Checks the correction and integrity of the.class files. Key component of the security model. 11

12 JVM: Protection Sandbox protects the local system outside the JVM. Protection inside the JVM: Problem: Use in distributed environment with unreliable code. Solution: The application can only access its heap and stack so as not to modify the JVM. The application interacts with the JVM only through calls to local libraries containing reliable code. Program execution is verified statically and dynamically. JVM: Protection Security Manager, class from API java.lang: Checks whether a request operation is allowed: Returns if yes; throws an exception if not. Set of checkxxx methods: e.g., File..., Socket..., PropertyPermission. Associated with the application at startup time: Cannot be modified, erased or replaced. The user may decide what to allow: e.g., what files to expose and with what access, which network ports to open, etc... Limitation: only qualitative protection No quantitative protection: on memory allocation, thread creation, stack size on recursion. The application is additionally limited by its owner s permission: The JVM is a user-level process. 12

13 JVM: Protection Static checking (at loading): Types. Reference validity. Control transfer: Check that the code does not jump outside the process s memory. Dynamic checking (at runtime): Null references. Array limits. Type conversion: up-casting: Checked at compile time. down-casting: Checked at runtime. System VMs 13

14 Virtual Machine Monitor (VMM) Program responsible for virtualization: Also called hypervisor. Arbitrate access to physical resources. Present a set of virtual resources to each of the hosted machines. Placed between the exposed HW and the conventional HW. Manages the HW allocation/access to the host platform. Gives each hosted SO the illusion of owning the resources. System VMs Key Issues: State Management Manipulated state of the host machine: Store the state of the hosts HW resources. Map the guestmachine s state on the host. Approaches: Use indirection to access the state of the hosted machine. Copy the hosted machine s state to the host. Half way: copy what is frequently used, resort to indirection for what is seldom used. 14

15 System VMs Key Issues: Resource Management The VMM has to keep the host s HW resources under control: Assign them to the VMsand make sure that they are returned. A problem similar to time-sharingin the SO: In each moment, the running process believes he owns the resource until the dispatcher runs and takes over. Approach in system VMs: The hosted OS runs until: It uses a privileged instruction. There is a system interrupt. There is an exception (e.g. page fault). Problems in x86 The x86 does not allow interposition in privileged instructions. Two solutions: Binary rewriting: Sweep the binary code in memory and replace all privileged code with code that is interceptableby the VM (VMware). Paravirtualization: Do not use non-virtualizable instructions (Xen). 15

16 Paravirtualization: Xen Runs on an OS and provides virtual environments to execute otheross. Executes a subset of the x86 ISA: Provides a modified interface to the hosted OS. Avoids X86 operations that are difficult to virtualize. Eliminates the need for more complex virtualization (binary rewriting). All HW accesses are rerouted to the host machine. When the calls return, the hosted OS receives the results as Xenevents on a queue. x86 has 4 protection rings: In most OSs, system is 0 and applications are 3. In Xen, the hosted OS runs in ring 1. This way it has system privileges but the host VMM controls its requests. Changes to the Windows kernel: 1.36% (3000 lines of code), >90% performance Migration Moving running VMs between machines. Alternatively, one can move the application state, but it s not always the simplest solution. Motivation: Load balancing. Security: Move a suspicious VM to a protected/restricted location. Co-location: Group VMs that are communicating intensely.. Fault tolerance: Move out of unstable HW. Maintenance: Free a machine that is/will undergoing maintenance/updates. 16

17 Migrate to Load Balance Migration: Issues Time needed to migrate a large state: Transmit only part of the state. Transmit additional part as they become needed. Marshalling and secure transmission. Need for compression and encryption. HW heterogeneity: Normally solved by virtualization itself. 17

18 Example: VMWare VMotion VMWare s VM migration technology. Belongs to VMWare VirtualCenter: Infrastructure management software. Targeted at x86 clusters: Connected by a LAN. Example: VMWare VMotion Live migration: 1. Check that the VM is running stably. 2. Base copy: Copy VM memory to the destination host. Mark copied pages with a flag. Continue execution. 3. When the base copy finishes, suspend the VM on the source host. 18

