Massive scale analytics with Stratosphere using R

Size: px
Start display at page:

Download "Massive scale analytics with Stratosphere using R"

Transcription

1 Massive scale analytics with Stratosphere using R Jose Luis Lopez Pino Database Systems and Information Management Technische Universität Berlin Supervised by Volker Markl Advised by Marcus Leich, Kostas Tzoumas August 28, 2014

2 Introduction Jose Luis Lopez Pino 2

3 Data analysis to the masses Deep analytics 1 : sophisticated statistical methods like linear models, clustering or classification that frequently are used to extract knowledge from the data. Data warehousing and BI can t answer all the questions. The ever-growing number of new data sources and tools make it worse. There is demand for this questions. In small scale: data pipelining tools (RapidMiner) and numerical computing environments (R, Matlab or SPSS). Big data brings new opportunities to the market but also presents unfamiliar challenges. 1 Sudipto Das, Yannis Sismanis, Kevin S Beyer, Rainer Gemulla, Peter J Haas, and John McPherson. Ricardo: integrating r and hadoop. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pages ACM, 2010 Jose Luis Lopez Pino 3

4 Options R: R is a numerical computing environment and DSL for stats. Not a query language unlike SQL. Succesful for small scale (in combination with CRAN packages). MapReduce/Hadoop: Highly parallel programs but lack of expressivity. HDFS: a de-facto standard to store big amounts of data. Stratosphere: Platform for massively parallel computing / big data analytics. PACT: MapReduce + New operators + Iterations. Jose Luis Lopez Pino 4

5 Basic terms and definitions KDD is compound of nine steps: understanding the domain and the goals, creating the target source, cleaning and processing the source, data reduction and projection, choosing a data mining method, choosing the data mining algorithm, mining the data, interpretation of the patterns. Figure: Overview of the process 2 2 Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd process for extracting useful knowledge from volumes of data. Commun. ACM, 39(11):27 34, November 1996 Jose Luis Lopez Pino 5

6 Motivation Jose Luis Lopez Pino 6

7 Clustering Jose Luis Lopez Pino 7

8 Classification Jose Luis Lopez Pino 8

9 Frequent Terms Jose Luis Lopez Pino 9

10 Writing massively parallel programs It is a cumbersome and onerous process. We need of single tools. We need tools that can process from a small amount of data up to very large volumes. The majority of data researchers are strongly skilled in R and statistics and poorly skills in Big Data systems and implementation of machine learning algorithm. 3 4 Although Stratosphere offers a more expressive interface, writing a parallel program is still not a trivial job. 3 Harlan Harris, Sean Murphy, and Marck Vaisman. Analyzing the Analyzers: An Introspective Survey of Data Scientists and Their Work. O Reilly Media, Inc., Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. Enterprise data analysis and visualization: An interview study. Visualization and Computer Graphics, IEEE Transactions on, 18(12): , 2012 Jose Luis Lopez Pino 10

11 Relation with the KDD process Data extraction is covered by other solutions. Pre-processing and transformation seem difficult. Data mining: where we have a competitive advantage. Data visualization is a different problem. Jose Luis Lopez Pino 11

12 Design goals Easiness: ready-to-use algorithms. Design a library. Facilitate working with data. Easy to distribute. Focus on algorithms that scale. Jose Luis Lopez Pino 12

13 Our approach Jose Luis Lopez Pino 13

14 Architecture Jose Luis Lopez Pino 14

15 Architecture Jose Luis Lopez Pino 15

16 Library: Goals Classification, clustering and regression. No Free Lunch Theorem: more than one algorithm. Presence in other ML libraries. Large-scale. Ensemble scenarios. Jose Luis Lopez Pino 16

17 Library: Example Jose Luis Lopez Pino 17

18 R package Easy to distribute. Organized in namespaces. Submitting jobs to the cluster. Working with files. Mining. Configuration. Jose Luis Lopez Pino 18

19 Introduction Motivation Our approach Related work Conclusions and Future Work Example: Code Jose Luis Lopez Pino 19

20 Example: Non-parallel classification example

21 Example: Parallel classification example

22 Example: Parallel clustering example

23 Performance Competitive and even faster than native R programs thanks to the pipelining for every parallelizable programs in the same (small) file size range. Competitive with R for data mining tasks with a lot of iterations in the same file size range. Able to process files of a volume that is inaccessible for R. Able to scale to gigabyte level without significant loss. Jose Luis Lopez Pino 23

