ISE 2014 Chapter 3 Section 3.11 Deferred Annuities


 Helen Barrett
 2 years ago
 Views:
Transcription
1 ISE 2014 Chapter 3 Section 3.11 Deferred Annuities If we are looking for a present (future) equivalent sum at time other than one period prior to the first cash flow in the series (coincident with the last cash flow in the series) then we are dealing with a deferred annuity. See page 90. 1
2 Example: Deferred Annuities How much do you need to deposit today into an account that pays 3% per year so that you can make 10 equal annual withdrawals of $1,000, with the first withdrawal being made seven years from now? 2
3 Example: Deferred Annuities Continued P 6 =$1,000(P A, 3%, 10) = $8, P 0 =P 6 (P F, 3%, 6) = $8,530.20(0.8375) = $7,144 Or P 0 =A(P A, 3%, 16) A (P A, 3%, 6) =$1,000( )  $1,000(5.4172) =$12, $5, = $7,
4 Section 3.12 Multiple Interest Factors Deferred annuities can be transformed to an equivalent present or future sum in a single step with the use of multiple interest factors. Some situations include multiple unrelated sums or series, requiring the problem be broken into components that can be individually solved and then reintegrated. See page 93. 4
5 Example: Multiple Interest Factors Given: Find: P 0, F 6, F 7, A 16 P 0 = 5
6 Multiple Interest Factors Example Continued F 6 = 800(F/A, 10%, 3) + 500(F/A, 10%, 3)(F/P, 10%, 3) (F/P, 10%, 3) = $3,520 F 7 =? A 16 = P 0 (A/P, 10%, 6) = 1987(0.2296) = $456 = F 6 (A/F, 10%, 6) = 3520(0.1296) = $456 = 6
7 Section Uniform Gradient Series What if we have cash flows (revenues or expenses) that are projected to increase or decrease by a uniform amount each period? (e.g. maintenance costs, rental income). We call this a uniform gradient series (G). We can have positive or negative gradients if the slope of the cash flows is positive or negative, respectively. 7
8 A. Positive Gradient Example G = constant by which the cash glows increase or decrease each period. G = $100 in the above example. Note that G 1 =$0. Even though N = 8, their will only be seven actual increases. The first G amount ($100) occurs at the end of year 2. 8
9 A. Positive Gradient Example Continued Find P for the example positive gradient cash flow (see Table C13, p 634) P 0 = $250 (P A, 10%, 8) + $100 (P G, 10%, 8) = $2,937 Find A (annual equivalent) for the example cash flow A 18 = $ (A G, 10%, 8) = $
10 B. Negative Gradient Example  The gradient is negative (e.g., an increasing cost) and the uniform series is positive (e.g., steady stream of revenue). Given: G = 250, I = 10%/year and the Cash Flow for Year 1 = $1,250 Year 2 = $1,000 Year 3 = $750 Year 4 = $500 Year 5 = $250 Underlying annuity (A) =? Find: Equivalent values for these cash flows at: P 0 and A
11 B. Negative Gradient Example  Solution P 0 = 1,250(P A, 10%, 5)  250(P G, 10%, 5) = $3, A 15 = 1, (A G, 10%, 5) = $
12 Section Nominal and Effective Interest Rates Nominal interest (r) = interest compounded more than one interest period per year but quoted on an annual basis. * Example: 16%, compounded quarterly Effective interest (i) = actual interest rate earned or charged for a specific time period. * Example: 16%/4 = 4% effective interest for each of the four quarters during the year. 12
13 Nominal and Effective Interest Rates (continued) Relation between nominal interest and effective interest: where i = effective annual interest rate r = nominal interest rate per year M = number of compounding periods per year r = interest rate per interest period M 13
14 Nominal and Effective Interest Rates Examples Find the effective interest rate per year at a nominal rate of 18% compounded (1) quarterly, (2) semiannually, and (3) monthly. (1) Quarterly compounding (2) Semiannual compounding 14