19 Example: VMWare VMotion 4. Final copy: Sending the incremental capsule: Containing all pages that changed since the base copy. 5. Restart the VM: Activate the VM on the new host. Notifies the router of the new physical location of the virtual MAC address. VMotion allows concurrent migrations. Example: VMWare VMotion Limitations: Both nodes need to be on the same cluster, administered by the same VMWare VirtualCenter. The file systems must be identical and hosted at a distributed file system. Both processors must have the same architecture. The applications that are running have to be nondistributed. 19

20 Next Time... Storage in Cloud Platforms 20

Virtualization. Pradipta De pradipta.de@sunykorea.ac.kr

Virtualization. Pradipta De pradipta.de@sunykorea.ac.kr Virtualization Pradipta De pradipta.de@sunykorea.ac.kr Today s Topic Virtualization Basics System Virtualization Techniques CSE506: Ext Filesystem 2 Virtualization? A virtual machine (VM) is an emulation

More information

General Introduction

General Introduction Managed Runtime Technology: General Introduction Xiao-Feng Li (xiaofeng.li@gmail.com) 2012-10-10 Agenda Virtual machines Managed runtime systems EE and MM (JIT and GC) Summary 10/10/2012 Managed Runtime

More information

Introduction to Virtual Machines

Introduction to Virtual Machines Introduction to Virtual Machines Introduction Abstraction and interfaces Virtualization Computer system architecture Process virtual machines System virtual machines 1 Abstraction Mechanism to manage complexity

More information

Cloud Computing #6 - Virtualization

Cloud Computing #6 - Virtualization Cloud Computing #6 - Virtualization Main source: Smith & Nair, Virtual Machines, Morgan Kaufmann, 2005 Today What do we mean by virtualization? Why is it important to cloud? What is the penalty? Current

More information

Virtualization. Types of Interfaces

Virtualization. Types of Interfaces Virtualization Virtualization: extend or replace an existing interface to mimic the behavior of another system. Introduced in 1970s: run legacy software on newer mainframe hardware Handle platform diversity

More information

Virtual Machines. Virtual Machines

Virtual Machines. Virtual Machines Virtual Machines Virtual Machines What is a virtual machine? Examples? Benefits? 1 Virtualization Creation of an isomorphism that maps a virtual guest system to a real host: Maps guest state S to host

More information

COM 444 Cloud Computing

COM 444 Cloud Computing COM 444 Cloud Computing Lec 3: Virtual Machines and Virtualization of Clusters and Datacenters Prof. Dr. Halûk Gümüşkaya haluk.gumuskaya@gediz.edu.tr haluk@gumuskaya.com http://www.gumuskaya.com Virtual

More information

VMware and CPU Virtualization Technology. Jack Lo Sr. Director, R&D

VMware and CPU Virtualization Technology. Jack Lo Sr. Director, R&D ware and CPU Virtualization Technology Jack Lo Sr. Director, R&D This presentation may contain ware confidential information. Copyright 2005 ware, Inc. All rights reserved. All other marks and names mentioned

More information

Chapter 14 Virtual Machines

Chapter 14 Virtual Machines Operating Systems: Internals and Design Principles Chapter 14 Virtual Machines Eighth Edition By William Stallings Virtual Machines (VM) Virtualization technology enables a single PC or server to simultaneously

More information

System Virtual Machines

System Virtual Machines System Virtual Machines Introduction Key concepts Resource virtualization processors memory I/O devices Performance issues Applications 1 Introduction System virtual machine capable of supporting multiple

More information

Full and Para Virtualization

Full and Para Virtualization Full and Para Virtualization Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF x86 Hardware Virtualization The x86 architecture offers four levels

More information

Multi-core Programming System Overview

Multi-core Programming System Overview Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

System Structures. Services Interface Structure

System Structures. Services Interface Structure System Structures Services Interface Structure Operating system services (1) Operating system services (2) Functions that are helpful to the user User interface Command line interpreter Batch interface

More information

COS 318: Operating Systems. Virtual Machine Monitors

COS 318: Operating Systems. Virtual Machine Monitors COS 318: Operating Systems Virtual Machine Monitors Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Introduction u Have

More information

Distributed and Cloud Computing

Distributed and Cloud Computing Distributed and Cloud Computing K. Hwang, G. Fox and J. Dongarra Chapter 3: Virtual Machines and Virtualization of Clusters and datacenters Adapted from Kai Hwang University of Southern California March

More information

A Unified View of Virtual Machines

A Unified View of Virtual Machines A Unified View of Virtual Machines First ACM/USENIX Conference on Virtual Execution Environments J. E. Smith June 2005 Introduction Why are virtual machines interesting? They allow transcending of interfaces

More information

Chapter 5 Cloud Resource Virtualization

Chapter 5 Cloud Resource Virtualization Chapter 5 Cloud Resource Virtualization Contents Virtualization. Layering and virtualization. Virtual machine monitor. Virtual machine. Performance and security isolation. Architectural support for virtualization.

