Experiments on cost/power and failure aware scheduling for clouds and grids

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Experiments on cost/power and failure aware scheduling for clouds and grids"

Transcription

1 Experiments on cost/power and failure aware scheduling for clouds and grids Jorge G. Barbosa, Al0no M. Sampaio, Hamid Harabnejad Universidade do Porto, Faculdade de Engenharia, LIACC Porto, Portugal,

2 Outline Dynamic Power- and Failure- aware Cloud Resources Alloca0on for Sets of Independent Tasks A Budget Constrained Scheduling Algorithm for Workflow Applica0ons on Heterogeneous Clusters

3 Outline Dynamic Power- and Failure- aware Cloud Resources Alloca0on for Sets of Independent Tasks A Budget Constrained Scheduling Algorithm for Workflow Applica0ons on Heterogeneous Clusters

4 Dynamic Power- and Failure- aware Cloud Resources Alloca0on for Sets of Independent Tasks Cloud compu0ng paradigm Dynamic provisioning of compu0ng services. Employs Virtual Machine (VM) technologies for consolida0on and environment isola0on purposes. Node failure can occur due to hardware or so[ware problems. Image source: hup://

5 Characteris0cs Dependability of the infrastructure Distributed systems con0nue to grow in scale and in complexity Failures become norms, which can lead to viola0on of the nego0ated SLAs Mean Time Between Failures (MTBF) would be 1.25h on a petaflop system (1) Energy consump;on The main part of energy consump0on is determined by the CPU Energy consump0on dominates the opera0onal costs Task 1 Task 2 Task 3 Task n PM Physical Machine VM 1 VM 2 VM 4... VMM VMM VMM VMM PM 1 PM 2 PM 3 PM m VM n (1) S. Fu, "Failure- aware resource management for high- availability compu0ng clusters with distributed virtual machines," Journal of Parallel and Distributed Compu0ng, vol. 70, April 2010, pp , doi: /j.jpdc

6 Related Work Dynamic alloca0on of VMs, considering PMs reliability Based in a failure predictor tool with 76.5% of accuracy (1) Op;mis;c Best- Fit (OBFIT) algorithm - Selects the PM with minimum weighted available capacity and reliability. (2) Pessimis;c Best- Fit (PBFIT) algorithm - Selects also unreliable PMs in order to increase the job comple0on rate. - Selects the unreliable PM p with capacity C p such that C avg + C p results in the minimum required capacity Proposed architecture for reconfigurable distributed VM (1) C avg average capacity from reliable PMs.

7 Approach The goal Construct power- and failure- aware compu;ng environments, in order to maximize the rate of completed jobs by their deadline It is a best- effort approach, not a SLA based approach; Virtual- to- physical resources mapping decisions must consider both the power- efficiency and reliability levels of compute nodes; Dynamic update of virtual- to- physical configura0ons (CPU usage and migra0on).

8 Approach Mul;- objec;ve scheduling algorithms are addressed in three ways: 1- Finding the pareto op0mal solu0ons, and let the user select the best solu0on. 2- Combina0on of the two func0ons in a single objec0ve func0on. 3- Bicriteria scheduling which the user specifies a limita0on for one criterion (power or budget constraints), and the algorithm tries to op0mize the other criterion under this constraint.

9 Approach Leverage virtualiza0on tools Xen credit scheduler Dynamically update cap parameter But enforcing work- conserving CPU% 100 CPU Power consump;on Increasing Stop & copy migra0on Faster VM migra0ons, preferable for proac0ve failure management 0 PM3 VM ;me PM2 VM VM PM1 VM VM VM Failure Stop & copy migra0on Failure predic0on accuracy

10 System Overview Cloud architecture Private cloud Homogenous PMs Cluster coordinator manages user jobs VMs are created and destroyed dynamically Users jobs Private cloud management architecture A job is a set of independent tasks A task runs in a single VM, which CPU- intensive workload is known Number of tasks per job and tasks deadlines are defined by user

11 Power Model Linear power model P = p1 + p2.cpu% Power Efficiency of P Comple0on rate of users jobs Example of power efficiency curve (p1 = 175w, p2 = 75w) Working Efficiency Measures the quan0ty of useful work done (i.e. completed users jobs) by the consumed power.

12 Proposed algorithms Minimum Time Task Execu0on (MTTE) algorithm Slack 0me to accomplish task t PM i capacity constraints Selects a PM if: It guarantees maximum processing power required by the VM (task); It has higher reliability; And if It increases CPU Power Efficiency.

