BIG DATA MARKETING: THE NEXUS OF MARKETING, ANALYSTS, AND IT

Size: px
Start display at page:

Download "BIG DATA MARKETING: THE NEXUS OF MARKETING, ANALYSTS, AND IT"

Transcription

1 BIG DATA MARKETING: THE NEXUS OF MARKETING, ANALYSTS, AND IT The term Big Data is definitely a leading contender for the marketing buzz-phrase of On November 11, 2011, a Google search on the phrase big data got 252,000 hits. By April 4, 2012, that had number increased by a factor of 5,000, to 1,390,000,000 results. And for good reason A 2010 IBM/MIT Sloan Management Review survey of 3,000 executives across 30 industries from 100 countries reveals that 60 percent of respondents have more data than they can effectively use. An IBM study of 1,700 CMO s from 19 industries and 64 countries further exposes this issue with 71 percent saying their organizations are unprepared to handle the explosion of big data. The pace of data acquisition is accelerating and everyone is just trying to keep up. While IT talks about "speeds and feeds, and data miners tend to talk about techniques, CMOs need to know how to effectively use data and analytics. This article lays out some of the basic IT and analytic concepts around Big Data, and provides concrete examples of how to use Big Data infrastructure to drive results. 71% OF CMO S SAY THEIR ORGANIZATIONS ARE UNPREPARED TO HANDLE THE EXPLOSION OF BIG DATA In late 2011, Gartner released a report identifying the top ten strategic technologies for On the list were the following four Big Data technologies: 1. Next Generation Analytics 2. Big Data 3. In-Memory Computing 4. Cloud Computing These all go together to solve the information challenges faced by marketers when they adopt the technologies that enable truly personalized communications, product recommendations, entertainment, and advertising. At the end of each section there are keywords with brief explanations to help you find more information East John Street Seattle, Washington catalysis.com

2 Next generation analytics Next generation analytics simply refers to analysis methods that can run in real time against Big Data. Statistical methods like regression do a lot of computation that takes time on even the fastest computer. They also require that the data meet specific requirements; the one everyone is familiar with is a normal distribution. On the other hand, newer data mining methods are much faster and some of them do not require that the data meet specific requirements. All of the real-time analytic methods are based on data mining algorithms. The importance of high speed next generation analyses is in the ability to adapt what marketers do in real-time to what the mathematical models tell us our customers want and need. Data mining methods are most often discussed by expert analysts in terms of associations between "things," searching for shapes in the data, measuring distances between objects or looking for places where relationships change. This corresponds to what marketers have to key off of when we tailor an offer. Has the kind of product or the frequency of purchase changed for an individual customer? Does "Doug buying 'X' mean that we ought to offer him 'Y' before he goes offline?" Embedded analytics is a descriptive way to think about some elements of next generation analytics. The analytics are embedded in software that is always running on the compute infrastructure. This is an absolute requirement for making sense out of massive amounts of data. Done the old fashioned way taking a sample of the data, having an expert analyze the data, formulating the results, and working out a set of decision rules can take anything from two days to two weeks. Two days to two weeks just does not cut it when we want to send someone a follow-up the day after purchase or show them another offer before they go offline. Marketers have to consider everything from promotions, contacts, and purchases to factors like paydays and economic news, all of which affect purchasing behavior. Having an analytic result two weeks later just doesn t keep up with the flow of data. The analyst is always either getting further and further behind if they are trying to analyze every day, or they are taking snapshots that give an incomplete picture of the sales space. From an IT/analyst standpoint, these high-speed analytics require high-speed access to data. The more complete the data the better. And, of course, more complete data is "Bigger." The next three topics talk about aspects of "Big Data" and how IT and analysts are dealing with it. Keywords include but are not limited to: > R an exemplar of a flexible high-speed analytics package whose code can be put directly on a computer to spit out fast results > IBM s InfoSphere BigInsights an example of a high-speed analytics package tied closely to data 2