More information

Virtual Machine Security

Virtual Machine Security Virtual Machine Security CSE497b - Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497b-s07/ 1 Operating System Quandary Q: What is the primary goal

More information

12. Introduction to Virtual Machines

12. Introduction to Virtual Machines 12. Introduction to Virtual Machines 12. Introduction to Virtual Machines Modern Applications Challenges of Virtual Machine Monitors Historical Perspective Classification 332 / 352 12. Introduction to

More information

Restraining Execution Environments

Restraining Execution Environments Restraining Execution Environments Segurança em Sistemas Informáticos André Gonçalves Contents Overview Java Virtual Machine: Overview The Basic Parts Security Sandbox Mechanisms Sandbox Memory Native

More information

Basics in Energy Information (& Communication) Systems Virtualization / Virtual Machines

Basics in Energy Information (& Communication) Systems Virtualization / Virtual Machines Basics in Energy Information (& Communication) Systems Virtualization / Virtual Machines Dr. Johann Pohany, Virtualization Virtualization deals with extending or replacing an existing interface so as to

More information

Outline. Outline. Why virtualization? Why not virtualize? Today s data center. Cloud computing. Virtual resource pool

Outline. Outline. Why virtualization? Why not virtualize? Today s data center. Cloud computing. Virtual resource pool Outline CS 6V81-05: System Security and Malicious Code Analysis Overview of System ization: The most powerful platform for program analysis and system security Zhiqiang Lin Department of Computer Science

More information

An Overview of Virtual Machine Architectures

An Overview of Virtual Machine Architectures An Overview of Virtual Machine Architectures J. E. Smith October 27, 2001 1 Introduction When early computer systems were being developed, hardware was designed first, and machine-level software followed.

More information

Chapter 16: Virtual Machines. Operating System Concepts 9 th Edition

Chapter 16: Virtual Machines. Operating System Concepts 9 th Edition Chapter 16: Virtual Machines Silberschatz, Galvin and Gagne 2013 Chapter 16: Virtual Machines Overview History Benefits and Features Building Blocks Types of Virtual Machines and Their Implementations

More information

Virtualization. Jukka K. Nurminen 23.9.2015

Virtualization. Jukka K. Nurminen 23.9.2015 Virtualization Jukka K. Nurminen 23.9.2015 Virtualization Virtualization refers to the act of creating a virtual (rather than actual) version of something, including virtual computer hardware platforms,

More information

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 3, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts

More information

Virtual Machines. www.viplavkambli.com

Virtual Machines. www.viplavkambli.com 1 Virtual Machines A virtual machine (VM) is a "completely isolated guest operating system installation within a normal host operating system". Modern virtual machines are implemented with either software

More information

Operating Systems Design 23. Virtualization

Operating Systems Design 23. Virtualization Operating Systems Design 23. Virtualization Paul Krzyzanowski pxk@cs.rutgers.edu 1 Virtualization Memory virtualization Process feels like it has its own address space Created by MMU, configured by OS

More information

Data Centers and Cloud Computing

Data Centers and Cloud Computing Data Centers and Cloud Computing CS377 Guest Lecture Tian Guo 1 Data Centers and Cloud Computing Intro. to Data centers Virtualization Basics Intro. to Cloud Computing Case Study: Amazon EC2 2 Data Centers

More information

Virtual Computing and VMWare. Module 4

Virtual Computing and VMWare. Module 4 Virtual Computing and VMWare Module 4 Virtual Computing Cyber Defense program depends on virtual computing We will use it for hands-on learning Cyber defense competition will be hosted on a virtual computing

More information

Jonathan Worthington Scarborough Linux User Group

Jonathan Worthington Scarborough Linux User Group Jonathan Worthington Scarborough Linux User Group Introduction What does a Virtual Machine do? Hides away the details of the hardware platform and operating system. Defines a common set of instructions.