15 Nominal and Effective Interest Rates (continued) (3) Nominal interest rate is 18% compounded monthly. Interpretation: This is a normal statement of an interest rate where the related time period is one year, and the subperiod is one month. R = 18%; M = 12; i M = 1 ½ %; What if N=3 and P = $1,000, find F. 15
16 Nominal and Effective Interest Rates Example A credit card company advertises an A.P.R. of 16.9% compounded daily on unpaid balances. What is the effective interest rate per year being charged? r = 16.9% M = i eff = (1 + ) 1 =0.184 or 18.4% per year
17 Section 3.17 and Nominal and Effective Interest Rates Find P 0 when r = 12%, compounded monthly CFD goes here We have monthly cash flows so we need to use a monthly interest rate. i/mo. = r/m = 12% / 12 = 1% per month P 6 = $500 (P A, 1%, 6) + $100 (P G, 1%, 6) = $4,330 P 0 = P 6 (P F, 1%, 6) = $4,079 17
18 ISE 2014 Nominal and Effective Interest Rates Two situations we ll deal with in Chapter 3: (1) Cash flows are annual. We re given r per year and M. Procedure: find i/yr. = M r 1+ 1 and discount/compound M annual cash flows at i/yr. (2) Cash flows occur M times per year. We re given r per year and M. Find the interest rate that corresponds to M, which is r/m per time period (e.g., quarter, month). Then discount/compound the M cash flows per year at r/m for the time period given. 18
19 Interest Problems with Compounding more often than once per Year Example A * Example: If you deposit $1,000 now, $3,000 four years from now followed by five quarterly deposits decreasing by $500 per quarter at an interest rate of 12% per year compounded quarterly, how much money will you have in you account 10 years from now? 19
20 Example A Solution r/m = 3% per quarter Year 3.75 = 15th Quarter 3.75 = P qtr. 15 = 3000(P/A, 3%, 6)  500(P/G, 3%, 6) = $ F yr. 10 = F qtr. 40 = (F/P, 3%, 25) (F/P, 3%, 40) = = $23,
21 Interest Problems with Compounding more often than once per Year Example B * Example: If you deposit $1,000 now, $3,000 four years from now, and $1,500 six years from now at an interest rate of 12% per year compounded semiannually, how much money will you have in your account 10 years from now? 21
22 Example B Solution 0. i per year = ( ) 1 = F = $1,000(F/P, 12.36%, 10) + $3,000(F/P, 12.36%, 6) + $1,500(F/P, 12.36%, 4) or r/m = 6% per halfyear F = 1000(F/P, 6%, 20) (F/P, 6%, 12)+ 1500(F/P, 6%, 8) = $11,
23 Nominal and Effective Interest Example Given: You ve borrowed $22,000 to buy a new car at 2.9%, compounded monthly. Your loan is for 36 months. Find: a) Draw a cash flow diagram for this loan. b) How much will your monthly payment be? 23
24 Problem 336 ($100,000 loan) 1) Draw a cash flow diagram to illustrate the situation. P = present equivalent of the loan payments A = loan payments on a thirty year repayment plan 24
25 Problem 336 ($100,000 loan) 2) Find the value of the loan payments, A A = P (A P, 8%, 30) = $100,000(0.0888) = $8,880 3) Set up the equation to solve for F 12 P =A(P A, 8%,8) + 3A(P A, 8%,4)(P F, 8%,8) + F 12 (P F, 8%,12) 100,000 = 8,880(5.7466) + 26,640(3.3121)(0.5403) + F 12 (0.3971) 100,000 = 51, ,673 + (0.3971)F 12 (0.3971)F 12 = $1,297 F12 = $3,266 25
26 Example: Problem 395 What is the value of the following CFD? 26
27 Problem 395 Solution 1.15 F 1 = $1,000(F/P,15%,1)  $1,000 = $2, F 2 = F 1 (F/P,15%,1) + $3,000 = $ F 4 = F 2 (F/P,10%,1)(F/P,6%,1) = $ (add cash flow handouts here from original PDF) 27
Discounted Cash Flow Valuation
Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationWarmup: Compound vs. Annuity!