24 Performance: Frequent Terms example Jose Luis Lopez Pino 24

25 Performance: Most favorable case to R Figure: KMeans 100 iterations

26 Performance: Breakdown example Figure: Clustering example nonparallel breakdown (Time in seconds) Jose Luis Lopez Pino 26

27 Performance: Scalability example Figure: Frequent Terms parallel scalability Jose Luis Lopez Pino 27

28 Related work Jose Luis Lopez Pino 28

29 Data mining libraries Don t scale: Weka and sci-kit. Large-scale:. Mahout: limited set of problems. MLlib: also facilitates implementation of new algorithms. Oryx. In-database: MADlib and PivotalR. Jose Luis Lopez Pino 29

30 Data intensive computation with R External memory. Don t scale-out: biglm, bigmemory, ff, foreach. RevoScaleR: xdf files and Hadoop. Divide and recombine: it s necessary to use the MR model. Query languages: Limited expressivity. Good for the first step of the KDD process. Distributed collection manipulation: Limited set of operators. Presto and SparkR. Jose Luis Lopez Pino 30

31 Conclusions and Future Work Jose Luis Lopez Pino 31

32 Conclusion Contributions:. Library definition. File manipulation and cluster interaction. Scenarios that proof the concept. Code very similar to the original one. Promising performance evaluation. Jose Luis Lopez Pino 32

33 Future work Improvements in the library. Hybrid approaches. Distributed evaluation. Improvements in the architecture. Jose Luis Lopez Pino 33

34 Essential bibliography Sudipto Das, Yannis Sismanis, Kevin S Beyer, Rainer Gemulla, Peter J Haas, and John McPherson. Ricardo: integrating r and hadoop. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pages ACM, 2010 Hadley Wickham. Advanced R Programming. CRC Press, To appear Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinlnder, MatthiasJ. Sax, Sebastian Schelter, Mareike Hger, Kostas Tzoumas, and Daniel Warneke. The stratosphere platform for big data analytics. The VLDB Journal, pages 1 26, 2014 Hai Qian. Pivotalr: A package for machine learning on big data. The R Journal, 6(1):57 67, June 2014 Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd process for extracting useful knowledge from volumes of data. Commun. ACM, 39(11):27 34, November 1996

35 Recap 1 Introduction Data analysis to the masses Options Basic terms and definitions 2 Motivation Motivating problems Writing massively parallel programs Relation with the KDD process Design goals 3 Our approach Architecture Library R package Example Performance 4 Related work Data mining libraries Data intensive computation with R 5 Conclusions and Future Work Conclusion Future work Essential bibliography

Analysis Pipelines for Benchmarking Big Data Systems

Analysis Pipelines for Benchmarking Big Data Systems Analysis Pipelines for Benchmarking Big Data Systems Thomas Bodner thomas.o.bodner@campus.tu-berlin.de Ref. Code: Berlin_EN_2182, Suggested starting date: May 15, 2013 Today, practically everyone ranging

More information

Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p.

Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p. Introduction p. xvii Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p. 9 State of the Practice in Analytics p. 11 BI Versus

More information

Memory Management in BigData

Memory Management in BigData Memory Management in BigData Yanish Pradhananga 1, Shridevi C. Karande 2 1 Student, Maharashtra Institute of Technology, Pune 411038, India 2 Assistant Professor, Maharashtra Institute of Technology, Pune

More information

Workflow Management System for Stratosphere

Workflow Management System for Stratosphere Workflow Management System for Stratosphere 1 THESIS PRESENTATION BY SURYAMITA HARINDRARI SEPTEMBER 5 TH, 2014 THESIS ADVISOR: ASTERIOS KATSIFODIMOS, PHD THESIS SUPERVISOR: PROF. DR. VOLKER MARKL DATABASE

More information

PivotalR: A Package for Machine Learning on Big Data

PivotalR: A Package for Machine Learning on Big Data PivotalR: A Package for Machine Learning on Big Data Hai Qian Predictive Analytics Team, Pivotal Inc. madlib@gopivotal.com Copyright 2013 Pivotal. All rights reserved. What Can Small Data Scientists Bring