More information

Virtualization and the U2 Databases

Virtualization and the U2 Databases Virtualization and the U2 Databases Brian Kupzyk Senior Technical Support Engineer for Rocket U2 Nik Kesic Lead Technical Support for Rocket U2 Opening Procedure Orange arrow allows you to manipulate the

More information

How do Users and Processes interact with the Operating System? Services for Processes. OS Structure with Services. Services for the OS Itself

How do Users and Processes interact with the Operating System? Services for Processes. OS Structure with Services. Services for the OS Itself How do Users and Processes interact with the Operating System? Users interact indirectly through a collection of system programs that make up the operating system interface. The interface could be: A GUI,

More information

Lecture 2 Cloud Computing & Virtualization. Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu

Lecture 2 Cloud Computing & Virtualization. Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Lecture 2 Cloud Computing & Virtualization Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Outline Introduction to Virtualization The Major Approaches

More information

Virtualization Technology. Zhiming Shen

Virtualization Technology. Zhiming Shen Virtualization Technology Zhiming Shen Virtualization: rejuvenation 1960 s: first track of virtualization Time and resource sharing on expensive mainframes IBM VM/370 Late 1970 s and early 1980 s: became

More information

Xen and the Art of. Virtualization. Ian Pratt

Xen and the Art of. Virtualization. Ian Pratt Xen and the Art of Virtualization Ian Pratt Keir Fraser, Steve Hand, Christian Limpach, Dan Magenheimer (HP), Mike Wray (HP), R Neugebauer (Intel), M Williamson (Intel) Computer Laboratory Outline Virtualization

More information

nanohub.org An Overview of Virtualization Techniques

nanohub.org An Overview of Virtualization Techniques An Overview of Virtualization Techniques Renato Figueiredo Advanced Computing and Information Systems (ACIS) Electrical and Computer Engineering University of Florida NCN/NMI Team 2/3/2006 1 Outline Resource

More information

Fachbereich Informatik und Elektrotechnik SunSPOT. Ubiquitous Computing. Ubiquitous Computing, Helmut Dispert

Fachbereich Informatik und Elektrotechnik SunSPOT. Ubiquitous Computing. Ubiquitous Computing, Helmut Dispert Ubiquitous Computing Ubiquitous Computing The Sensor Network System Sun SPOT: The Sun Small Programmable Object Technology Technology-Based Wireless Sensor Networks a Java Platform for Developing Applications

More information

Hypervisors. Introduction. Introduction. Introduction. Introduction. Introduction. Credits:

Hypervisors. Introduction. Introduction. Introduction. Introduction. Introduction. Credits: Hypervisors Credits: P. Chaganti Xen Virtualization A practical handbook D. Chisnall The definitive guide to Xen Hypervisor G. Kesden Lect. 25 CS 15-440 G. Heiser UNSW/NICTA/OKL Virtualization is a technique

More information

x86 ISA Modifications to support Virtual Machines

x86 ISA Modifications to support Virtual Machines x86 ISA Modifications to support Virtual Machines Douglas Beal Ashish Kumar Gupta CSE 548 Project Outline of the talk Review of Virtual Machines What complicates Virtualization Technique for Virtualization

More information

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters Interpreters and virtual machines Michel Schinz 2007 03 23 Interpreters Interpreters Why interpreters? An interpreter is a program that executes another program, represented as some kind of data-structure.

More information

Basics of Virtualisation

Basics of Virtualisation Basics of Virtualisation Volker Büge Institut für Experimentelle Kernphysik Universität Karlsruhe Die Kooperation von The x86 Architecture Why do we need virtualisation? x86 based operating systems are

More information

CS 695 Topics in Virtualization and Cloud Computing. More Introduction + Processor Virtualization

CS 695 Topics in Virtualization and Cloud Computing. More Introduction + Processor Virtualization CS 695 Topics in Virtualization and Cloud Computing More Introduction + Processor Virtualization (source for all images: Virtual Machines: Versatile Platforms for Systems and Processes Morgan Kaufmann;

More information

CSCI E 98: Managed Environments for the Execution of Programs

CSCI E 98: Managed Environments for the Execution of Programs CSCI E 98: Managed Environments for the Execution of Programs Draft Syllabus Instructor Phil McGachey, PhD Class Time: Mondays beginning Sept. 8, 5:30-7:30 pm Location: 1 Story Street, Room 304. Office

