MODULE 2. Finance An Introduction


 Kory Byrd
 1 years ago
 Views:
Transcription
1 MODULE 2 Finance An Introduction The functions of finance in an organization is interlinked with other managerial responsibilities and in many instances, the finance manager could also done the role of a managing director. For the smooth functioning as well as to achieve excellence, organizations have to concentrate on the financial impact of a decision and its consequences. This also helps the organization to aim at a desired competency level against its competitors. Basic Concept In Finance In organizations, flow of money occurs at various points of time. In order to evaluate the worth of money, the financial managers need to look at it from a common platform, namely one time duration. This common platform enables a meaningful comparison of money over different time periods. An important principle in financial management is that the value of money depends on when the cash flow occurs which implies Rs.100 now is worth more than Rs.100 at some future time.
2 Time Value Of Money Time Value Of Money The TimeValue Of Money Money like any other desirable commodity has a price. If you own money, you can, 'rent' it to someone else, say a banker, who can use it to earn income. This 'rent' is usually in the form of interest. The investor's return, which reflects the timevalue of money, therefore indicates that there are investment opportunities available in the market. The return indicates that there is a riskfree rate of return rewarding investors for forgoing immediate consumption compensation for risk and loss of purchasing power.
3 Time Value Of Money Risk: An amount of Rs.100 now is certain, whereas Rs.100 receivable next year is less certain. This 'uncertainty' principle affects many aspects of financial management and is termed as risk value of money. Inflation: Under inflationary conditions, the value of money, expressed in terms of its purchasing power over goods and services, declines. Hence Rs.100 possessed now is not equivalent to Rs.100 to be received in the future. Personal consumption preference: Most of us have a strong preference for immediate rather than delayed consumption. As a result we tend to value the Rs.100 to be received now more than Rs.100 to be received latter. Future Value Vs. Present Value Future value (FV) and present value (PV) adjust all cash flows to a common time. This is relevant when we want to compare the cash flows occurring at different periods of time. Either in terms of projects, performance or turnover, the cash flows accrue to the company at different stages. The evaluation of all these cash flows are true when they are all brought to the same base period. Computing Present Value In financial parlance, a value of currency is not kept idle. The amount, if invested would certainly bring additional returns in the future. This future expectation from the present investment is termed as the future value.
4 Let us assume x amount is invested now and the investor expects r% to accrue on the investment one year ahead. This is translated into present and future values as follows: PV = Rs. x FV = Rs. x + (r * x) Computing Future Value Example Let us assume Rs.1,000 is invested now and the investor expects 5% to accrue on this investment one year ahead. This is translated into present and future values as follows: PV = Rs.1,000 FV = Rs.1,000 + (.05 * 1,000) = Rs.1,050. Computing Future Value This can be restated as FV = PV * (1+r) This relationship leads to the following concept of discounting the future value to arrive at the present value i.e., PV = FV / (1 + r) This is the formula for equating the future value that is associated at the end of 1st year. Now the concept of time over a longer duration can be easily brought into the above equation, where 'n' defines the time duration after which the cash flows are expected.