3 > High speed data mining which pulls up algorithms and mathematics BIG DATA For this discussion, Big Data refers to amounts of data that cannot be handled by the standard relational data structures, such as the star schemas that were developed commercially in the 1980s and became popular with corporations in the 1990s. One new approach provides for much denser storage of data by allowing us to put different kinds of data in the same column of a table. Instead of having to query hundreds of columns, where it takes time for the computer to find and load the data from each column, we can use fewer columns to speed up data access. Another approach reads data by columns, not rows. For example, when we want a file of addresses, the old methods had to read each row, find the column with the address, then write that address to the new file. Column-oriented architectures just read the whole column of addresses at once. In one engagement, we reduced the time to create a marketing database from 25 hours to 14 minutes in a test of a column-oriented architecture. As a marketer, there is no way you can keep up with daily changes in what each customer wants if it takes 25 hours out of a 24 hour day just to create that day's data. Keywords for "Big Data Architectures" include but are not limited to > Hadoop > Greenplum > Cloudera IN-MEMORY COMPUTING In-memory computing refers to processing data at high speeds in the memory associated with a computer s CPUs instead of reading and writing data to disk. In-memory computing is a component of being able to process Big Data in real time. Reading and writing to disk is slow compared to using the high-speed Core, or RAM, or processor memory that is connected to the CPUs or Central Processing Units of the computer. The key here for marketers is speed, since a large retail chain may process as many as 500,000 sales an hour. While that s a lot of data to read, it is even more if we want to personalize a follow-on communication timed to coincide with when each customer is likely to be ready to buy a targeted product again. 3

4 Keywords include but are not limited to > SAP and in-memory > Microsoft and in-memory > Intel and in-memory CLOUD COMPUTING Already familiar to most, cloud computing refers to tying a large number of large computers together into a much larger virtual computer. The cloud represents the massive cloud or collection of data these computers can support, some of it processed in-memory. It is becoming common for a cloud computing system to link 10,000 computers together. This aggregation of hundreds or thousands of computers makes a lot of in-memory data storage available at a scale and cost that cannot be touched by the massive computer systems that were popular as recently as five years ago. For example, Amazon Web Services (AWS) has launched ElastiCache, which is designed to allow enterprises to speed up their Web applications by allowing them to retrieve information from "a fast, managed, in-memory caching system, instead of relying entirely on slower disk-based databases." Because of the volumes of data to be processed (a petabyte of data is becoming common), a large number of computers are necessary to store the data, move it around, clean it, aggregate it, and report on it. Catalysis expects marketers will typically use results from data stores that exceed two petabytes within four years. Why? Because the more we know about our customers the better we can serve them. Keywords include but are not limited to: > SalesForce and cloud > Amazon and cloud > Google and cloud HOW IT WORKS AN EXAMPLE OF MARKETING RULES There are a couple of ways to build out an environment that uses embedded analytics on Big Data in a cloud computing environment that leverages in-memory computing. A best practice is described here. 4

5 An initial set of big analytics is done to establish some starting marketing decision rules (sometimes called business rules, but these are much more complex). Marketing rules are tested until the system returns satisfactory results. For example, we could set a rule that has us offer heavy jackets for sale during summer to people who had previously purchased outerwear in June, July, or August. In November, there is a negative correlation between decreasing temperatures and increasing sales of heavy jackets so our rule may say that we always offer heavy jackets as the temperature being to decrease. In winter we'd offer jackets to those who previously bought outerwear when it was cold. These are just a few options; there are potentially thousands or even millions of possible rules. While these rules might produce results, an even more effective approach is to use a set of meta-rules to decide which rule to activate when. In our example, a meta-rule might tell us to: 1. Start with using the associations between the sales of different items by average outside temperature. This is the default rule. 2. If they have bought outerwear in a particular month, the meta-rule overrides the default recommendation and offers outerwear in that month. 3. If they bought a kid's jacket in that month, use external data to check if there are children in the household, then offers kid's outerwear because their child may have outgrown their last jacket and needs a new one. The more data used, and the more specific the rule, the higher the potential return. After you develop the potential rules, each rule is "valued" by the probability and expected amount of the sale for each possible item to be offered. Then just the top three or four best offers are sent to each customer. If we want to highlight 20 products, the highest valued rules are shown first. Each customer gets a different set of offers tailored to them, increasing the retailer's relevance and their sales. Specially coded high-speed algorithms are needed to even approach analyzing the data. The algorithms have to be designed explicitly to run in massive computing environments. The data may be housed in a cloud computing environment and the analytic calculations may be performed in-memory to speed the formation of the results that in turn are used to create the marketing rules that are built into code that is executed on cloud servers. 5