13 Proposed algorithms Relaxed Time Task Execu0on (RTTE) algorithm 100% Host CPU 0% VM Cap set in Xen credit scheduler Unlike MTTE, the RTTE algorithm always reserves to VM the minimum amount of resources necessary to accomplish the task within its deadline

14 Performance Analysis Simula0on setup 50 PMs, each modeled with one CPU core with the performance equivalent to 800 MFLOPS; VMs stop & copy migra0on overhead takes 12 secs; 30 synthe0c jobs, each being cons0tuted of 5 CPU- intensive workload tasks; Failed PMs stay unavailable during 60 secs; Predicted occurrence 0me of failure precedes the actual occurrence 0me; Failures instants, jobs arriving 0me, and tasks workload sizes follow an uniform distribu0on;

15 Performance Analysis Implementa0on considera0ons Stabiliza0on to avoid mul0ple migra0ons Concurrence among cluster coordinators Algorithms compared to ours Common Best- Fit (CBFIT) Selects the PM with the maximum power- efficiency and do not consider resources reliability Op0mis0c Best- Fit (OBFIT) Pessimis0c Best- Fit (PBFIT)

16 Performance Analysis Migra0ons occurring due to proac;ve failure management only: Failure predictor tool has 76.5% of accuracy; RTTE algorithm presents the best results; Working efficiency, as well as the jobs comple0on rate, decreases with failure predic0on inaccuracy.

17 Performance Analysis Migra0ons occurring due to proac0ve failure management and power efficiency: Sliding window of 36 seconds, with threshold of 65% (a migra0on starts if CPU usage below 65%); RTTE returns the best results for 76.5% failure predic0on accuracy; Comparing to earlier results, the rate of completed jobs diminishes, since the number of VMs migra0ons increases.

18 Performance Analysis Number of migra0ons occurring due to failure management and power efficiency RTTE and MTTE have stable number of migra0ons and respawns along failure accuracy varia0on Migra0ons occurring due to proac0ve failure management only (75% accuracy) RTTE and MTTE return the best working efficiency as the number of failures in the cloud infrastructure rises

19 Conclusions (1) Conclusion remarks: Power- and failure- aware dynamic alloca0ons improve the jobs comple0on rate; Dynamically adjus0ng cap parameter of Xen credit scheduler prove to be capable of obtaining beuer jobs comple0on rate (RTTE); Excessive number of VM migra0ons to op0mizing power efficiency reduces job comple0on rate. Future direc0ons: Dynamic alloca0on considering workload characteris0cs; Data locality; Scalability; Compare/integrate DVFS feature; Improve PM consolida0on (why 65% threshold?); Heterogeneous CPUs.

20 Outline Dynamic Power- and Failure- aware Cloud Resources Alloca0on for Sets of Independent Tasks A Budget Constrained Scheduling Algorithm for Workflow Applica0ons on Heterogeneous Clusters

21 A Budget Constrained Scheduling Algorithm for Workflow Applica0ons on Heterogeneous Clusters A Job is represented by a workflow A workflow is a Directed Acyclic Graph (DAG) a node is an individual task Workflow scheduling Mapping Tasks to Resources Main goal is to have a lower finish time of the exit task CPU1 CPU2 an edge represents the inter- job dependency CPU3

22 Introduc0on Target plazorm: - U0lity Grids that are maintained and managed by a service provider. - Based on user requirements, the provider finds a scheduling that meets user constrains. In u;lity Grids, other QoS auributes than execu0on 0me, like economical cost or deadline, may be considered. It is a mul;- objec;ve problem. Mul;- objec;ve scheduling algorithms are addressed in three ways: 1- Finding the pareto op0mal solu0ons, and let the user select the best solu0on; 2- Combina0on of the two func0ons in a single objec0ve func0on; 3- Bicriteria scheduling which the user specifies a limita0on for one criterion (power or budget constraints), and the algorithm tries to op0mize the other criterion under this constraint.

23 Proposed Algorithm Heterogeneous Budget Constraint Scheduling Algorithm (HBCS) HBCS has two phases: Task Selec0on Phase : We use Upward rank to assign the priority to tasks in the DAG Processor Selec0on Phase : We combine both objec0ve func0ons (cost and 0me) in a single func0on; the processor that maximizes that func0on for the current task is selected.

24 Proposed Algorithm Heterogeneous Budget Constraint Scheduling Algorithm (HBCS) 0<=k<= 1 (ObjecHve funchon)

25 Experimental Result Workflow Structure: Synthe0c DAG genera0on ( Applica0ons have between 30 and 50 tasks, generated randomly. Total number of DAGs in our simula0on is Workflow Budget: BUDGET = C cheapest + k (CHEFT Ccheapest) Lower budget (k=0) Cheapest scheduling, higher makespan Highest budget (k=1) shortest makespan (HEFT scheduling) 0<=k<= 1 Performance Metric: NormalizedMakespan = makespan makespan HEFT

26 Experimental Result Simula0on Platorm : We use SIMGRID that allows a realis0c descrip0on of the infrastructure parameters. We consider a bandwidth sharing policy; only one processor can send data over one network link at a 0me. We consider nodes of clusters from the GRID 5000 platorm.