5 Computing Present Value Example Let us assume that Rs.1,000 is to be received at the end of 1 year from now and the investor expects 5% rate of return on this investment. Here FV = Rs.1,000 Hence the present value is computed as: PV = FV / (1 + r) = Rs.1000 / (1.05) = Rs.952. Value With And Without Compounding Interest without compounding is a simple interest formula i.e., Pnr/100 Where: P is the principle, n is the number of years and r is the interest rate. Interest with annual compounding adds the interest received earlier to the principle amount and increases the final amount that is received from the investment. Hence, the FV of an investment for a two year duration with annual compounding would be: FV = PV * (1+r)* (1+r) = PV * (1+r)^2. Hence Present Value is: PV = FV / (1+r)^2. This equation can be generalized for 'n' years as: PV = FV / (1 + r)^n
6 Future Value With And Without Compounding Compound Value In compounding, it is assumed that a certain sum accrues at the end of a time duration, which is again reinvested. In short, when a sum is invested in a year, it will yield interest and the interest is reinvested for the next year and so on till the time when withdrawal is made. The 3 year or 4 year bank deposit is a typical example of this annual interest compounding. Here: FV = Principal + interest FV = P(1+r)^n
7 The term (1+r)^n is the compound value factor (CVF) of a lump sum of Re.1, and it always has a value greater than 1 for positive r, indicating that CVF increases as r and n increase. Compound Value Example Assume a lump sum of Rs.1,000 is deposited in a bank fixed deposit for 3 years for an interest rate of 10% per annum. FV = Principal + interest FV = P(1+r)^n FV = 1000 x (1+.10)^3 = 1000 x = Rs.1,331. Compounding In Less Than A Duration Usually, it is common practice to compound the interest on a yearly basis. But, there are instances when compounding is done on a halfyearly, quarterly, monthly or a daily basis. The halfyearly interest rates indicate that interest is payable semiannually, i.e., interest is received r%/2 twice every year. When the principle of compounding is applied, this implies that the r%/2 received twice an year will yield an actual rate which is higher than the declared (r%) rate. This actual rate is called the effective annual rate. For instance, let us take an illustration of a banker declaring a 10% p.a. interest payable semiannually. This implies that at the end of the year the amount received for every one rupee will be 1 * (1+[10%/2]) * (1+[10%/2]) i.e., (1.05) * (1.05) = (1.05)^2 =
8 The Effective interest rate is 10.25% Effective Interest Rate The effective interest rate in the previous example was computed as =.1025 and in percentage terms it will be 10.25%. The effective rate of interest is hence 10.25% and not 10%. This can be expressed through the following formula: FV = PV (1+ r/m)^(m*n) where m is the number of times within a year interest is paid. When halfyearly interest payments are made 'm' will be 12/6 i.e., 2. When quarterly interest payments are made 'm' will be 12/3 i.e., 4. When monthly compounding is done then 'm' will be 12/1 i.e., 12. Compounding on a daily basis, 'm' will be 365/1 i.e., 365. This is referred to as multiperiod compounding. Continuous Compounding Sometimes compounding may be done continuously. For example, banks may pay interest continuously; they call it continuous compounding. It can be mathematically proved that the continuous compounding function will reduce to the following: FV = PV x {e^x} When x = (r * n) and e is mathematically defined as equal to Continuous Compounding Example The present value of an investment is Rs.1,000. At 10% p.a. interest rate at the end of 5 years, the future value of this investment with continuous compounding will be: FV = 1,000 x {e^.5} = Rs.1, When x = (r * n =.1 x 5 =.5) and e is mathematically defined as equal to
9 Similarly, the present value of a future flow of Rs.100 at 10% p.a. interest rate to be received 5 years hence with continuous compounding will be PV = FV / {e^.5} = 100 / {e^.5} = Rs Annuity There can be a uniform cash flow accrual every year over a period of 'n' years. This uniform flow is called "Annuity". An annuity is a fixed payment (or receipt) each year for a specified number of years. The future compound value of an annuity as follows: FV = A {[(1+r)^n  1]/ r} The term within the curly brackets {} is the compound value factor for an annuity of Re.1, and A is the annuity. The present value of an annuity hence will be PV = A {[11/(1+r)^n]/r} Annuity Example The Future value of Rs.10 received every year for a period of 5 years at an assumed interest rate of 10% per annum will be FV = 10 {[(1+0.1)^51]/ 0.1} = Rs The Present value of Rs.100 to be received every year in the next five years at an assumed interest rate of 10% per annum will be