6 CONCLUSION Implicitly, the burgeoning technology of massive data and high speed analytics to inform customer communication will affect each and every marketer in the near future. There are already studies indicating more than a 200% increase in ROI for companies that effectively use big data. Leading edge marketers are engaging with Big Data and big analytics right now. We are using cloud services like Amazon, data stored in Hadoop, and analyses performed in R to segment our customers, identify associations between what we do and how our customers react, and predict customer future value to optimize marketing spend on a customer-by-customer basis. While the short-term investment in infrastructure, talent, and time may seem daunting, the long-term payoff will be huge. ABOUT CATALYSIS For nearly 20 years, Catalysis has specialized in the digital integration of award-winning marketing campaigns that drive connected, measurable results. Our clients include Microsoft, Moss Adams, Banner Mattress, Thunder Valley Casino, BabyLegs, and WineBid. For more information, contact or visit our website at The information contained in this publication is general and is for informational purposes only. Catalysis makes no warranties, express or implied, in this material. 6

Understanding the Value of In-Memory in the IT Landscape

Understanding the Value of In-Memory in the IT Landscape February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to

More information

Big Data Big Deal? Salford Systems www.salford-systems.com

Big Data Big Deal? Salford Systems www.salford-systems.com Big Data Big Deal? Salford Systems www.salford-systems.com 2015 Copyright Salford Systems 2010-2015 Big Data Is The New In Thing Google trends as of September 24, 2015 Difficult to read trade press without

More information

Forecast of Big Data Trends. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014

Forecast of Big Data Trends. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014 Forecast of Big Data Trends Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014 Big Data transforms Business 2 Data created every minute Source http://mashable.com/2012/06/22/data-created-every-minute/

More information

bigdata Managing Scale in Ontological Systems

bigdata Managing Scale in Ontological Systems Managing Scale in Ontological Systems 1 This presentation offers a brief look scale in ontological (semantic) systems, tradeoffs in expressivity and data scale, and both information and systems architectural

More information

SQL Server 2012 Performance White Paper

SQL Server 2012 Performance White Paper Published: April 2012 Applies to: SQL Server 2012 Copyright The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.

More information

SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here

SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases. Are my applications accelerated without manual intervention and tuning?.

More information

Using In-Memory Data Fabric Architecture from SAP to Create Your Data Advantage

Using In-Memory Data Fabric Architecture from SAP to Create Your Data Advantage SAP HANA Using In-Memory Data Fabric Architecture from SAP to Create Your Data Advantage Deep analysis of data is making businesses like yours more competitive every day. We ve all heard the reasons: the

More information

INTRODUCTION TO CASSANDRA

INTRODUCTION TO CASSANDRA INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open

More information

The 3 questions to ask yourself about BIG DATA

The 3 questions to ask yourself about BIG DATA The 3 questions to ask yourself about BIG DATA Do you have a big data problem? Companies looking to tackle big data problems are embarking on a journey that is full of hype, buzz, confusion, and misinformation.

More information

Using In-Memory Computing to Simplify Big Data Analytics

Using In-Memory Computing to Simplify Big Data Analytics SCALEOUT SOFTWARE Using In-Memory Computing to Simplify Big Data Analytics by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T he big data revolution is upon us, fed

More information

Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012

Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation

More information

RevoScaleR Speed and Scalability

RevoScaleR Speed and Scalability EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution

More information

QLIKVIEW SERVER MEMORY MANAGEMENT AND CPU UTILIZATION

QLIKVIEW SERVER MEMORY MANAGEMENT AND CPU UTILIZATION QLIKVIEW SERVER MEMORY MANAGEMENT AND CPU UTILIZATION QlikView Scalability Center Technical Brief Series September 2012 qlikview.com Introduction This technical brief provides a discussion at a fundamental

More information

Customized Report- Big Data

Customized Report- Big Data GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.

More information

Data processing goes big

Data processing goes big Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,

More information

Drivers to support the growing business data demand for Performance Management solutions and BI Analytics

Drivers to support the growing business data demand for Performance Management solutions and BI Analytics Drivers to support the growing business data demand for Performance Management solutions and BI Analytics some facts about Jedox Facts about Jedox AG 2002: Founded in Freiburg, Germany Today: 2002 4 Offices

More information

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling

More information

Dell* In-Memory Appliance for Cloudera* Enterprise

Dell* In-Memory Appliance for Cloudera* Enterprise Built with Intel Dell* In-Memory Appliance for Cloudera* Enterprise Find out what faster big data analytics can do for your business The need for speed in all things related to big data is an enormous

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

How to Navigate Big Data with Ad Hoc Visual Data Discovery Data technologies are rapidly changing, but principles of 30 years ago still apply today