27 Results Shopia Rennes Grenoble HBCS Time complexity

28 Conclusions (2) Conclusion remarks We considered a realis0c model of the infrastructure; The HBCS algorithm achieves beuer performances, in par0cular for lower budget values (makespan and 0me complexity); Future direc0ons Compare other combina0ons of cost and 0me factors in the objec0ve func0on; Data locality; Mul0ple DAG scheduling.

29 29

Data Center Evolu.on and the Cloud. Paul A. Strassmann George Mason University November 5, 2008, 7:20 to 10:00 PM

Data Center Evolu.on and the Cloud. Paul A. Strassmann George Mason University November 5, 2008, 7:20 to 10:00 PM Data Center Evolu.on and the Cloud Paul A. Strassmann George Mason University November 5, 2008, 7:20 to 10:00 PM 1 Hardware Evolu.on 2 Where is hardware going? x86 con(nues to move upstream Massive compute

More information

A View of Cloud Computing: Concepts and Challenges

A View of Cloud Computing: Concepts and Challenges A View of Cloud Computing: Concepts and Challenges Jorge G. Barbosa Universidade do Porto, Faculdade de Engenharia, LIACC Porto, Portugal jbarbosa@fe.up.pt FEUP, 2013 Outline Part I: Basic Concepts Introduction

More information

Cloud Compu)ng: Overview & challenges. Aminata A. Garba

Cloud Compu)ng: Overview & challenges. Aminata A. Garba Cloud Compu)ng: Overview & challenges Aminata A. Garba Outline I. Introduc*on II. Virtualiza*on III. Resources Op*miza*on VI. Challenges 2 A Historical Note 1960, the idea of organizing computa)on as a

More information

Scalus A)ribute Workshop. Paris, April 14th 15th

Scalus A)ribute Workshop. Paris, April 14th 15th Scalus A)ribute Workshop Paris, April 14th 15th Content Mo=va=on, objec=ves, and constraints Scalus strategy Scenario and architectural views How the architecture works Mo=va=on for this MCITN Storage

More information

Payment minimization and Error-tolerant Resource Allocation for Cloud System Using equally spread current execution load

Payment minimization and Error-tolerant Resource Allocation for Cloud System Using equally spread current execution load Payment minimization and Error-tolerant Resource Allocation for Cloud System Using equally spread current execution load Pooja.B. Jewargi Prof. Jyoti.Patil Department of computer science and engineering,

More information

Processing of Mix- Sensi0vity Video Surveillance Streams on Hybrid Clouds

Processing of Mix- Sensi0vity Video Surveillance Streams on Hybrid Clouds Processing of Mix- Sensi0vity Video Surveillance Streams on Hybrid Clouds Chunwang Zhang, Ee- Chien Chang School of Compu2ng, Na2onal University of Singapore 28 th June, 2014 Outline 1. Mo0va0on 2. Hybrid

More information

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS 133 CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS The proposed scheduling algorithms along with the heuristic intensive weightage factors, parameters and ß and their impact on the performance of the algorithms

More information

Dynamic Resource allocation in Cloud

Dynamic Resource allocation in Cloud Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from

More information

AppLogic and the Mainframe: The Ul7mate Private Cloud

AppLogic and the Mainframe: The Ul7mate Private Cloud MODERNIZE AND OPTIMIZE YOUR MAINFRAME S510 AppLogic and the Mainframe: The Ul7mate Private Cloud Sco@ Fagen Dis7nguished Engineer Chief Architect: Mainframe Abstract Mainframers have been using virtual

More information

Scalable Mul*- Class Traffic Management in Data Center Backbone Networks

Scalable Mul*- Class Traffic Management in Data Center Backbone Networks Scalable Mul*- Class Traffic Management in Data Center Backbone Networks Amitabha Ghosh (UtopiaCompression) Sangtae Ha (Princeton) Edward Crabbe (Google) Jennifer Rexford (Princeton) Outline Mo*va*on Contribu*ons

More information

Clusters in the Cloud

Clusters in the Cloud Clusters in the Cloud Dr. Paul Coddington, Deputy Director Dr. Shunde Zhang, Compu:ng Specialist eresearch SA October 2014 Use Cases Make the cloud easier to use for compute jobs Par:cularly for users