More information

SEIZE THE DATA. 2015 SEIZE THE DATA. 2015

SEIZE THE DATA. 2015 SEIZE THE DATA. 2015 1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation

More information

Collaborative Filtering Scalable Data Analysis Algorithms Claudia Lehmann, Andrina Mascher

Collaborative Filtering Scalable Data Analysis Algorithms Claudia Lehmann, Andrina Mascher Collaborative Filtering Scalable Data Analysis Algorithms Claudia Lehmann, Andrina Mascher Outline 2 1. Retrospection 2. Stratosphere Plans 3. Comparison with Hadoop 4. Evaluation 5. Outlook Retrospection

More information

Architectures for Big Data Analytics A database perspective

Architectures for Big Data Analytics A database perspective Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum

More information

EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data

EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data EMC Greenplum Driving the Future of Data Warehousing and Analytics Tools and Technologies for Big Data Steven Hillion V.P. Analytics EMC Data Computing Division 1 Big Data Size: The Volume Of Data Continues

More information

Big Data Research in Berlin BBDC and Apache Flink

Big Data Research in Berlin BBDC and Apache Flink Big Data Research in Berlin BBDC and Apache Flink Tilmann Rabl rabl@tu-berlin.de dima.tu-berlin.de bbdc.berlin 1 2013 Berlin Big Data Center All Rights Reserved DIMA 2015 Agenda About Data Management,

More information

Ontology construction on a cloud computing platform

Ontology construction on a cloud computing platform Ontology construction on a cloud computing platform Exposé for a Bachelor's thesis in Computer science - Knowledge management in bioinformatics Tobias Heintz 1 Motivation 1.1 Introduction PhenomicDB is

More information

Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved.

Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved. Collaborative Big Data Analytics 1 Big Data Is Less About Size, And More About Freedom TechCrunch!!!!!!!!! Total data: bigger than big data 451 Group Findings: Big Data Is More Extreme Than Volume Gartner!!!!!!!!!!!!!!!

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib

More information

Advanced In-Database Analytics

Advanced In-Database Analytics Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??

More information

Index Contents Page No. Introduction . Data Mining & Knowledge Discovery

Index Contents Page No. Introduction . Data Mining & Knowledge Discovery Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.

More information

Comparison of Distributed Data- Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study!

Comparison of Distributed Data- Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study! Comparison of Distributed Data- Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study! Jianwu Wang, Daniel Crawl, Ilkay Altintas! Kostas Tzoumas, Volker Markl! San Diego Supercomputer

More information

Big Data Research in the AMPLab: BDAS and Beyond

Big Data Research in the AMPLab: BDAS and Beyond Big Data Research in the AMPLab: BDAS and Beyond Michael Franklin UC Berkeley 1 st Spark Summit December 2, 2013 UC BERKELEY AMPLab: Collaborative Big Data Research Launched: January 2011, 6 year planned

More information

Scalable Machine Learning - or what to do with all that Big Data infrastructure

Scalable Machine Learning - or what to do with all that Big Data infrastructure - or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection

More information

The Database Systems and Information Management Group at Technische Universität Berlin

The Database Systems and Information Management Group at Technische Universität Berlin Group at Technische Universität Berlin 1 Introduction Group, in German known by the acronym DIMA, is part of the Department of Software Engineering and Theoretical Computer Science at the TU Berlin. It

More information

Data Science in Action

Data Science in Action + Data Science in Action Peerapon Vateekul, Ph.D. Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University + Outlines 2 Data Science & Data Scientist Data Mining Analytics with

More information

Knowledge Discovery and Data Mining 1 (VO) (707.003)

Knowledge Discovery and Data Mining 1 (VO) (707.003) Knowledge Discovery and Data Mining 1 (VO) (707.003) Denis Helic KTI, TU Graz Oct 1, 2015 Denis Helic (KTI, TU Graz) KDDM1 Oct 1, 2015 1 / 55 Lecturer Name: Denis Helic Office: IWT, Inffeldgasse 13, 5th

More information

Data Mining Solutions for the Business Environment

Data Mining Solutions for the Business Environment Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania ruxandra_stefania.petre@yahoo.com Over

More information

Advanced Big Data Analytics with R and Hadoop

Advanced Big Data Analytics with R and Hadoop REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional

More information

The Stratosphere platform for big data analytics

The Stratosphere platform for big data analytics The VLDB Journal DOI 10.1007/s00778-014-0357-y REGULAR PAPER The Stratosphere platform for big data analytics Alexander Alexandrov Rico Bergmann Stephan Ewen Johann-Christoph Freytag Fabian Hueske Arvid

More information

SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics

SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics SAP Brief SAP HANA Objectives Transform Your Future with Better Business Insight Using Predictive Analytics Dealing with the new reality Dealing with the new reality Organizations like yours can identify

More information

The basic data mining algorithms introduced may be enhanced in a number of ways.