How to Navigate Big Data with Ad Hoc Visual Data Discovery Data technologies are rapidly changing, but principles of 30 years ago still apply today How to Navigate Big Data with Ad Hoc Visual Data Discovery Data technologies are rapidly changing, but principles of 30 years ago still apply today INTRODUCTION Data is the heart of TIBCO Spotfire. It

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

Business Intelligence Solutions for Gaming and Hospitality

Business Intelligence Solutions for Gaming and Hospitality Business Intelligence Solutions for Gaming and Hospitality Prepared by: Mario Perkins Qualex Consulting Services, Inc. Suzanne Fiero SAS Objective Summary 2 Objective Summary The rise in popularity and

More information

Colgate-Palmolive selects SAP HANA to improve the speed of business analytics with IBM and SAP

Colgate-Palmolive selects SAP HANA to improve the speed of business analytics with IBM and SAP selects SAP HANA to improve the speed of business analytics with IBM and SAP Founded in 1806, is a global consumer products company which sells nearly $17 billion annually in personal care, home care,

More information

In-Memory or Live Data: Which is Better?

In-Memory or Live Data: Which is Better? In-Memory or Live Data: Which is Better? AUTHOR: Ellie Fields, Director Product Marketing, Tableau Software DATE: July 2011 The short answer is: both. Companies today are using both to deal with ever-larger

More information

Building your Big Data Architecture on Amazon Web Services

Building your Big Data Architecture on Amazon Web Services Building your Big Data Architecture on Amazon Web Services Abhishek Sinha @abysinha sinhaar@amazon.com AWS Services Deployment & Administration Application Services Compute Storage Database Networking

More information

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first

More information

IS IN-MEMORY COMPUTING MAKING THE MOVE TO PRIME TIME?

IS IN-MEMORY COMPUTING MAKING THE MOVE TO PRIME TIME? IS IN-MEMORY COMPUTING MAKING THE MOVE TO PRIME TIME? EMC and Intel work with multiple in-memory solutions to make your databases fly Thanks to cheaper random access memory (RAM) and improved technology,

More information

Big Data Technologies Compared June 2014

Big Data Technologies Compared June 2014 Big Data Technologies Compared June 2014 Agenda What is Big Data Big Data Technology Comparison Summary Other Big Data Technologies Questions 2 What is Big Data by Example The SKA Telescope is a new development

More information

Web analytics: Data Collected via the Internet

Web analytics: Data Collected via the Internet Database Marketing Fall 2016 Web analytics (incl real-time data) Collaborative filtering Facebook advertising Mobile marketing Slide set 8 1 Web analytics: Data Collected via the Internet Customers can

More information

Datalogix. Using IBM Netezza data warehouse appliances to drive online sales with offline data. Overview. IBM Software Information Management

Datalogix. Using IBM Netezza data warehouse appliances to drive online sales with offline data. Overview. IBM Software Information Management Datalogix Using IBM Netezza data warehouse appliances to drive online sales with offline data Overview The need Infrastructure could not support the growing online data volumes and analysis required The

More information

The Power of Predictive Analytics

The Power of Predictive Analytics The Power of Predictive Analytics Derive real-time insights with accuracy and ease SOLUTION OVERVIEW www.sybase.com KXEN S INFINITEINSIGHT AND SYBASE IQ FEATURES & BENEFITS AT A GLANCE Ensure greater accuracy

More information

IBM DB2 Near-Line Storage Solution for SAP NetWeaver BW

IBM DB2 Near-Line Storage Solution for SAP NetWeaver BW IBM DB2 Near-Line Storage Solution for SAP NetWeaver BW A high-performance solution based on IBM DB2 with BLU Acceleration Highlights Help reduce costs by moving infrequently used to cost-effective systems

More information

Top 4 Trends in Digital Marketing 2014

Top 4 Trends in Digital Marketing 2014 Top 4 Trends in Digital Marketing 2014 New Opportunities for Multi-Location Brands Driving Online Customers into In-Store Sales Social + Local + Mobile www.localvox.com Gartner predicts that multi-location

More information

Cost-Effective Business Intelligence with Red Hat and Open Source

Cost-Effective Business Intelligence with Red Hat and Open Source Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,

More information

Infrastructure Matters: POWER8 vs. Xeon x86

Infrastructure Matters: POWER8 vs. Xeon x86 Advisory Infrastructure Matters: POWER8 vs. Xeon x86 Executive Summary This report compares IBM s new POWER8-based scale-out Power System to Intel E5 v2 x86- based scale-out systems. A follow-on report

More information

In-Memory or Live Data: Which Is Better?