10 PV =100{[11/(1+0.1)^5]/0.1}=Rs Resent Value Of Perpetuity Perpetuity is an annuity that occurs indefinitely. In perpetuity, time period, n, is so large (mathematically n approaches infinity) that the expression (1+r)^n in the present value equation tends to become zero, and the formula for a perpetuity simply condenses into: PV = A/r rate. where A is the annuity amount occurring indefinitely and r is the interest
11 Regular Annuity Vs. Annuity Due When an annuity's cash payments are made at the end of each period, it is referred as regular annuity. On the other hand, the annual payments/receipt can also be made at the beginning of each period. This is referred to as annuity due. Lease is a contract in which lease rentals (payment) are to be paid for the use of an asset. Hire purchase contract involves regular payments (installments) for acquiring (owning) an asset. A series of fixed payments starting at the beginning of each period for a specified duration is called an annuity due. Annuity Due The formula for computing value of an annuity due is: FV = A[(1 + r) + (1+r)^2+ (1+r)^ (1+r)^n1] FV = A {[(1+r)^(n1) 1] / r} Hence, PV = A {[11/(1+r)^n]/r } * (1+r) PV = A(PVRA,r)*(1+r) Where PVAR is present value of regular annuity and r is the interest rate. Annuity Due Example The future value of Rs.10 received in the beginning of each year for a 5 year duration at an assumed rate of 10% p.a. will be: FV = 10 {[(1+0.1)^(51) 1] / 0.1} = Rs The present value of Rs.100 received in the beginning of each year for 5 years at an assumed interest rate of 10% p.a. will be: PV = 100 {[11/(1+1.1)^5]/0.1 } x (1+0.1)= Rs
12 Multi Period Annuity Compounding The compound value of an annuity in case of the multiperiod compounding is given as follows: FV = A {[(1+r/m)^(n x m)] 1 } /(r/m) PV = A {1 [1/(1+r/m)^(n x m)]} / (r/m) In all instances, the discount rate will be (r/m) and the time horizon will be equal to (n x m). PRESENT VALUE OF A GROWING ANNUITY An annuity may not be a constant sum through the time duration, it may also grow at a rate of g% every year. This is referred as a growing annuity. When there is a growth for specific number of years, the present value of an annuity is stated using the following formula: Present Value Of A Growing Annuity Example An annuity of Rs.100 is expected to grow at a rate of 2% every year. Assuming the interest rate as 10% per annum the present value for this growing annuity for a 5 year duration will be: PV = 100 x {(1/0.08)[(1/0.08)*(1.02)^5/(1.1)^5]} = Rs
13 FUTURE VALUE OF A GROWING ANNUITY Future value of a growing annuity can be defined by the following formula: Future Value Of A Growing Annuity  Example Future value of an annuity of Rs.10 growing at 2% every year with an assumed rate of interest at 10% for five years is computed as: FV = 10 x {[1.1^5/0.08][1.02^5/0.08]} = Rs Present Value Of A Growing Annuity Perpetuity In financial decisionmaking there are number of situations where cash flows may grow at a compound rate. Here, the annuity is not a constant amount A but is subject to a growth factor 'g'. When the growth rate 'g' is constant, the formula can be simplified very easily. The calculation of the present value of a constantly growing perpetuity is given by the following equation: PV = A/(1+r) + A(1+g)/(1+r)^2 + A(1+g)^2/(1+r)^ This equation can be simplified as: PV = A / (r  g) Present Value Of A Growing Annuity Perpetuity In financial decisionmaking there are number of situations where cash flows may grow at a compound rate. Here, the annuity is not a constant amount A but is subject to a growth factor 'g'. When the growth rate 'g' is constant, the formula can be simplified very easily. The calculation of the present value of a constantly growing perpetuity is given by the following equation:
14 PV = A/(1+r) + A(1+g)/(1+r)^2 + A(1+g)^2/(1+r)^ This equation can be simplified as: PV = A / (r  g) Present Value Of Example A Growing Annuity Perpetuity The present value of an annuity of Rs.10 growing at 2% every year with an assumed rate of interest of 10% to perpetuity is: PV = A / (r  g) PV = 10 / ( ) = Rs.125.