The basic data mining algorithms introduced may be enhanced in a number of ways. DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,

More information

Predictive Analytics Powered by SAP HANA. Cary Bourgeois Principal Solution Advisor Platform and Analytics

Predictive Analytics Powered by SAP HANA. Cary Bourgeois Principal Solution Advisor Platform and Analytics Predictive Analytics Powered by SAP HANA Cary Bourgeois Principal Solution Advisor Platform and Analytics Agenda Introduction to Predictive Analytics Key capabilities of SAP HANA for in-memory predictive

More information

In-Memory Analytics for Big Data

In-Memory Analytics for Big Data In-Memory Analytics for Big Data Game-changing technology for faster, better insights WHITE PAPER SAS White Paper Table of Contents Introduction: A New Breed of Analytics... 1 SAS In-Memory Overview...

More information

HiPerDNO. High Performance Computing Technologies for Smart Distribution Network Operation FP7-248135

HiPerDNO. High Performance Computing Technologies for Smart Distribution Network Operation FP7-248135 HiPerDNO High Performance Computing Technologies for Smart Distribution Network Operation FP7-248135 Project coordinator: Dr Gareth Taylor, BU Consortium Members: BU, EF, IBM ISRAEL, University of Oxford,

More information

HiBench Installation. Sunil Raiyani, Jayam Modi

HiBench Installation. Sunil Raiyani, Jayam Modi HiBench Installation Sunil Raiyani, Jayam Modi Last Updated: May 23, 2014 CONTENTS Contents 1 Introduction 1 2 Installation 1 3 HiBench Benchmarks[3] 1 3.1 Micro Benchmarks..............................

More information

Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems

Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems Volker Markl volker.markl@tu-berlin.de dima.tu-berlin.de dfki.de/web/research/iam/ bbdc.berlin Based on my 2014 Vision Paper On

More information

Large-Scale Data Sets Clustering Based on MapReduce and Hadoop

Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE

More information

Some vendors have a big presence in a particular industry; some are geared toward data scientists, others toward business users.

Some vendors have a big presence in a particular industry; some are geared toward data scientists, others toward business users. Bonus Chapter Ten Major Predictive Analytics Vendors In This Chapter Angoss FICO IBM RapidMiner Revolution Analytics Salford Systems SAP SAS StatSoft, Inc. TIBCO This chapter highlights ten of the major

More information

Big Data Analytics. Chances and Challenges. Volker Markl

Big Data Analytics. Chances and Challenges. Volker Markl Volker Markl Professor and Chair Database Systems and Information Management (DIMA), Technische Universität Berlin www.dima.tu-berlin.de Big Data Analytics Chances and Challenges Volker Markl DIMA BDOD

More information

Big Data and Data Science: Behind the Buzz Words

Big Data and Data Science: Behind the Buzz Words Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing

More information

ANALYTICS CENTER LEARNING PROGRAM

ANALYTICS CENTER LEARNING PROGRAM Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, sborkar95@gmail.com Assistant Professor, Information

More information

What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO

What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,

More information

Play with Big Data on the Shoulders of Open Source

Play with Big Data on the Shoulders of Open Source OW2 Open Source Corporate Network Meeting Play with Big Data on the Shoulders of Open Source Liu Jie Technology Center of Software Engineering Institute of Software, Chinese Academy of Sciences 2012-10-19

More information

Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved.

Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved. Mike Maxey Senior Director Product Marketing Greenplum A Division of EMC 1 Greenplum Becomes the Foundation of EMC s Big Data Analytics (July 2010) E M C A C Q U I R E S G R E E N P L U M For three years,

More information

Comparison of Distributed Data-Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study

Comparison of Distributed Data-Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study Comparison of Distributed Data-Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study Jianwu Wang, Daniel Crawl, Ilkay Altintas San Diego Supercomputer Center University of California,

More information

Big Data. Lyle Ungar, University of Pennsylvania

Big Data. Lyle Ungar, University of Pennsylvania Big Data Big data will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus. McKinsey Data Scientist: The Sexiest Job of the 21st Century -

More information

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Part I By Sam Poozhikala, Vice President Customer Solutions at StratApps Inc. 4/4/2014 You may contact Sam Poozhikala at spoozhikala@stratapps.com.

More information

What s next for the Berkeley Data Analytics Stack?

What s next for the Berkeley Data Analytics Stack? What s next for the Berkeley Data Analytics Stack? Michael Franklin June 30th 2014 Spark Summit San Francisco UC BERKELEY AMPLab: Collaborative Big Data Research 60+ Students, Postdocs, Faculty and Staff

More information

Data Science Certificate Program

Data Science Certificate Program Information Technologies Programs Data Science Certificate Program Accelerate Your Career extension.uci.edu/datascience Offered in partnership with University of California, Irvine Extension s professional

More information

Machine Learning and Cloud Computing. trends, issues, solutions. EGI-InSPIRE RI-261323

Machine Learning and Cloud Computing. trends, issues, solutions. EGI-InSPIRE RI-261323 Machine Learning and Cloud Computing trends, issues, solutions Daniel Pop HOST Workshop 2012 Future plans // Tools and methods Develop software package(s)/libraries for scalable, intelligent algorithms

More information

An In-Depth Look at In-Memory Predictive Analytics for Developers

An In-Depth Look at In-Memory Predictive Analytics for Developers September 9 11, 2013 Anaheim, California An In-Depth Look at In-Memory Predictive Analytics for Developers Philip Mugglestone SAP Learning Points Understand the SAP HANA Predictive Analysis library (PAL)

More information

Hadoop Ecosystem B Y R A H I M A.

Hadoop Ecosystem B Y R A H I M A. Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open

More information

Apache Flink Next-gen data analysis. Kostas Tzoumas ktzoumas@apache.org @kostas_tzoumas

Apache Flink Next-gen data analysis. Kostas Tzoumas ktzoumas@apache.org @kostas_tzoumas Apache Flink Next-gen data analysis Kostas Tzoumas ktzoumas@apache.org @kostas_tzoumas What is Flink Project undergoing incubation in the Apache Software Foundation Originating from the Stratosphere research

More information

An Overview of Knowledge Discovery Database and Data mining Techniques

An Overview of Knowledge Discovery Database and Data mining Techniques An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,

More information

The Bloor Group. The Pillars of Data Science

The Bloor Group. The Pillars of Data Science The Pillars of Data Science The Three Pillars DOMAIN KNOWLEDGE The DS/DA needs to know the business STATISTICAL SKILLS Knowing how to use software to analyze data TECHNOLOGY KNOWLEDGE Knowing how to leverage

More information

SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603

SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603 SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business

More information

Introduction to Big Data! with Apache Spark" UC#BERKELEY#

Introduction to Big Data! with Apache Spark UC#BERKELEY# Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"

More information

Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic

Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic Big Data Analytics with Spark and Oscar BAO Tamas Jambor, Lead Data Scientist at Massive Analytic About me Building a scalable Machine Learning platform at MA Worked in Big Data and Data Science in the

More information

Chapter ML:XI. XI. Cluster Analysis

Chapter ML:XI. XI. Cluster Analysis Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster

More information

Dynamic Data in terms of Data Mining Streams

Dynamic Data in terms of Data Mining Streams International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining

More information

Data Mining. Knowledge Discovery, Data Warehousing and Machine Learning Final remarks. Lecturer: JERZY STEFANOWSKI

Data Mining. Knowledge Discovery, Data Warehousing and Machine Learning Final remarks. Lecturer: JERZY STEFANOWSKI Data Mining Knowledge Discovery, Data Warehousing and Machine Learning Final remarks Lecturer: JERZY STEFANOWSKI Email: Jerzy.Stefanowski@cs.put.poznan.pl Data Mining a step in A KDD Process Data mining:

More information

PAXQuery: A Massively Parallel XQuery Processor

PAXQuery: A Massively Parallel XQuery Processor PAXQuery: A Massively Parallel XQuery Processor Jesús Camacho-Rodríguez, Dario Colazzo, Ioana Manolescu To cite this version: Jesús Camacho-Rodríguez, Dario Colazzo, Ioana Manolescu. PAXQuery: A Massively

More information

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web

More information

Azure Data Lake Analytics

Azure Data Lake Analytics Azure Data Lake Analytics Compose and orchestrate data services at scale Fully managed service to support orchestration of data movement and processing Connect to relational or non-relational data

More information

Data Mining Analytics for Business Intelligence and Decision Support

Data Mining Analytics for Business Intelligence and Decision Support Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing

More information

Database Appliances, MapReduce, and NoSQL Compared to RDBMS

Database Appliances, MapReduce, and NoSQL Compared to RDBMS Appliances, MapReduce, and NoSQL Compared to RDBMS Prepared by Philip Czachorowsi Noember 17, 2011 1 Disclaimer All technical information is presented as is. Any mentions of products does not constitute

More information

Radoop: Analyzing Big Data with RapidMiner and Hadoop

Radoop: Analyzing Big Data with RapidMiner and Hadoop Radoop: Analyzing Big Data with RapidMiner and Hadoop Zoltán Prekopcsák, Gábor Makrai, Tamás Henk, Csaba Gáspár-Papanek Budapest University of Technology and Economics, Hungary Abstract Working with large

More information

RevoScaleR Speed and Scalability

RevoScaleR Speed and Scalability EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution

More information

Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices

Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices September 10-13, 2012 Orlando, Florida Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices Vishwanath Belur, Product Manager, SAP Predictive Analysis Learning

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

An Introduction to Data Mining

An Introduction to Data Mining An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail

More information

Role Description. Position of a Data Scientist Machine Learning at Fractal Analytics

Role Description. Position of a Data Scientist Machine Learning at Fractal Analytics Opportunity to work with leading analytics firm that creates Insights, Impact and Innovation. Role Description Position of a Data Scientist Machine Learning at Fractal Analytics March 2014 About the Company

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

More information

Hybrid Software Architectures for Big Data. Laurence.Hubert@hurence.com @hurence http://www.hurence.com

Hybrid Software Architectures for Big Data. Laurence.Hubert@hurence.com @hurence http://www.hurence.com Hybrid Software Architectures for Big Data Laurence.Hubert@hurence.com @hurence http://www.hurence.com Headquarters : Grenoble Pure player Expert level consulting Training R&D Big Data X-data hot-line

More information

Ali Ghodsi Head of PM and Engineering Databricks

Ali Ghodsi Head of PM and Engineering Databricks Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

SEIZE THE DATA. 2015 SEIZE THE DATA. 2015

SEIZE THE DATA. 2015 SEIZE THE DATA. 2015 1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Deep dive into Haven Predictive Analytics Powered by HP Distributed R and

More information

Massive Cloud Auditing using Data Mining on Hadoop

Massive Cloud Auditing using Data Mining on Hadoop Massive Cloud Auditing using Data Mining on Hadoop Prof. Sachin Shetty CyberBAT Team, AFRL/RIGD AFRL VFRP Tennessee State University Outline Massive Cloud Auditing Traffic Characterization Distributed

More information

Analytics on Big Data

Analytics on Big Data Analytics on Big Data Riccardo Torlone Università Roma Tre Credits: Mohamed Eltabakh (WPI) Analytics The discovery and communication of meaningful patterns in data (Wikipedia) It relies on data analysis

More information

Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop

Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social

More information

How Companies are! Using Spark

How Companies are! Using Spark How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made

More information

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop

More information

International Journal of Innovative Research in Computer and Communication Engineering

International Journal of Innovative Research in Computer and Communication Engineering FP Tree Algorithm and Approaches in Big Data T.Rathika 1, J.Senthil Murugan 2 Assistant Professor, Department of CSE, SRM University, Ramapuram Campus, Chennai, Tamil Nadu,India 1 Assistant Professor,

More information

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems DATA WAREHOUSING RESEARCH TRENDS Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Data source heterogeneity and incongruence Filtering out uncorrelated data Strongly unstructured