More information

Cloud Compu)ng in Educa)on and Research

Cloud Compu)ng in Educa)on and Research Cloud Compu)ng in Educa)on and Research Dr. Wajdi Loua) Sfax University, Tunisia ESPRIT - December 2014 04/12/14 1 Outline Challenges in Educa)on and Research SaaS, PaaS and IaaS for Educa)on and Research

More information

Chapter 3. Database Architectures and the Web Transparencies

Chapter 3. Database Architectures and the Web Transparencies Week 2: Chapter 3 Chapter 3 Database Architectures and the Web Transparencies Database Environment - Objec

More information

Virtual Pla*orms Hypervisor Methods to Improve Performance and Isola7on proper7es of Shared Mul7core Servers

Virtual Pla*orms Hypervisor Methods to Improve Performance and Isola7on proper7es of Shared Mul7core Servers Virtual Pla*orms Hypervisor Methods to Improve Performance and Isola7on proper7es of Shared Mul7core Servers Priyanka Tembey Ada Gavrilovska, Karsten Schwan [School of CS, Georgia Tech] 1 Applica7on Consolida7on

More information

Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang

Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Run-time Resource Management in SOA Virtualized Environments Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Amsterdam, August 25 2009 SOI Run-time Management 2 SOI=SOA + virtualization Goal:

More information

A Locality Enhanced Scheduling Method for Multiple MapReduce Jobs In a Workflow Application

A Locality Enhanced Scheduling Method for Multiple MapReduce Jobs In a Workflow Application 2012 International Conference on Information and Computer Applications (ICICA 2012) IPCSIT vol. 24 (2012) (2012) IACSIT Press, Singapore A Locality Enhanced Scheduling Method for Multiple MapReduce Jobs

More information

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida Power Management in Cloud Computing using Green Algorithm -Kushal Mehta COP 6087 University of Central Florida Motivation Global warming is the greatest environmental challenge today which is caused by

More information

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,

More information

Energy Constrained Resource Scheduling for Cloud Environment

Energy Constrained Resource Scheduling for Cloud Environment Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering

More information

Managed Virtualized Platforms: From Multicore Nodes to Distributed Cloud Infrastructures

Managed Virtualized Platforms: From Multicore Nodes to Distributed Cloud Infrastructures Managed Virtualized Platforms: From Multicore Nodes to Distributed Cloud Infrastructures Ada Gavrilovska Karsten Schwan, Mukil Kesavan Sanjay Kumar, Ripal Nathuji, Adit Ranadive Center for Experimental

More information

Virtualization Technology using Virtual Machines for Cloud Computing

Virtualization Technology using Virtual Machines for Cloud Computing International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Virtualization Technology using Virtual Machines for Cloud Computing T. Kamalakar Raju 1, A. Lavanya 2, Dr. M. Rajanikanth 2 1,

More information

Fairness resource sharing for dynamic workflow scheduling on Heterogeneous Systems

Fairness resource sharing for dynamic workflow scheduling on Heterogeneous Systems 2012 10th IEEE International Symposium on Parallel and Distributed Processing with Applications Fairness resource sharing for dynamic workflow scheduling on Heterogeneous Systems Hamid Arabnejad, Jorge

More information

Project Overview. Collabora'on Mee'ng with Op'mis, 20-21 Sept. 2011, Rome

Project Overview. Collabora'on Mee'ng with Op'mis, 20-21 Sept. 2011, Rome Project Overview Collabora'on Mee'ng with Op'mis, 20-21 Sept. 2011, Rome Cloud-TM at a glance "#$%&'$()!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&!"'!()*+!!!!!!!!!!!!!!!!!!!,-./01234156!("*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&7"7#7"7!("*+!!!!!!!!!!!!!!!!!!!89:!;62!("$+!

More information

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

So#ware Product Lines for Automa5c Mul5- Cloud Configura5on

So#ware Product Lines for Automa5c Mul5- Cloud Configura5on So#ware Product Lines for Automa5c Mul5- Cloud Configura5on Université Lille 1 CRIStAL UMR CNRS 9189 Inria Lille - Nord Europe France Gustavo Sousa gustavo.sousa@inria.fr Encadrants: Walter Rudametkin

More information

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) Infrastructure as a Service (IaaS) (ENCS 691K Chapter 4) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/ References 1. R. Moreno et al.,

More information

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background

More information

Harnessing the High Performance Capabili5es of Cloud over the Internet

Harnessing the High Performance Capabili5es of Cloud over the Internet Harnessing the High Performance Capabili5es of Cloud over the Internet Jaison Paul Mulerikkal, PhD HPC Knowledge Portal Meeting 2015 Barcelona, Spain About Me Jaison Paul Mulerikkal B Tech Mahatma Gandhi