Introduction (I) Present Value Concepts. Introduction (II) Introduction (III)
Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal
More informationChapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.
Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values
More informationChapter 3. Present Value. Answers to Concept Review Questions
Chapter 3 Present Value Answers to Concept Review Questions 1. Will a deposit made in an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one
More informationChapter 2. CASH FLOW Objectives: To calculate the values of cash flows using the standard methods.. To evaluate alternatives and make reasonable
Chapter 2 CASH FLOW Objectives: To calculate the values of cash flows using the standard methods To evaluate alternatives and make reasonable suggestions To simulate mathematical and real content situations
More informationTHE TIME VALUE OF MONEY
1 THE TIME VALUE OF MONEY A dollar today is worth more than a dollar in the future, because we can invest the dollar elsewhere and earn a return on it. Most people can grasp this argument without the use
More informationST334 ACTUARIAL METHODS
ST334 ACTUARIAL METHODS version 214/3 These notes are for ST334 Actuarial Methods. The course covers Actuarial CT1 and some related financial topics. Actuarial CT1 which is called Financial Mathematics
More informationPresent Value. Aswath Damodaran. Aswath Damodaran 1
Present Value Aswath Damodaran Aswath Damodaran 1 Intuition Behind Present Value There are three reasons why a dollar tomorrow is worth less than a dollar today Individuals prefer present consumption to
More information5 More on Annuities and Loans
5 More on Annuities and Loans 5.1 Introduction This section introduces Annuities. Much of the mathematics of annuities is similar to that of loans. Indeed, we will see that a loan and an annuity are just
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationThe time value of money: Part II
The time value of money: Part II A reading prepared by Pamela Peterson Drake O U T L I E 1. Introduction 2. Annuities 3. Determining the unknown interest rate 4. Determining the number of compounding periods
More informationClass Note on Valuing Swaps
Corporate Finance Professor Gordon Bodnar Class Note on Valuing Swaps A swap is a financial instrument that exchanges one set of cash flows for another set of cash flows of equal expected value. Swaps
More informationCHAPTER 6. Accounting and the Time Value of Money. 2. Use of tables. 13, 14 8 1. a. Unknown future amount. 7, 19 1, 5, 13 2, 4, 6, 7, 11
CHAPTER 6 Accounting and the Time Value of Money ASSIGNMENT CLASSIFICATION TABLE (BY TOPIC) Topics Questions Brief Exercises Exercises Problems 1. Present value concepts. 1, 2, 3, 4, 5, 9, 17 2. Use of
More informationH O W T O C A L C U L A T E PRESENT VALUES CHAPTER THREE. Brealey Meyers: Principles of Corporate Finance, Seventh Edition
CHAPTER THREE H O W T O C A L C U L A T E PRESENT VALUES 32 IN CHAPTER 2 we learned how to work out the value of an asset that produces cash exactly one year from now. But we did not explain how to value
More informationCaution: Withdrawals made prior to age 59 ½ may be subject to a 10 percent federal penalty tax.