In-Memory or Live Data: Which Is Better? In-Memory or Live Data: Which Is Better? Author: Ellie Fields, Director Product Marketing, Tableau Software July 2011 p2 The short answer is: both. Companies today are using both to deal with ever-larger

More information

GigaSpaces Real-Time Analytics for Big Data

GigaSpaces Real-Time Analytics for Big Data GigaSpaces Real-Time Analytics for Big Data GigaSpaces makes it easy to build and deploy large-scale real-time analytics systems Rapidly increasing use of large-scale and location-aware social media and

More information

Data Functionality in Marketing

Data Functionality in Marketing Data Functionality in Marketing By German Sacristan, X1 Head of Marketing and Customer Experience, UK and author of The Digital & Direct Marketing Goose Data is not a new thing. Successful businesses have

More information

In-Memory or Live Reporting: Which Is Better For SQL Server?

In-Memory or Live Reporting: Which Is Better For SQL Server? In-Memory or Live Reporting: Which Is Better For SQL Server? DATE: July 2011 Is in-memory or live data better when running reports from a SQL Server database? The short answer is both. Companies today

More information

Big Data for Marketing:

Big Data for Marketing: Whitepaper Big Data for Marketing: When is Big Data the right choice? Helping Chief Marketing Officers identify when to use Big Data 2 Whitepaper Introduction Chief Marketing Officers (CMOs) without plans

More information

Whitepaper. Innovations in Business Intelligence Database Technology. www.sisense.com

Whitepaper. Innovations in Business Intelligence Database Technology. www.sisense.com Whitepaper Innovations in Business Intelligence Database Technology The State of Database Technology in 2015 Database technology has seen rapid developments in the past two decades. Online Analytical Processing

More information

Laurence Liew General Manager, APAC. Economics Is Driving Big Data Analytics to the Cloud

Laurence Liew General Manager, APAC. Economics Is Driving Big Data Analytics to the Cloud Laurence Liew General Manager, APAC Economics Is Driving Big Data Analytics to the Cloud Big Data 101 The Analytics Stack Economics of Big Data Convergence of the 3 forces Big Data Analytics in the Cloud

More information

Bringing Big Data into the Enterprise

Bringing Big Data into the Enterprise Bringing Big Data into the Enterprise Overview When evaluating Big Data applications in enterprise computing, one often-asked question is how does Big Data compare to the Enterprise Data Warehouse (EDW)?

More information

Customer Insight Appliance. Enabling retailers to understand and serve their customer

Customer Insight Appliance. Enabling retailers to understand and serve their customer Customer Insight Appliance Enabling retailers to understand and serve their customer Customer Insight Appliance Enabling retailers to understand and serve their customer. Technology has empowered today

More information

Big-data Analytics: Challenges and Opportunities

Big-data Analytics: Challenges and Opportunities Big-data Analytics: Challenges and Opportunities Chih-Jen Lin Department of Computer Science National Taiwan University Talk at 台 灣 資 料 科 學 愛 好 者 年 會, August 30, 2014 Chih-Jen Lin (National Taiwan Univ.)

More information

Meeting the Big Data Challenge: Get Close, Get Connected

Meeting the Big Data Challenge: Get Close, Get Connected CITO Research Advancing the craft of technology leadership Meeting the Big Data Challenge: Get Close, Get Connected Sponsored by Contents Executive Summary 1 Introduction 1 The Untold Story of Big Data

More information

Columnstore Indexes for Fast Data Warehouse Query Processing in SQL Server 11.0

Columnstore Indexes for Fast Data Warehouse Query Processing in SQL Server 11.0 SQL Server Technical Article Columnstore Indexes for Fast Data Warehouse Query Processing in SQL Server 11.0 Writer: Eric N. Hanson Technical Reviewer: Susan Price Published: November 2010 Applies to:

More information

SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013

SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013 SAP HANA SAP s In-Memory Database Dr. Martin Kittel, SAP HANA Development January 16, 2013 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase

More information

Information management software solutions White paper. Powerful data warehousing performance with IBM Red Brick Warehouse