More information

Dynamic Power- and Failure-Aware Cloud Resources Allocation for Sets of Independent Tasks

Dynamic Power- and Failure-Aware Cloud Resources Allocation for Sets of Independent Tasks 2013 IEEE International Conference on Cloud Engineering Dynamic Power- and Failure-Aware Cloud Resources Allocation for Sets of Independent Tasks Altino M. Sampaio Instituto Politécnico do Porto, Escola

More information

Accelerating Application Performance on Virtual Machines

Accelerating Application Performance on Virtual Machines Accelerating Application Performance on Virtual Machines...with flash-based caching in the server Published: August 2011 FlashSoft Corporation 155-A W. Moffett Park Dr Sunnyvale, CA 94089 info@flashsoft.com

More information

Denis Caromel, CEO Ac.veEon. Orchestrate and Accelerate Applica.ons. Open Source Cloud Solu.ons Hybrid Cloud: Private with Burst Capacity

Denis Caromel, CEO Ac.veEon. Orchestrate and Accelerate Applica.ons. Open Source Cloud Solu.ons Hybrid Cloud: Private with Burst Capacity Cloud computing et Virtualisation : applications au domaine de la Finance Denis Caromel, CEO Ac.veEon Orchestrate and Accelerate Applica.ons Open Source Cloud Solu.ons Hybrid Cloud: Private with Burst

More information

Paul Brebner, Senior Researcher, NICTA, Paul.Brebner@nicta.com.au

Paul Brebner, Senior Researcher, NICTA, Paul.Brebner@nicta.com.au Is your Cloud Elastic Enough? Part 2 Paul Brebner, Senior Researcher, NICTA, Paul.Brebner@nicta.com.au Paul Brebner is a senior researcher in the e-government project at National ICT Australia (NICTA,

More information

Big Data. The Big Picture. Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas

Big Data. The Big Picture. Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas Big Data The Big Picture Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas What is Big Data? Big Data gets its name because that s what it is data that

More information

Enabling Technologies. Cloud Compu-ng Models. Plahorm- as- a- Service. So?ware- as- a- Service. Infrastructure- as- a- Service

Enabling Technologies. Cloud Compu-ng Models. Plahorm- as- a- Service. So?ware- as- a- Service. Infrastructure- as- a- Service Next up Cloud Compu-ng Warehouse scale computers How to build/program data centers Google so?ware stack GFS BigTable Sawzall Chubby Map/reduce What is cloud compu-ng Illusion of infinite compu-ng resources

More information

Figure 1. The cloud scales: Amazon EC2 growth [2].

Figure 1. The cloud scales: Amazon EC2 growth [2]. - Chung-Cheng Li and Kuochen Wang Department of Computer Science National Chiao Tung University Hsinchu, Taiwan 300 shinji10343@hotmail.com, kwang@cs.nctu.edu.tw Abstract One of the most important issues

More information

A Bi-Objective Approach for Cloud Computing Systems

A Bi-Objective Approach for Cloud Computing Systems A Bi-Objective Approach for Cloud Computing Systems N.Geethanjali 1, M.Ramya 2 Assistant Professor, Department of Computer Science, Christ The King Engineering College 1, 2 ABSTRACT: There are Various

More information

Non-Cooperative Computation Offloading in Mobile Cloud Computing

Non-Cooperative Computation Offloading in Mobile Cloud Computing Joint CLEEN and ACROSS Workshop on Cloud Technology and Energy Efficiency in Mobile Communications Non-Cooperative Computation Offloading in Mobile Cloud Computing Valeria Cardellini University of Roma

More information

Cloud Compu)ng. Adam Belloum Ins)tute of Informa)cs University of Amsterdam a.s.z.belloum@uva.nl

Cloud Compu)ng. Adam Belloum Ins)tute of Informa)cs University of Amsterdam a.s.z.belloum@uva.nl Cloud Compu)ng Adam Belloum Ins)tute of Informa)cs University of Amsterdam a.s.z.belloum@uva.nl High Performance compu)ng Curriculum, Jan 2015 hgp://www.hpc.uva.nl/ UvA- SURFsara What is Cloud Compu)ng?