Warmup: Compound vs. Annuity! 1) How much will you have after 5 years if you deposit $500 twice a year into an account yielding 3% compounded semiannually? 2) How much money is in the bank after 3 years
More informationThe Time Value of Money (contd.)
The Time Value of Money (contd.) February 11, 2004 Time Value Equivalence Factors (Discrete compounding, discrete payments) Factor Name Factor Notation Formula Cash Flow Diagram Future worth factor (compound
More informationCh 3 Understanding money management
Ch 3 Understanding money management 1. nominal & effective interest rates 2. equivalence calculations using effective interest rates 3. debt management If payments occur more frequently than annual, how
More informationChapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
More informationChapter The Time Value of Money
Chapter The Time Value of Money PPT 92 Chapter 9  Outline Time Value of Money Future Value and Present Value Annuities TimeValueofMoney Formulas Adjusting for NonAnnual Compounding Compound Interest
More information1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?
Chapter 2  Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in
More informationDISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS
Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need $500 one
More informationChapter 4 Nominal and Effective Interest Rates
Chapter 4 Nominal and Effective Interest Rates Chapter 4 Nominal and Effective Interest Rates INEN 303 Sergiy Butenko Industrial & Systems Engineering Texas A&M University Nominal and Effective Interest
More informationCompound Interest Formula
Mathematics of Finance Interest is the rental fee charged by a lender to a business or individual for the use of money. charged is determined by Principle, rate and time Interest Formula I = Prt $100 At
More informationChapter 5 Time Value of Money 2: Analyzing Annuity Cash Flows
1. Future Value of Multiple Cash Flows 2. Future Value of an Annuity 3. Present Value of an Annuity 4. Perpetuities 5. Other Compounding Periods 6. Effective Annual Rates (EAR) 7. Amortized Loans Chapter
More informationThe Time Value of Money
The Time Value of Money Time Value Terminology 0 1 2 3 4 PV FV Future value (FV) is the amount an investment is worth after one or more periods. Present value (PV) is the current value of one or more future
More informationChapter 5 Discounted Cash Flow Valuation
Chapter Discounted Cash Flow Valuation Compounding Periods Other Than Annual Let s examine monthly compounding problems. Future Value Suppose you invest $9,000 today and get an interest rate of 9 percent
More informationThe Time Value of Money C H A P T E R N I N E
The Time Value of Money C H A P T E R N I N E Figure 91 Relationship of present value and future value PPT 91 $1,000 present value $ 10% interest $1,464.10 future value 0 1 2 3 4 Number of periods Figure
More informationChapter 3 Equivalence A Factor Approach
Chapter 3 Equivalence A Factor Approach 31 If you had $1,000 now and invested it at 6%, how much would it be worth 12 years from now? F = 1,000(F/P, 6%, 12) = $2,012.00 32 Mr. Ray deposited $200,000
More informationTIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!
TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest $1,000 it becomes $1,050 $1,000 return of $50 return on Factors to consider when assessing Return on
More informationSolutions to Time value of money practice problems
Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if $2,500 is deposited today and the account earns 4% interest,
More informationANNUITIES. Ordinary Simple Annuities
An annuity is a series of payments or withdrawals. ANNUITIES An Annuity can be either Simple or General Simple Annuities  Compounding periods and payment periods coincide. General Annuities  Compounding
More informationChapter 6. Time Value of Money Concepts. Simple Interest 61. Interest amount = P i n. Assume you invest $1,000 at 6% simple interest for 3 years.