Information management software solutions White paper. Powerful data warehousing performance with IBM Red Brick Warehouse Information management software solutions White paper Powerful data warehousing performance with IBM Red Brick Warehouse April 2004 Page 1 Contents 1 Data warehousing for the masses 2 Single step load

More information

FLASH GAINS GROUND AS ENTERPRISE STORAGE OPTION

FLASH GAINS GROUND AS ENTERPRISE STORAGE OPTION FLASH GAINS GROUND AS ENTERPRISE STORAGE OPTION With new management functions placing it closer to parity with hard drives, as well as new economies, flash is gaining traction as a standard media for mainstream

More information

Table of Contents. June 2010

Table of Contents. June 2010 June 2010 From: StatSoft Analytics White Papers To: Internal release Re: Performance comparison of STATISTICA Version 9 on multi-core 64-bit machines with current 64-bit releases of SAS (Version 9.2) and

More information

Buyer s Guide to Big Data Integration

Buyer s Guide to Big Data Integration SEPTEMBER 2013 Buyer s Guide to Big Data Integration Sponsored by Contents Introduction 1 Challenges of Big Data Integration: New and Old 1 What You Need for Big Data Integration 3 Preferred Technology

More information

The 2012 Data Informed Analytics and Data Survey

The 2012 Data Informed Analytics and Data Survey The 2012 Data Informed Analytics and Data Survey Table of Contents Page 2: Page 2: Page 4: Page 21: Page 36: Page 39 Introduction Who Responded? What They Want to Know What They Don t Understand Managing

More information

Big Data & Analytics for Semiconductor Manufacturing

Big Data & Analytics for Semiconductor Manufacturing Big Data & Analytics for Semiconductor Manufacturing 半 導 体 生 産 におけるビッグデータ 活 用 Ryuichiro Hattori 服 部 隆 一 郎 Intelligent SCM and MFG solution Leader Global CoC (Center of Competence) Electronics team General

More information

An Overview of SAP BW Powered by HANA. Al Weedman

An Overview of SAP BW Powered by HANA. Al Weedman An Overview of SAP BW Powered by HANA Al Weedman About BICP SAP HANA, BOBJ, and BW Implementations The BICP is a focused SAP Business Intelligence consulting services organization focused specifically

More information

Lecture 10: HBase! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl

Lecture 10: HBase! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the

More information

Big Data and Its Impact on the Data Warehousing Architecture

Big Data and Its Impact on the Data Warehousing Architecture Big Data and Its Impact on the Data Warehousing Architecture Sponsored by SAP Speaker: Wayne Eckerson, Director of Research, TechTarget Wayne Eckerson: Hi my name is Wayne Eckerson, I am Director of Research

More information

The Value of a Content Delivery Network

The Value of a Content Delivery Network September 2010 White Paper The Value of a Content Delivery Network Table of Contents Introduction... 3 Performance... 3 The Second Generation of CDNs... 6 Conclusion... 7 About NTT America... 8 Introduction

More information

Flash Memory Arrays Enabling the Virtualized Data Center. July 2010

Flash Memory Arrays Enabling the Virtualized Data Center. July 2010 Flash Memory Arrays Enabling the Virtualized Data Center July 2010 2 Flash Memory Arrays Enabling the Virtualized Data Center This White Paper describes a new product category, the flash Memory Array,

More information

Real-Time Big Data Analytics SAP HANA with the Intel Distribution for Apache Hadoop software

Real-Time Big Data Analytics SAP HANA with the Intel Distribution for Apache Hadoop software Real-Time Big Data Analytics with the Intel Distribution for Apache Hadoop software Executive Summary is already helping businesses extract value out of Big Data by enabling real-time analysis of diverse

More information

Big Data & the Cloud: The Sum Is Greater Than the Parts

Big Data & the Cloud: The Sum Is Greater Than the Parts E-PAPER March 2014 Big Data & the Cloud: The Sum Is Greater Than the Parts Learn how to accelerate your move to the cloud and use big data to discover new hidden value for your business and your users.