Annuity Distributions What are annuity distributions? How are annuity distributions made? How are your annuity payouts computed if you elect to annuitize? Who are the parties to an annuity contract? How
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 1 Learning Outcomes Chapter 4 Identify various types of cash flow patterns Compute the future value and the present value of different cash flow streams Compute the return
More informationPrinciples and Practices Of Financial Management
Principles and Practices Of Financial Management Wesleyan Assurance Society (Open Fund) Effective from 1 August 2008 Wesleyan Assurance Society Head Office: Colmore Circus, Birmingham B4 6AR Telephone:
More informationChapter 5 Time Value of Money 2: Analyzing Annuity Cash Flows
1. Future Value of Multiple Cash Flows 2. Future Value of an Annuity 3. Present Value of an Annuity 4. Perpetuities 5. Other Compounding Periods 6. Effective Annual Rates (EAR) 7. Amortized Loans Chapter
More informationIntegrated Case. 542 First National Bank Time Value of Money Analysis
Integrated Case 542 First National Bank Time Value of Money Analysis You have applied for a job with a local bank. As part of its evaluation process, you must take an examination on time value of money
More informationAnnuities Table of Contents
Annuities 1 Annuities Table of Contents Chapter One Introduction to Annuities and Annuity Buyers Important Lesson Points Introduction Demographics of NonQualified Annuity Purchasers The Annuity Concept
More informationUnderstanding fixed index annuities
Allianz Life Insurance Company of North America Understanding fixed index annuities M5217 Page 1 of 12 Page 2 of 12 It s time to rethink retirement. In past years, the financial markets have experienced
More informationEQUITYINDEXED ANNUITIES: FUNDAMENTAL CONCEPTS AND ISSUES
EQUITYINDEXED ANNUITIES: FUNDAMENTAL CONCEPTS AND ISSUES October 2006 Bruce A. Palmer, Ph.D. Professor and Chair Emeritus Department of Risk Management and Insurance Robinson College of Business Georgia
More informationBUYER S GUIDE TO FIXED DEFERRED ANNUITIES. The face page of the Fixed Deferred Annuity Buyer s Guide shall read as follows:
BUYER S GUIDE TO FIXED DEFERRED ANNUITIES The face page of the Fixed Deferred Annuity Buyer s Guide shall read as follows: Prepared by the National Association of Insurance Commissioners The National Association
More informationAsset Allocation with Annuities for Retirement Income Management
Asset Allocation with Annuities for Retirement Income Management April 2005 Paul D. Kaplan, Ph.D., CFA Vice President, Quantitative Research Morningstar, Inc. 225 West Wacker Drive Chicago, IL 60606 The
More informationIntroduction. What is an Annuity? Various Types of Annuities
Introduction The Kentucky Department of Insurance is pleased to offer this Annuity Buyer s Guide as an aid to assist you in determining your insurance needs and the products that will fill those needs.
More informationUnderstanding Fixed Indexed Annuities
Fact Sheet for Consumers: Understanding Fixed Indexed Annuities PRESENTED BY Insured Retirement Institute Fact Sheet for Consumers: Understanding Fixed Indexed Annuities Put simply, a Fixed Indexed Annuity
More informationLesson 1. Net Present Value. Prof. Beatriz de Blas
Lesson 1. Net Present Value Prof. Beatriz de Blas April 2006 1. Net Present Value 1 1. Introduction When deciding to invest or not, a rm or an individual has to decide what to do with the money today.
More informationChapter 4 The Time Value of Money (Part 2)
Chapter 4 The Time Value of Money (Part 2) LEARNING OBJECTIVES 1. Compute the future value of multiple cash flows. 2. Determine the future value of an annuity. 3. Determine the present value of an annuity.
More informationEDUCATION AND EXAMINATION COMMITTEE SOCIETY OF ACTUARIES RISK AND INSURANCE. Copyright 2005 by the Society of Actuaries
EDUCATION AND EXAMINATION COMMITTEE OF THE SOCIET OF ACTUARIES RISK AND INSURANCE by Judy Feldman Anderson, FSA and Robert L. Brown, FSA Copyright 25 by the Society of Actuaries The Education and Examination
More informationCash Flow and Equivalence
Cash Flow and Equivalence 1. Cash Flow... 511 2. Time Value of Money... 512 3. Discount Factors and Equivalence... 512 4. Functional Notation... 515 5. Nonannual Compounding... 515 6. Continuous Compounding...
More informationCASH BALANCE PLAN PRIMER
CASH BALANCE PLAN PRIMER Cash balance plans: Have features of both defined benefit and defined contribution plans. Can be designed to be generous, reasonable or inadequate, but will be more costly if the
More information