More information

Virtual Machines. Adapted from J.S. Smith and R. Nair, VIRTUAL MACHINES, Morgan-Kaufmann 2005. Teodor Rus. rus@cs.uiowa.edu

Virtual Machines. Adapted from J.S. Smith and R. Nair, VIRTUAL MACHINES, Morgan-Kaufmann 2005. Teodor Rus. rus@cs.uiowa.edu Virtual Machines Adapted from J.S. Smith and R. Nair, VIRTUAL MACHINES, Morgan-Kaufmann 2005 Teodor Rus rus@cs.uiowa.edu The University of Iowa, Department of Computer Science Introduction to System Software

More information

COS 318: Operating Systems

COS 318: Operating Systems COS 318: Operating Systems OS Structures and System Calls Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Outline Protection mechanisms

More information

The Xen of Virtualization

The Xen of Virtualization The Xen of Virtualization Assignment for CLC-MIRI Amin Khan Universitat Politècnica de Catalunya March 4, 2013 Amin Khan (UPC) Xen Hypervisor March 4, 2013 1 / 19 Outline 1 Introduction 2 Architecture

More information

Clouds Under the Covers. Elgazzar - CISC 886 - Fall 2014 1

Clouds Under the Covers. Elgazzar - CISC 886 - Fall 2014 1 Clouds Under the Covers KHALID ELGAZZAR GOODWIN 531 ELGAZZAR@CS.QUEENSU.CA Elgazzar - CISC 886 - Fall 2014 1 References Understanding Full Virtualization, Paravirtualization, and Hardware Assist White

More information

Distributed Systems. Virtualization. Paul Krzyzanowski pxk@cs.rutgers.edu

Distributed Systems. Virtualization. Paul Krzyzanowski pxk@cs.rutgers.edu Distributed Systems Virtualization Paul Krzyzanowski pxk@cs.rutgers.edu Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License. Virtualization

More information

Virtualization. Dr. Yingwu Zhu

Virtualization. Dr. Yingwu Zhu Virtualization Dr. Yingwu Zhu What is virtualization? Virtualization allows one computer to do the job of multiple computers. Virtual environments let one computer host multiple operating systems at the

More information

Virtual Servers. Virtual machines. Virtualization. Design of IBM s VM. Virtual machine systems can give everyone the OS (and hardware) that they want.

Virtual Servers. Virtual machines. Virtualization. Design of IBM s VM. Virtual machine systems can give everyone the OS (and hardware) that they want. Virtual machines Virtual machine systems can give everyone the OS (and hardware) that they want. IBM s VM provided an exact copy of the hardware to the user. Virtual Servers Virtual machines are very widespread.

More information

TechTarget Windows Media

TechTarget Windows Media TechTarget Windows Media SearchWinIT.com SearchExchange.com SearchSQLServer.com SearchEnterpriseDesktop.com SearchWindowsServer.com SearchDomino.com LabMice.net E-Guide Hyper-V: What you need to know before

More information

Introduction to Virtual Machines

Introduction to Virtual Machines Introduction to Virtual Machines Carl Waldspurger (SB SM 89, PhD 95), VMware R&D 2010 VMware Inc. All rights reserved Overview Virtualization and VMs Processor Virtualization Memory Virtualization I/O

More information

MODULE 3 VIRTUALIZED DATA CENTER COMPUTE

MODULE 3 VIRTUALIZED DATA CENTER COMPUTE MODULE 3 VIRTUALIZED DATA CENTER COMPUTE Module 3: Virtualized Data Center Compute Upon completion of this module, you should be able to: Describe compute virtualization Discuss the compute virtualization

More information

The Art of Virtualization with Free Software

The Art of Virtualization with Free Software Master on Free Software 2009/2010 {mvidal,jfcastro}@libresoft.es GSyC/Libresoft URJC April 24th, 2010 (cc) 2010. Some rights reserved. This work is licensed under a Creative Commons Attribution-Share Alike

More information

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University Virtual Machine Monitors Dr. Marc E. Fiuczynski Research Scholar Princeton University Introduction Have been around since 1960 s on mainframes used for multitasking Good example VM/370 Have resurfaced