More information

nomorerack CUSTOMER SUCCESS STORY RELIABILITY AND AVAILABILITY WITH FAST GROWTH IN THE CLOUD

nomorerack CUSTOMER SUCCESS STORY RELIABILITY AND AVAILABILITY WITH FAST GROWTH IN THE CLOUD nomorerack RELIABILITY AND AVAILABILITY WITH FAST GROWTH IN THE CLOUD CUSTOMER SUCCESS STORY Nomorerack is one of the fastest growing e-commerce companies in the US with 1023% growth in revenue and 15-20x

More information

ANALYTICS BUILT FOR INTERNET OF THINGS

ANALYTICS BUILT FOR INTERNET OF THINGS ANALYTICS BUILT FOR INTERNET OF THINGS Big Data Reporting is Out, Actionable Insights are In In recent years, it has become clear that data in itself has little relevance, it is the analysis of it that

More information

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction

More information

Analytics in Days White Paper and Business Case

Analytics in Days White Paper and Business Case Analytics in Days White Paper and Business Case Analytics Navigating the Maze Analytics is hot. It seems virtually everyone needs or wants it, but many still aren t sure what the business case is or how

More information

Microsoft Analytics Platform System. Solution Brief

Microsoft Analytics Platform System. Solution Brief Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal

More information

Big Data. Fast Forward. Putting data to productive use

Big Data. Fast Forward. Putting data to productive use Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize

More information

Performance and Scalability Overview

Performance and Scalability Overview Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and

More information

BIG DATA USING HADOOP

BIG DATA USING HADOOP + Breakaway Session By Johnson Iyilade, Ph.D. University of Saskatchewan, Canada 23-July, 2015 BIG DATA USING HADOOP + Outline n Framing the Problem Hadoop Solves n Meet Hadoop n Storage with HDFS n Data

More information

Security Benefits of Cloud Computing

Security Benefits of Cloud Computing Security Benefits of Cloud Computing FELICIAN ALECU Economy Informatics Department Academy of Economic Studies Bucharest ROMANIA e-mail: alecu.felician@ie.ase.ro Abstract: The nature of the Internet is

More information

An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics

An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,

More information

Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data

Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are

More information

Healthcare Big Data Exploration in Real-Time

Healthcare Big Data Exploration in Real-Time Healthcare Big Data Exploration in Real-Time Muaz A Mian A Project Submitted in partial fulfillment of the requirements for degree of Masters of Science in Computer Science and Systems University of Washington

More information

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps

Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps White provides GRASP-powered big data predictive analytics that increases marketing effectiveness and customer satisfaction with API-driven adaptive apps that anticipate, learn, and adapt to deliver contextual,

More information

Chapter 6. Foundations of Business Intelligence: Databases and Information Management

Chapter 6. Foundations of Business Intelligence: Databases and Information Management Chapter 6 Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:

More information

IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop

IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop Frank C. Fillmore, Jr. The Fillmore Group, Inc. Session Code: E13 Wed, May 06, 2015 (02:15 PM - 03:15 PM) Platform: Cross-platform Objectives

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

High-Performance Cloud Computing with IN-MEMORY OLTP

High-Performance Cloud Computing with IN-MEMORY OLTP High-Performance Cloud Computing with IN-MEMORY OLTP Executive Summary SuperBowl XXXIII Miami, 1999. Denver placed a big wager on John Elway, their very senior quarterback. The bet paid off: Broncos win

More information

LISTENING, INTERPRETING, AND ASKING BIG DATA MARKETING QUESTIONS

LISTENING, INTERPRETING, AND ASKING BIG DATA MARKETING QUESTIONS LISTENING, INTERPRETING, AND ASKING BIG DATA MARKETING QUESTIONS 1 LISTENING, INTERPRETING, AND ASKING BIG DATA MARKETING QUESTIONS IN A RECENT SURVEY BY MCKINSEY AND COMPANY, AS MANY AS 50% OF RESPONDENTS

More information

White Paper: Big Data and the hype around IoT

White Paper: Big Data and the hype around IoT 1 White Paper: Big Data and the hype around IoT Author: Alton Harewood 21 Aug 2014 (first published on LinkedIn) If I knew today what I will know tomorrow, how would my life change? For some time the idea

More information

Tamanna Roy Rayat & Bahra Institute of Engineering & Technology, Punjab, India talk2tamanna@gmail.com

Tamanna Roy Rayat & Bahra Institute of Engineering & Technology, Punjab, India talk2tamanna@gmail.com IJCSIT, Volume 1, Issue 5 (October, 2014) e-issn: 1694-2329 p-issn: 1694-2345 A STUDY OF CLOUD COMPUTING MODELS AND ITS FUTURE Tamanna Roy Rayat & Bahra Institute of Engineering & Technology, Punjab, India