61 Chapter 6 Time Value of Money Concepts 62 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in
More informationEngineering Economy. Time Value of Money3
Engineering Economy Time Value of Money3 Prof. KwangKyu Seo 1 Chapter 2 Time Value of Money Interest: The Cost of Money Economic Equivalence Interest Formulas Single Cash Flows EqualPayment Series Dealing
More informationChapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1
Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation
More informationEngineering Economics Cash Flow
Cash Flow Cash flow is the sum of money recorded as receipts or disbursements in a project s financial records. A cash flow diagram presents the flow of cash as arrows on a time line scaled to the magnitude
More informationChapter 2 The Time Value of Money
Chapter 2 The Time Value of Money 21 The effective interest rate is 19.56%. If there are 12 compounding periods per year, what is the nominal interest rate? i eff = (1 + (r/m)) m 1 r/m = (1 + i eff )
More informationChapter 22: Borrowings Models
October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor
More informationhp calculators HP 20b Time value of money basics The time value of money The time value of money application Special settings
The time value of money The time value of money application Special settings Clearing the time value of money registers Begin / End mode Periods per year Cash flow diagrams and sign conventions Practice
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 1 Learning Outcomes Chapter 4 Identify various types of cash flow patterns Compute the future value and the present value of different cash flow streams Compute the return
More informationCHAPTER 2. Time Value of Money 21
CHAPTER 2 Time Value of Money 21 Time Value of Money (TVM) Time Lines Future value & Present value Rates of return Annuities & Perpetuities Uneven cash Flow Streams Amortization 22 Time lines 0 1 2 3
More informationChapter 7 Internal Rate of Return
Chapter 7 Internal Rate of Return 71 Andrew T. invested $15,000 in a high yield account. At the end of 30 years he closed the account and received $539,250. Compute the effective interest rate he received
More informationChapter 4. Time Value of Money. Copyright 2009 Pearson Prentice Hall. All rights reserved.
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationChapter 4. Time Value of Money. Learning Goals. Learning Goals (cont.)
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationTIME VALUE OF MONEY (TVM)
TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate
More informationChapter 2 Factors: How Time and Interest Affect Money
Chapter 2 Factors: How Time and Interest Affect Money Session 456 Dr Abdelaziz Berrado 1 Topics to Be Covered in Today s Lecture Section 2: How Time and Interest Affect Money SinglePayment Factors (F/P
More informationTime Value of Money. Work book Section I True, False type questions. State whether the following statements are true (T) or False (F)
Time Value of Money Work book Section I True, False type questions State whether the following statements are true (T) or False (F) 1.1 Money has time value because you forgo something certain today for
More informationChapter 5 Present Worth
Chapter 5 Present Worth 51 Emma and her husband decide they will buy $1,000 worth of utility stocks beginning one year from now. Since they expect their salaries to increase, they will increase their
More informationDiscounted Cash Flow Valuation
6 Formulas Discounted Cash Flow Valuation McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing
More informationChapter 3 Understanding Money Management. Nominal and Effective Interest Rates Equivalence Calculations Changing Interest Rates Debt Management
Chapter 3 Understanding Money Management Nominal and Effective Interest Rates Equivalence Calculations Changing Interest Rates Debt Management 1 Understanding Money Management Financial institutions often
More informationDiscounted Cash Flow Valuation
BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?
More informationA = P (1 + r / n) n t
Finance Formulas for College Algebra (LCU  Fall 2013)  Formula 1: Amount
More informationTopics. Chapter 5. Future Value. Future Value  Compounding. Time Value of Money. 0 r = 5% 1
Chapter 5 Time Value of Money Topics 1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series
More information1.3.2015 г. D. Dimov. Year Cash flow 1 $3,000 2 $5,000 3 $4,000 4 $3,000 5 $2,000
D. Dimov Most financial decisions involve costs and benefits that are spread out over time Time value of money allows comparison of cash flows from different periods Question: You have to choose one of
More information7: Compounding Frequency
7.1 Compounding Frequency Nominal and Effective Interest 1 7: Compounding Frequency The factors developed in the preceding chapters all use the interest rate per compounding period as a parameter. This
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationTime Value Conepts & Applications. Prof. Raad Jassim
Time Value Conepts & Applications Prof. Raad Jassim Chapter Outline Introduction to Valuation: The Time Value of Money 1 2 3 4 5 6 7 8 Future Value and Compounding Present Value and Discounting More on
More informationBusiness 2019. Fundamentals of Finance, Chapter 6 Solution to Selected Problems
Business 209 Fundamentals of Finance, Chapter 6 Solution to Selected Problems 8. Calculating Annuity Values You want to have $50,000 in your savings account five years from now, and you re prepared to