More information

Microkernels, virtualization, exokernels. Tutorial 1 CSC469

Microkernels, virtualization, exokernels. Tutorial 1 CSC469 Microkernels, virtualization, exokernels Tutorial 1 CSC469 Monolithic kernel vs Microkernel Monolithic OS kernel Application VFS System call User mode What was the main idea? What were the problems? IPC,

More information

The Design of the Inferno Virtual Machine. Introduction

The Design of the Inferno Virtual Machine. Introduction The Design of the Inferno Virtual Machine Phil Winterbottom Rob Pike Bell Labs, Lucent Technologies {philw, rob}@plan9.bell-labs.com http://www.lucent.com/inferno Introduction Virtual Machine are topical

More information

Replication on Virtual Machines

Replication on Virtual Machines Replication on Virtual Machines Siggi Cherem CS 717 November 23rd, 2004 Outline 1 Introduction The Java Virtual Machine 2 Napper, Alvisi, Vin - DSN 2003 Introduction JVM as state machine Addressing non-determinism

More information

Nested Virtualization

Nested Virtualization Nested Virtualization Dongxiao Xu, Xiantao Zhang, Yang Zhang May 9, 2013 Agenda Nested Virtualization Overview Dive into Nested Virtualization Details Nested CPU Virtualization Nested MMU Virtualization

More information

Virtualization for Cloud Computing

Virtualization for Cloud Computing Virtualization for Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF CLOUD COMPUTING On demand provision of computational resources

More information

Virtual Machines. Virtualization

Virtual Machines. Virtualization Virtual Machines Marie Roch Tanenbaum 8.3 contains slides from: Tanenbaum 3 rd ed. 2008 1 Virtualization Started with the IBM System/360 in the 1960s Basic concept simulate multiple copies of the underlying

More information

Virtual machines and operating systems

Virtual machines and operating systems V i r t u a l m a c h i n e s a n d o p e r a t i n g s y s t e m s Virtual machines and operating systems Krzysztof Lichota lichota@mimuw.edu.pl A g e n d a Virtual machines and operating systems interactions

More information

ELEC 377. Operating Systems. Week 1 Class 3

ELEC 377. Operating Systems. Week 1 Class 3 Operating Systems Week 1 Class 3 Last Class! Computer System Structure, Controllers! Interrupts & Traps! I/O structure and device queues.! Storage Structure & Caching! Hardware Protection! Dual Mode Operation

More information

Computer System Structure

Computer System Structure Computer System Structure Reading: Silberschatz chapter 3 Additional Reading: Stallings chapter 2 EEL 602 1 Outline OS Services User Interfaces System Call OS Design OS Implementation System Structure

More information

Virtualization. Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/

Virtualization. Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/ Virtualization Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/ What is Virtualization? Virtualization is the simulation of the software and/ or hardware upon which other software runs. This

More information

Cloud Computing CS 15-319

Cloud Computing CS 15-319 Cloud Computing CS 15-319 Virtualization Case Studies : Xen and VMware Lecture 20 Majd F. Sakr, Mohammad Hammoud and Suhail Rehman 1 Today Last session Resource Virtualization Today s session Virtualization

More information

Agent Languages. Overview. Requirements. Java. Tcl/Tk. Telescript. Evaluation. Artificial Intelligence Intelligent Agents

Agent Languages. Overview. Requirements. Java. Tcl/Tk. Telescript. Evaluation. Artificial Intelligence Intelligent Agents Agent Languages Requirements Overview Java Tcl/Tk Telescript Evaluation Franz J. Kurfess, Cal Poly SLO 211 Requirements for agent Languages distributed programming large-scale (tens of thousands of computers)

More information

An Overview of Virtual Machine Architectures

An Overview of Virtual Machine Architectures An Overview of Virtual Machine Architectures J. E. Smith and Ravi Nair Excerpt from Virtual Machines: Architectures, Implementations and Applications, to be published by Morgan Kaufmann Publishers, 2004.