More information

benefit of virtualiza/on? Virtualiza/on An interpreter may not work! Requirements for Virtualiza/on 1/06/15 Which of the following is not a poten/al

benefit of virtualiza/on? Virtualiza/on An interpreter may not work! Requirements for Virtualiza/on 1/06/15 Which of the following is not a poten/al 1/06/15 Benefits of virtualiza/on Virtualiza/on Which of the following is not a poten/al benefit of virtualiza/on? A. cost effec/ve B. applica/on migra/on is easy C. improve applica/on performance D. run

More information

Introduc)on of Pla/orm ISF. Weina Ma Weina.Ma@uoit.ca

Introduc)on of Pla/orm ISF. Weina Ma Weina.Ma@uoit.ca Introduc)on of Pla/orm ISF Weina Ma Weina.Ma@uoit.ca Agenda Pla/orm ISF Product Overview Pla/orm ISF Concepts & Terminologies Self- Service Applica)on Management Applica)on Example Deployment Examples

More information

Group Based Load Balancing Algorithm in Cloud Computing Virtualization

Group Based Load Balancing Algorithm in Cloud Computing Virtualization Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information

More information

Datacenter Power Efficiency: Separa&ng Fact from Fic&on

Datacenter Power Efficiency: Separa&ng Fact from Fic&on Datacenter Power Efficiency: Separa&ng Fact from Fic&on Kushagra Vaid Principal Architect, Datacenter Infrastructure Microso> Online Services Division kvaid@microso>.com Overview Microsoft Online Services

More information

Big Data and Clouds: Challenges and Opportuni5es

Big Data and Clouds: Challenges and Opportuni5es Big Data and Clouds: Challenges and Opportuni5es NIST January 15 2013 Geoffrey Fox gcf@indiana.edu h"p://www.infomall.org h"p://www.futuregrid.org School of Informa;cs and Compu;ng Digital Science Center

More information

Virtualiza)on and its Applica)ons

Virtualiza)on and its Applica)ons Virtualiza)on and its Applica)ons Tatsuo Nakajima 1, Kenji Kono 2, Yoichi Ishiwata 3, Kenichi Kourai 4, Shuichi Oikawa 5, Hiroshi Yamada 2, Hiromasa Shimada 1, Yuki Kinebuchi 1, Tomohiro Miyahira 6 1 Waseda

More information

HOLACONF - Cloud Forward 2015 Conference From Distributed to Complete Computing HAMZA. in collaboration SAHLI with

HOLACONF - Cloud Forward 2015 Conference From Distributed to Complete Computing HAMZA. in collaboration SAHLI with HOLACONF - Cloud Forward Conference From Distributed to Complete Computing HAMZA in collaboration SAHLI with Pr. Faiza BELALA and Dr. Chafia BOUANAKA LIRE Laboratory, Constantine II University-Abdelhamid

More information

ARTIST Methodology and Tooling. Jesus Gorroñogoitia - Atos SOC Crete, 1 st July 2015

ARTIST Methodology and Tooling. Jesus Gorroñogoitia - Atos SOC Crete, 1 st July 2015 ARTIST Methodology and Tooling Jesus Gorroñogoitia - Atos SOC Crete, 1 st July 2015 Motivation: From SaaP to SaaS So#ware as a Product based Company So#ware as a Service based Company : Cloud Computing

More information

The Theory And Practice of Testing Software Applications For Cloud Computing. Mark Grechanik University of Illinois at Chicago

The Theory And Practice of Testing Software Applications For Cloud Computing. Mark Grechanik University of Illinois at Chicago The Theory And Practice of Testing Software Applications For Cloud Computing Mark Grechanik University of Illinois at Chicago Cloud Computing Is Everywhere Global spending on public cloud services estimated

More information

Sla Aware Load Balancing Algorithm Using Join-Idle Queue for Virtual Machines in Cloud Computing

Sla Aware Load Balancing Algorithm Using Join-Idle Queue for Virtual Machines in Cloud Computing Sla Aware Load Balancing Using Join-Idle Queue for Virtual Machines in Cloud Computing Mehak Choudhary M.Tech Student [CSE], Dept. of CSE, SKIET, Kurukshetra University, Haryana, India ABSTRACT: Cloud

More information

Cloud computing research activities at. Jordan University of Science and Technology. Yaser Jararweh. Irbid, Jordan yijararweh@just.edu.

Cloud computing research activities at. Jordan University of Science and Technology. Yaser Jararweh. Irbid, Jordan yijararweh@just.edu. Cloud computing research activities at Jordan University of Science and Technology Yaser Jararweh Jordan University of Science and Technology Irbid, Jordan yijararweh@just.edu.jo 29/08/2013 Yaser Jararweh:

More information

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Íñigo Goiri, J. Oriol Fitó, Ferran Julià, Ramón Nou, Josep Ll. Berral, Jordi Guitart and Jordi Torres

More information

CUDA in the Cloud Enabling HPC Workloads in OpenStack With special thanks to Andrew Younge (Indiana Univ.) and Massimo Bernaschi (IAC-CNR)

CUDA in the Cloud Enabling HPC Workloads in OpenStack With special thanks to Andrew Younge (Indiana Univ.) and Massimo Bernaschi (IAC-CNR) CUDA in the Cloud Enabling HPC Workloads in OpenStack John Paul Walters Computer Scien5st, USC Informa5on Sciences Ins5tute jwalters@isi.edu With special thanks to Andrew Younge (Indiana Univ.) and Massimo