More information5 More on Annuities and Loans
5 More on Annuities and Loans 5.1 Introduction This section introduces Annuities. Much of the mathematics of annuities is similar to that of loans. Indeed, we will see that a loan and an annuity are just
More informationPresent Value and Annuities. Chapter 3 Cont d
Present Value and Annuities Chapter 3 Cont d Present Value Helps us answer the question: What s the value in today s dollars of a sum of money to be received in the future? It lets us strip away the effects
More informationMGT201 Lecture No. 07
MGT201 Lecture No. 07 Learning Objectives: After going through this lecture, you would be able to have an understanding of the following concepts. Discounted Cash Flows (DCF Analysis) Annuities Perpetuity
More informationCHAPTER 9 Time Value Analysis
Copyright 2008 by the Foundation of the American College of Healthcare Executives 6/11/07 Version 91 CHAPTER 9 Time Value Analysis Future and present values Lump sums Annuities Uneven cash flow streams
More informationCHAPTER 2 TIME VALUE OF MONEY
CHAPTER 2 TIME VALUE OF MONEY 2.1 Concepts of Engineering Economics Analysis Engineering Economy: is a collection of mathematical techniques which simplify economic comparisons. Time Value of Money: means
More informationPowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
More informationChapter F: Finance. Section F.1F.4
Chapter F: Finance Section F.1F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given
More informationIntegrated Case. 542 First National Bank Time Value of Money Analysis
Integrated Case 542 First National Bank Time Value of Money Analysis You have applied for a job with a local bank. As part of its evaluation process, you must take an examination on time value of money
More informationWeek 4. Chonga Zangpo, DFB
Week 4 Time Value of Money Chonga Zangpo, DFB What is time value of money? It is based on the belief that people have a positive time preference for consumption. It reflects the notion that people prefer
More informationStatistical Models for Forecasting and Planning
Part 5 Statistical Models for Forecasting and Planning Chapter 16 Financial Calculations: Interest, Annuities and NPV chapter 16 Financial Calculations: Interest, Annuities and NPV Outcomes Financial information
More informationAppendix C 1. Time Value of Money. Appendix C 2. Financial Accounting, Fifth Edition
C 1 Time Value of Money C 2 Financial Accounting, Fifth Edition Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount. 3. Solve for future
More informationOrdinary Annuities Chapter 10
Ordinary Annuities Chapter 10 Learning Objectives After completing this chapter, you will be able to: > Define and distinguish between ordinary simple annuities and ordinary general annuities. > Calculate
More informationExercise 1 for Time Value of Money
Exercise 1 for Time Value of Money MULTIPLE CHOICE 1. Which of the following statements is CORRECT? a. A time line is not meaningful unless all cash flows occur annually. b. Time lines are useful for visualizing
More informationIn Section 5.3, we ll modify the worksheet shown above. This will allow us to use Excel to calculate the different amounts in the annuity formula,
Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout
More informationLearning Objectives. Learning Objectives. Learning Objectives. Principles Used in this Chapter. Simple Interest. Principle 2:
Learning Objectives Chapter 5 The Time Value of Money Explain the mechanics of compounding, which is how money grows over a time when it is invested. Be able to move money through time using time value
More informationYou just paid $350,000 for a policy that will pay you and your heirs $12,000 a year forever. What rate of return are you earning on this policy?
1 You estimate that you will have $24,500 in student loans by the time you graduate. The interest rate is 6.5%. If you want to have this debt paid in full within five years, how much must you pay each
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: $5,000.08 = $400 So after 10 years you will have: $400 10 = $4,000 in interest. The total balance will be
More information2 Time Value of Money
2 Time Value of Money BASIC CONCEPTS AND FORMULAE 1. Time Value of Money 2. Simple Interest 3. Compound Interest 4. Present Value of a Sum of Money 5. Future Value It means money has time value. A rupee
More informationMath 1332 Test 5 Review
Name Find the simple interest. The rate is an annual rate unless otherwise noted. Assume 365 days in a year and 30 days per month. 1) $1660 at 6% for 4 months Find the future value of the deposit if the
More informationProblem Set: Annuities and Perpetuities (Solutions Below)
Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save $300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years
More informationNPV calculation. Academic Resource Center
NPV calculation Academic Resource Center 1 NPV calculation PV calculation a. Constant Annuity b. Growth Annuity c. Constant Perpetuity d. Growth Perpetuity NPV calculation a. Cash flow happens at year
More informationFin 3312 Sample Exam 1 Questions
Fin 3312 Sample Exam 1 Questions Here are some representative type questions. This review is intended to give you an idea of the types of questions that may appear on the exam, and how the questions might
More informationThe values in the TVM Solver are quantities involved in compound interest and annuities.