More information

CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies. Virtualization of Clusters and Data Centers

CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies. Virtualization of Clusters and Data Centers CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies Lecture 4 Virtualization of Clusters and Data Centers Text Book: Distributed and Cloud Computing, by K. Hwang, G C. Fox, and J.J. Dongarra,

More information

COS 318: Operating Systems. Virtual Machine Monitors

COS 318: Operating Systems. Virtual Machine Monitors COS 318: Operating Systems Virtual Machine Monitors Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Introduction Have been around

More information

KVM: A Hypervisor for All Seasons. Avi Kivity avi@qumranet.com

KVM: A Hypervisor for All Seasons. Avi Kivity avi@qumranet.com KVM: A Hypervisor for All Seasons Avi Kivity avi@qumranet.com November 2007 Virtualization Simulation of computer system in software Components Processor: register state, instructions, exceptions Memory

More information

Virtualization. Explain how today s virtualization movement is actually a reinvention

Virtualization. Explain how today s virtualization movement is actually a reinvention Virtualization Learning Objectives Explain how today s virtualization movement is actually a reinvention of the past. Explain how virtualization works. Discuss the technical challenges to virtualization.

More information

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Kurt Klemperer, Principal System Performance Engineer kklemperer@blackboard.com Agenda Session Length:

More information

Chapter 2 System Structures

Chapter 2 System Structures Chapter 2 System Structures Operating-System Structures Goals: Provide a way to understand an operating systems Services Interface System Components The type of system desired is the basis for choices

More information

Jukka Ylitalo Tik-79.5401 TKK, April 24, 2006

Jukka Ylitalo Tik-79.5401 TKK, April 24, 2006 Rich Uhlig, et.al, Intel Virtualization Technology, Computer, published by the IEEE Computer Society, Volume 38, Issue 5, May 2005. Pages 48 56. Jukka Ylitalo Tik-79.5401 TKK, April 24, 2006 Outline of

More information

Enterprise-Class Virtualization with Open Source Technologies

Enterprise-Class Virtualization with Open Source Technologies Enterprise-Class Virtualization with Open Source Technologies Alex Vasilevsky CTO & Founder Virtual Iron Software June 14, 2006 Virtualization Overview Traditional x86 Architecture Each server runs single

More information

Virtualization. Introduction to Virtualization Virtual Appliances Benefits to Virtualization Example Virtualization Products

Virtualization. Introduction to Virtualization Virtual Appliances Benefits to Virtualization Example Virtualization Products Virtualization Originally prepared by Greg Bosch; last modified April 2012 by B. Davison I. Introduction to Virtualization II. Virtual Appliances III. Benefits to Virtualization IV. Example Virtualization

More information

Mobile Application Languages XML, Java, J2ME and JavaCard Lesson 04 Java

Mobile Application Languages XML, Java, J2ME and JavaCard Lesson 04 Java Mobile Application Languages XML, Java, J2ME and JavaCard Lesson 04 Java Oxford University Press 2007. All rights reserved. 1 C and C++ C and C++ with in-line-assembly, Visual Basic, and Visual C++ the

More information

Virtualization. ! Physical Hardware. ! Software. ! Isolation. ! Software Abstraction. ! Encapsulation. ! Virtualization Layer. !

Virtualization. ! Physical Hardware. ! Software. ! Isolation. ! Software Abstraction. ! Encapsulation. ! Virtualization Layer. ! Starting Point: A Physical Machine Virtualization Based on materials from: Introduction to Virtual Machines by Carl Waldspurger Understanding Intel Virtualization Technology (VT) by N. B. Sahgal and D.

More information

CS 695 Topics in Virtualization and Cloud Computing. Introduction

CS 695 Topics in Virtualization and Cloud Computing. Introduction CS 695 Topics in Virtualization and Cloud Computing Introduction This class What does virtualization and cloud computing mean? 2 Cloud Computing The in-vogue term Everyone including his/her dog want something

More information

CS 695 Topics in Virtualization and Cloud Computing and Storage Systems. Introduction

CS 695 Topics in Virtualization and Cloud Computing and Storage Systems. Introduction CS 695 Topics in Virtualization and Cloud Computing and Storage Systems Introduction Hot or not? source: Gartner Hype Cycle for Emerging Technologies, 2014 2 Source: http://geekandpoke.typepad.com/ 3 Cloud

More information

CSE490H: Virtualization

CSE490H: Virtualization CSE490H: Virtualization It s turtles all the way down Steve Gribble Associate Professor, CSE [on sabbatical at Google as a visiting scientist] 1 Some simple terms a virtual machine: a software-based implementation

More information

language 1 (source) compiler language 2 (target) Figure 1: Compiling a program

language 1 (source) compiler language 2 (target) Figure 1: Compiling a program CS 2112 Lecture 27 Interpreters, compilers, and the Java Virtual Machine 1 May 2012 Lecturer: Andrew Myers 1 Interpreters vs. compilers There are two strategies for obtaining runnable code from a program