More information

News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren

News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business

More information

Parallel Data Warehouse

Parallel Data Warehouse MICROSOFT S ANALYTICS SOLUTIONS WITH PARALLEL DATA WAREHOUSE Parallel Data Warehouse Stefan Cronjaeger Microsoft May 2013 AGENDA PDW overview Columnstore and Big Data Business Intellignece Project Ability

More information

Architectures for Big Data Analytics A database perspective

Architectures for Big Data Analytics A database perspective Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum

More information

Sources: Summary Data is exploding in volume, variety and velocity timely

Sources: Summary Data is exploding in volume, variety and velocity timely 1 Sources: The Guardian, May 2010 IDC Digital Universe, 2010 IBM Institute for Business Value, 2009 IBM CIO Study 2010 TDWI: Next Generation Data Warehouse Platforms Q4 2009 Summary Data is exploding

More information

Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores

Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores Composite Software October 2010 TABLE OF CONTENTS INTRODUCTION... 3 BUSINESS AND IT DRIVERS... 4 NOSQL DATA STORES LANDSCAPE...

More information

Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov

Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov Unlock your data for fast insights: dimensionless modeling with in-memory column store By Vadim Orlov I. DIMENSIONAL MODEL Dimensional modeling (also known as star or snowflake schema) was pioneered by

More information

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V WHITE PAPER Create the Data Center of the Future Accelerate

More information

What Does Big Data Really Mean for Insurers? New Paradigms and New Analytic Opportunities

What Does Big Data Really Mean for Insurers? New Paradigms and New Analytic Opportunities What Does Big Data Really Mean for Insurers? New Paradigms and New Analytic Opportunities Featuring as an example: SAS High-Performance Analytics An Authors: Deb Smallwood, Founder Mark Breading, Partner

More information

INTEROPERABILITY OF SAP BUSINESS OBJECTS 4.0 WITH GREENPLUM DATABASE - AN INTEGRATION GUIDE FOR WINDOWS USERS (64 BIT)

INTEROPERABILITY OF SAP BUSINESS OBJECTS 4.0 WITH GREENPLUM DATABASE - AN INTEGRATION GUIDE FOR WINDOWS USERS (64 BIT) White Paper INTEROPERABILITY OF SAP BUSINESS OBJECTS 4.0 WITH - AN INTEGRATION GUIDE FOR WINDOWS USERS (64 BIT) Abstract This paper presents interoperability of SAP Business Objects 4.0 with Greenplum.

More information

Fact Sheet In-Memory Analysis

Fact Sheet In-Memory Analysis Fact Sheet In-Memory Analysis 1 Copyright Yellowfin International 2010 Contents In Memory Overview...3 Benefits...3 Agile development & rapid delivery...3 Data types supported by the In-Memory Database...4

More information

IBM Software Information Management. Scaling strategies for mission-critical discovery and navigation applications

IBM Software Information Management. Scaling strategies for mission-critical discovery and navigation applications IBM Software Information Management Scaling strategies for mission-critical discovery and navigation applications Scaling strategies for mission-critical discovery and navigation applications Contents

More information

Greener IT Practices. Anthony Suda Network Manager

Greener IT Practices. Anthony Suda Network Manager Greener IT Practices Anthony Suda Network Manager marketing + technology 701.235.5525 888.9.sundog fax: 701.235.8941 2000 44th st s floor 6 fargo, nd 58103 www.sundog.net In our world today, individuals

More information

What is Prospect Analytics?

What is Prospect Analytics? What is Prospect Analytics? Everything you need to know about this new sphere of sales and marketing technology and how it can improve your business Table of Contents Executive Summary... 2 The Power of

More information

Optimize Revenue for High-Volume Service Providers with Pricing Simulation

Optimize Revenue for High-Volume Service Providers with Pricing Simulation SAP Brief SAP Billing and Revenue Innovation Management SAP Convergent Pricing Simulation Objectives Optimize Revenue for High-Volume Service Providers with Pricing Simulation Tailor pricing strategies

More information

The Top 10 Local Marketing Secrets

The Top 10 Local Marketing Secrets The Top 10 Local Marketing Secrets Using technology to beat your competitors Business Marketing techniques are changing rapidly, more rapidly than most business owners are able to keep up. This FREE report

More information

Big Data Success Step 1: Get the Technology Right

Big Data Success Step 1: Get the Technology Right Big Data Success Step 1: Get the Technology Right TOM MATIJEVIC Director, Business Development ANDY MCNALIS Director, Data Management & Integration MetaScale is a subsidiary of Sears Holdings Corporation

More information