Texas Instruments Graphing Calculators have a built in app that may be used to compute quantities involved in compound interest, annuities, and amortization. For the examples below, we ll utilize the screens
More information5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
More informationChapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS
Chapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS 41 a. PV (present value) is the value today of a future payment, or stream of payments, discounted at the appropriate rate of interest.
More informationAppendix. Time Value of Money. Financial Accounting, IFRS Edition Weygandt Kimmel Kieso. Appendix C 1
C Time Value of Money C 1 Financial Accounting, IFRS Edition Weygandt Kimmel Kieso C 2 Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount.
More informationChapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.
Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values
More informationModule 5: Interest concepts of future and present value
Page 1 of 23 Module 5: Interest concepts of future and present value Overview In this module, you learn about the fundamental concepts of interest and present and future values, as well as ordinary annuities
More informationEhrhardt Chapter 8 Page 1
Chapter 2 Time Value of Money 1 Time Value Topics Future value Present value Rates of return Amortization 2 Time lines show timing of cash flows. 0 1 2 3 I% CF 0 CF 1 CF 2 CF 3 Tick marks at ends of periods,
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value
More informationIntroduction to Real Estate Investment Appraisal
Introduction to Real Estate Investment Appraisal Maths of Finance Present and Future Values Pat McAllister INVESTMENT APPRAISAL: INTEREST Interest is a reward or rent paid to a lender or investor who has
More informationE INV 1 AM 11 Name: INTEREST. There are two types of Interest : and. The formula is. I is. P is. r is. t is
E INV 1 AM 11 Name: INTEREST There are two types of Interest : and. SIMPLE INTEREST The formula is I is P is r is t is NOTE: For 8% use r =, for 12% use r =, for 2.5% use r = NOTE: For 6 months use t =
More informationIntroduction to the HewlettPackard (HP) 10BII Calculator and Review of Mortgage Finance Calculations
Introduction to the HewlettPackard (HP) 10BII Calculator and Review of Mortgage Finance Calculations Real Estate Division Sauder School of Business University of British Columbia Introduction to the HewlettPackard
More informationChapter 5 Time Value of Money
1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series of Cash Flows 7. Other Compounding
More informationSolutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material. i = 0.75 1 for six months.
Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material 1. a) Let P be the recommended retail price of the toy. Then the retailer may purchase the toy at
More informationFinite Mathematics. CHAPTER 6 Finance. Helene Payne. 6.1. Interest. savings account. bond. mortgage loan. auto loan
Finite Mathematics Helene Payne CHAPTER 6 Finance 6.1. Interest savings account bond mortgage loan auto loan Lender Borrower Interest: Fee charged by the lender to the borrower. Principal or Present Value:
More informationFuture Value. Basic TVM Concepts. Chapter 2 Time Value of Money. $500 cash flow. On a time line for 3 years: $100. FV 15%, 10 yr.