More information

Chapter 3 Operating-System Structures

Chapter 3 Operating-System Structures Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines:

Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines: Virtual Machines Uses for Virtual Machines Virtual machine technology, often just called virtualization, makes one computer behave as several computers by sharing the resources of a single computer between

More information

Enabling Technologies for Distributed Computing

Enabling Technologies for Distributed Computing Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies

More information

Experimental Evaluation of Distributed Middleware with a Virtualized Java Environment

Experimental Evaluation of Distributed Middleware with a Virtualized Java Environment Experimental Evaluation of Distributed Middleware with a Virtualized Java Environment Nuno A. Carvalho, João Bordalo, Filipe Campos and José Pereira HASLab / INESC TEC Universidade do Minho MW4SOC 11 December

More information

Virtualization. P. A. Wilsey. The text highlighted in green in these slides contain external hyperlinks. 1 / 16

Virtualization. P. A. Wilsey. The text highlighted in green in these slides contain external hyperlinks. 1 / 16 Virtualization P. A. Wilsey The text highlighted in green in these slides contain external hyperlinks. 1 / 16 Conventional System Viewed as Layers This illustration is a common presentation of the application/operating

More information

Security Overview of the Integrity Virtual Machines Architecture

Security Overview of the Integrity Virtual Machines Architecture Security Overview of the Integrity Virtual Machines Architecture Introduction... 2 Integrity Virtual Machines Architecture... 2 Virtual Machine Host System... 2 Virtual Machine Control... 2 Scheduling

More information

Virtual Machines Fact Sheet

Virtual Machines Fact Sheet Terms Virtual Machines Fact Sheet T1: Host The underlying hardware systems that runs a virtual machine. T2: Virtual Machine Manager (VMM) Also known as a hypervisor, the VMM provides an interface that

More information

Virtualization with Windows

Virtualization with Windows Virtualization with Windows at CERN Juraj Sucik, Emmanuel Ormancey Internet Services Group Agenda Current status of IT-IS group virtualization service Server Self Service New virtualization features in

More information

The Hotspot Java Virtual Machine: Memory and Architecture

The Hotspot Java Virtual Machine: Memory and Architecture International Journal of Allied Practice, Research and Review Website: www.ijaprr.com (ISSN 2350-1294) The Hotspot Java Virtual Machine: Memory and Architecture Prof. Tejinder Singh Assistant Professor,

More information

Instruction Set Design

Instruction Set Design Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,

More information

Development of Type-2 Hypervisor for MIPS64 Based Systems

Development of Type-2 Hypervisor for MIPS64 Based Systems Development of Type-2 Hypervisor for MIPS64 Based Systems High Performance Computing and Networking Lab Al-Khwarizmi Institute of Computer Science University of Engineering & Technology Lahore Pakistan

More information

Virtualization for Future Internet

Virtualization for Future Internet Virtualization for Future Internet 2010.02.23 Korea University Chuck Yoo (hxy@os.korea.ac.kr) Why Virtualization Internet today Pro and con Your wonderful research results Mostly with simulation Deployment

More information

02 B The Java Virtual Machine

02 B The Java Virtual Machine 02 B The Java Virtual Machine CS1102S: Data Structures and Algorithms Martin Henz January 22, 2010 Generated on Friday 22 nd January, 2010, 09:46 CS1102S: Data Structures and Algorithms 02 B The Java Virtual

More information

Lecture 1 Introduction to Android

Lecture 1 Introduction to Android These slides are by Dr. Jaerock Kwon at. The original URL is http://kettering.jrkwon.com/sites/default/files/2011-2/ce-491/lecture/alecture-01.pdf so please use that instead of pointing to this local copy

More information

VMware Server 2.0 Essentials. Virtualization Deployment and Management

VMware Server 2.0 Essentials. Virtualization Deployment and Management VMware Server 2.0 Essentials Virtualization Deployment and Management . This PDF is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved.

More information

Computer Virtualization in Practice

Computer Virtualization in Practice Computer Virtualization in Practice [ life between virtual and physical ] A. Németh University of Applied Sciences, Oulu, Finland andras.nemeth@students.oamk.fi ABSTRACT This paper provides an overview

More information