More information

An interdisciplinary model for analytics education

An interdisciplinary model for analytics education An interdisciplinary model for analytics education Raffaella Settimi, PhD School of Computing, DePaul University Drew Conway s Data Science Venn Diagram http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

More information

A Professional Big Data Master s Program to train Computational Specialists

A Professional Big Data Master s Program to train Computational Specialists A Professional Big Data Master s Program to train Computational Specialists Anoop Sarkar, Fred Popowich, Alexandra Fedorova! School of Computing Science! Education for Employable Graduates: Critical Questions

More information

Interactive data analytics drive insights

Interactive data analytics drive insights Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has

More information

A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS

A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)

More information

EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR COMPUTER PERFORMANCE PROFESSIONALS

EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR COMPUTER PERFORMANCE PROFESSIONALS EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR COMPUTER PERFORMANCE PROFESSIONALS Susan P. Imberman Ph.D. College of Staten Island, City University of New York Imberman@postbox.csi.cuny.edu Abstract

More information

A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML

A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML www.bsc.es A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML Josep Ll. Berral, Nicolas Poggi, David Carrera Workshop on Big Data Benchmarks Toronto, Canada 2015 1 Context ALOJA: framework

More information

What s Cooking in KNIME

What s Cooking in KNIME What s Cooking in KNIME Thomas Gabriel Copyright 2015 KNIME.com AG Agenda Querying NoSQL Databases Database Improvements & Big Data Copyright 2015 KNIME.com AG 2 Querying NoSQL Databases MongoDB & CouchDB

More information

DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2

DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2 DATA SCIENCE CURRICULUM Before class even begins, students start an at-home pre-work phase. When they convene in class, students spend the first eight weeks doing iterative, project-centered skill acquisition.

More information

CSE-E5430 Scalable Cloud Computing Lecture 2

CSE-E5430 Scalable Cloud Computing Lecture 2 CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 14.9-2015 1/36 Google MapReduce A scalable batch processing

More information

Information Architecture

Information Architecture The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to

More information

Daniel J. Adabi. Workshop presentation by Lukas Probst

Daniel J. Adabi. Workshop presentation by Lukas Probst Daniel J. Adabi Workshop presentation by Lukas Probst 3 characteristics of a cloud computing environment: 1. Compute power is elastic, but only if workload is parallelizable 2. Data is stored at an untrusted

More information

Federated Cloud-based Big Data Platform in Telecommunications

Federated Cloud-based Big Data Platform in Telecommunications Federated Cloud-based Big Data Platform in Telecommunications Chao Deng dengchao@chinamobilecom Yujian Du duyujian@chinamobilecom Ling Qian qianling@chinamobilecom Zhiguo Luo luozhiguo@chinamobilecom Meng

More information

Data Mining in the Swamp

Data Mining in the Swamp WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all

More information

Scalable Developments for Big Data Analytics in Remote Sensing

Scalable Developments for Big Data Analytics in Remote Sensing Scalable Developments for Big Data Analytics in Remote Sensing Federated Systems and Data Division Research Group High Productivity Data Processing Dr.-Ing. Morris Riedel et al. Research Group Leader,

More information

HP Vertica OnDemand. Vertica OnDemand. Enterprise-class Big Data analytics in the cloud. Enterprise-class Big Data analytics for any size organization

HP Vertica OnDemand. Vertica OnDemand. Enterprise-class Big Data analytics in the cloud. Enterprise-class Big Data analytics for any size organization Data sheet HP Vertica OnDemand Enterprise-class Big Data analytics in the cloud Enterprise-class Big Data analytics for any size organization Vertica OnDemand Organizations today are experiencing a greater

More information

Big Data and Analytics (Fall 2015)

Big Data and Analytics (Fall 2015) Big Data and Analytics (Fall 2015) Core/Elective: MS CS Elective MS SPM Elective Instructor: Dr. Tariq MAHMOOD Credit Hours: 3 Pre-requisite: All Core CS Courses (Knowledge of Data Mining is a Plus) Every

More information

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376 Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

More information

From Spark to Ignition:

From Spark to Ignition: From Spark to Ignition: Fueling Your Business on Real-Time Analytics Eric Frenkiel, MemSQL CEO June 29, 2015 San Francisco, CA What s in Store For This Presentation? 1. MemSQL: A real-time database for

More information