Chapter Time Value of Money Future Value Present Value Annuities Effective Annual Rate Uneven Cash Flows Growing Annuities Loan Amortization Summary and Conclusions Basic TVM Concepts Interest rate: abbreviated
More informationMidterm 1 Practice Problems
Midterm 1 Practice Problems 1. Calculate the present value of each cashflow using a discount rate of 7%. Which do you most prefer most? Show and explain all supporting calculations! Cashflow A: receive
More informationExample. L.N. Stout () Problems on annuities 1 / 14
Example A credit card charges an annual rate of 14% compounded monthly. This month s bill is $6000. The minimum payment is $5. Suppose I keep paying $5 each month. How long will it take to pay off the
More informationChapter 3 Mathematics of Finance
Chapter 3 Mathematics of Finance Section 3 Future Value of an Annuity; Sinking Funds Learning Objectives for Section 3.3 Future Value of an Annuity; Sinking Funds The student will be able to compute the
More informationCash Flow and Equivalence
Cash Flow and Equivalence 1. Cash Flow... 511 2. Time Value of Money... 512 3. Discount Factors and Equivalence... 512 4. Functional Notation... 515 5. Nonannual Compounding... 515 6. Continuous Compounding...
More information2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.
2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical definedcontribution
More informationAPPENDIX. Interest Concepts of Future and Present Value. Concept of Interest TIME VALUE OF MONEY BASIC INTEREST CONCEPTS
CHAPTER 8 Current Monetary Balances 395 APPENDIX Interest Concepts of Future and Present Value TIME VALUE OF MONEY In general business terms, interest is defined as the cost of using money over time. Economists
More information2.1 The Present Value of an Annuity
2.1 The Present Value of an Annuity One example of a fixed annuity is an agreement to pay someone a fixed amount x for N periods (commonly months or years), e.g. a fixed pension It is assumed that the
More informationThe time value of money: Part II
The time value of money: Part II A reading prepared by Pamela Peterson Drake O U T L I E 1. Introduction 2. Annuities 3. Determining the unknown interest rate 4. Determining the number of compounding periods
More informationPRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.
PRESENT VALUE ANALYSIS Time value of money equal dollar amounts have different values at different points in time. Present value analysis tool to convert CFs at different points in time to comparable values
More informationPresent Value Concepts
Present Value Concepts Present value concepts are widely used by accountants in the preparation of financial statements. In fact, under International Financial Reporting Standards (IFRS), these concepts
More informationMath 120 Basic finance percent problems from prior courses (amount = % X base)
Math 120 Basic finance percent problems from prior courses (amount = % X base) 1) Given a sales tax rate of 8%, a) find the tax on an item priced at $250, b) find the total amount due (which includes both
More informationCalculating interest rates
Calculating interest rates A reading prepared by Pamela Peterson Drake O U T L I N E 1. Introduction 2. Annual percentage rate 3. Effective annual rate 1. Introduction The basis of the time value of money
More informationBUSI 121 Foundations of Real Estate Mathematics
Real Estate Division BUSI 121 Foundations of Real Estate Mathematics SESSION 2 By Graham McIntosh Sauder School of Business University of British Columbia Outline Introduction Cash Flow Problems Cash Flow
More informationSolutions to Problems: Chapter 5
Solutions to Problems: Chapter 5 P51. Using a time line LG 1; Basic a, b, and c d. Financial managers rely more on present value than future value because they typically make decisions before the start
More informationIf P = principal, r = annual interest rate, and t = time (in years), then the simple interest I is given by I = P rt.
13 Consumer Mathematics 13.1 The Time Value of Money Start with some Definitions: Definition 1. The amount of a loan or a deposit is called the principal. Definition 2. The amount a loan or a deposit increases
More informationCHAPTER 17 ENGINEERING COST ANALYSIS
CHAPTER 17 ENGINEERING COST ANALYSIS Charles V. Higbee GeoHeat Center Klamath Falls, OR 97601 17.1 INTRODUCTION In the early 1970s, life cycle costing (LCC) was adopted by the federal government. LCC
More informationFinancial Management Spring 2012
31 Financial Management Spring 2012 Week 4 How to Calculate Present Values III 41 32 Topics Covered More Shortcuts Growing Perpetuities and Annuities How Interest Is Paid and Quoted 42 Example 33
More informationChapter 1: Time Value of Money
1 Chapter 1: Time Value of Money Study Unit 1: Time Value of Money Concepts Basic Concepts Cash Flows A cash flow has 2 components: 1. The receipt or payment of money: This differs from the accounting
More information