More information

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Felipe Augusto Nunes de Oliveira - GRR20112021 João Victor Tozatti Risso - GRR20120726 Abstract. The increasing

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 6, June 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Survey on Load

More information

Energetic Resource Allocation Framework Using Virtualization in Cloud

Energetic Resource Allocation Framework Using Virtualization in Cloud Energetic Resource Allocation Framework Using Virtualization in Ms.K.Guna *1, Ms.P.Saranya M.E *2 1 (II M.E(CSE)) Student Department of Computer Science and Engineering, 2 Assistant Professor Department

More information

VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES

VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES U.P.B. Sci. Bull., Series C, Vol. 76, Iss. 2, 2014 ISSN 2286-3540 VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES Elena Apostol 1, Valentin Cristea 2 Cloud computing

More information

Ellip%cal Mobile Solu%ons Micro- Modular Data Centers Are: The Next Generation Green Data Centers Solution

Ellip%cal Mobile Solu%ons Micro- Modular Data Centers Are: The Next Generation Green Data Centers Solution Ellip%cal Mobile Solu%ons Micro- Modular Data Centers Are: The Next Generation Green Data Centers Solution Copyright Ellip.cal Mobile Solu.ons 2009 www.ellip.calmobilesolu.ons.com 1 EMS CURRENT PRODUCTS

More information

The Development of Cloud Interoperability

The Development of Cloud Interoperability NSC- JST Workshop The Development of Cloud Interoperability Weicheng Huang Na7onal Center for High- performance Compu7ng Na7onal Applied Research Laboratories 1 Outline Where are we? Our experiences before

More information

Data Center 2020. DC planning for the next 5 10 years. Copyright 2004-2013 Experture and Robert Frances Group, all rights reserved

Data Center 2020. DC planning for the next 5 10 years. Copyright 2004-2013 Experture and Robert Frances Group, all rights reserved DC planning for the next 5 10 years Topics to be Discussed Introduc=on Indirect Drivers Technology Direct Drivers Data Center DC Management DC Opera=ons s and Disaster Recovery 2 Introduc=on The future

More information

Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS

Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS Shantanu Sasane Abhilash Bari Kaustubh Memane Aniket Pathak Prof. A. A.Deshmukh University of Pune University of Pune University

More information

Round Robin with Server Affinity: A VM Load Balancing Algorithm for Cloud Based Infrastructure

Round Robin with Server Affinity: A VM Load Balancing Algorithm for Cloud Based Infrastructure J Inf Process Syst, Vol.9, No.3, September 2013 pissn 1976-913X eissn 2092-805X http://dx.doi.org/10.3745/jips.2013.9.3.379 Round Robin with Server Affinity: A VM Load Balancing Algorithm for Cloud Based

More information

Future Generation Computer Systems. Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service Clouds

Future Generation Computer Systems. Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service Clouds Future Generation Computer Systems 29 (2013) 158 169 Contents lists available at SciVerse ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs Deadline-constrained

More information

Some Security Challenges of Cloud Compu6ng. Kui Ren Associate Professor Department of Computer Science and Engineering SUNY at Buffalo

Some Security Challenges of Cloud Compu6ng. Kui Ren Associate Professor Department of Computer Science and Engineering SUNY at Buffalo Some Security Challenges of Cloud Compu6ng Kui Ren Associate Professor Department of Computer Science and Engineering SUNY at Buffalo Cloud Compu6ng: the Next Big Thing Tremendous momentum ahead: Prediction

More information

Black-box and Gray-box Strategies for Virtual Machine Migration

Black-box and Gray-box Strategies for Virtual Machine Migration Black-box and Gray-box Strategies for Virtual Machine Migration Wood, et al (UMass), NSDI07 Context: Virtual Machine Migration 1 Introduction Want agility in server farms to reallocate resources devoted

More information

Best Prac*ces for Deploying Oracle So6ware on Virtual Compute Appliance

Best Prac*ces for Deploying Oracle So6ware on Virtual Compute Appliance Best Prac*ces for Deploying Oracle So6ware on Virtual Compute Appliance CON7484 Jeff Savit Senior Technical Product Manager Oracle VM Product Management October 1, 2014 Safe Harbor Statement The following

More information

An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing

An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing 1 Sudha.C Assistant Professor/Dept of CSE, Muthayammal College of Engineering,Rasipuram, Tamilnadu, India Abstract:

More information

Context-Aware Optimization in Cloud Management

Context-Aware Optimization in Cloud Management Context-Aware Optimization in Cloud Management Jakub Krzywda Umeå University Lund 2014-05-15 www.cloudresearch.org BSc & MSc Studies Poznan University of Technology Master program Distributed data processing

More information

Update on the Cloud Demonstration Project

Update on the Cloud Demonstration Project Update on the Cloud Demonstration Project Khalil Yazdi and Steven Wallace Spring Member Meeting April 19, 2011 Project Par4cipants BACKGROUND Eleven Universi1es: Caltech, Carnegie Mellon, George Mason,

More information

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004

More information

Auto-Scaling Model for Cloud Computing System

Auto-Scaling Model for Cloud Computing System Auto-Scaling Model for Cloud Computing System Che-Lun Hung 1*, Yu-Chen Hu 2 and Kuan-Ching Li 3 1 Dept. of Computer Science & Communication Engineering, Providence University 2 Dept. of Computer Science

More information

Cost-effective Resource Provisioning for MapReduce in a Cloud

Cost-effective Resource Provisioning for MapReduce in a Cloud 1 -effective Resource Provisioning for MapReduce in a Cloud Balaji Palanisamy, Member, IEEE, Aameek Singh, Member, IEEE Ling Liu, Senior Member, IEEE Abstract This paper presents a new MapReduce cloud

More information

Secure Hybrid Cloud Infrastructure for Scien5fic Applica5ons

Secure Hybrid Cloud Infrastructure for Scien5fic Applica5ons Secure Hybrid Cloud Infrastructure for Scien5fic Applica5ons Project Members: Paula Eerola Miika Komu MaA Kortelainen Tomas Lindén Lirim Osmani Sasu Tarkoma Salman Toor (Presenter) salman.toor@helsinki.fi

More information

Project Por)olio Management

Project Por)olio Management Project Por)olio Management Important markers for IT intensive businesses Rest assured with Infolob s project management methodologies What is Project Por)olio Management? Project Por)olio Management (PPM)

More information

Managing Cloud Service Provisioning and SLA Enforcement via Holistic Monitoring Techniques Vincent C. Emeakaroha

Managing Cloud Service Provisioning and SLA Enforcement via Holistic Monitoring Techniques Vincent C. Emeakaroha Managing Cloud Service Provisioning and SLA Enforcement via Holistic Monitoring Techniques Vincent C. Emeakaroha Matrikelnr: 0027525 vincent@infosys.tuwien.ac.at Supervisor: Univ.-Prof. Dr. Schahram Dustdar

More information

CRI: A Novel Rating Based Leasing Policy and Algorithm for Efficient Resource Management in IaaS Clouds

CRI: A Novel Rating Based Leasing Policy and Algorithm for Efficient Resource Management in IaaS Clouds CRI: A Novel Rating Based Leasing Policy and Algorithm for Efficient Resource Management in IaaS Clouds Vivek Shrivastava #, D. S. Bhilare * # International Institute of Professional Studies, Devi Ahilya

More information

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications Open System Laboratory of University of Illinois at Urbana Champaign presents: Outline: IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications A Fine-Grained Adaptive

More information

SCHEDULING IN CLOUD COMPUTING

SCHEDULING IN CLOUD COMPUTING SCHEDULING IN CLOUD COMPUTING Lipsa Tripathy, Rasmi Ranjan Patra CSA,CPGS,OUAT,Bhubaneswar,Odisha Abstract Cloud computing is an emerging technology. It process huge amount of data so scheduling mechanism

More information

Experimental Awareness of CO 2 in Federated Cloud Sourcing

Experimental Awareness of CO 2 in Federated Cloud Sourcing Experimental Awareness of CO 2 in Federated Cloud Sourcing Julia Wells, Atos Spain This project is partially funded by European Commission under the 7th Framework Programme - Grant agreement no. 318048

More information

Optimal Service Pricing for a Cloud Cache

Optimal Service Pricing for a Cloud Cache Optimal Service Pricing for a Cloud Cache K.SRAVANTHI Department of Computer Science & Engineering (M.Tech.) Sindura College of Engineering and Technology Ramagundam,Telangana G.LAKSHMI Asst. Professor,

More information

Multilevel Communication Aware Approach for Load Balancing

Multilevel Communication Aware Approach for Load Balancing Multilevel Communication Aware Approach for Load Balancing 1 Dipti Patel, 2 Ashil Patel Department of Information Technology, L.D. College of Engineering, Gujarat Technological University, Ahmedabad 1

More information

Behind the scene III Cloud computing

Behind the scene III Cloud computing Behind the scene III Cloud computing Athens, 15.11.2014 M. Dolenc / R. Klinc Why we do it? Engineering in the cloud is a combina3on of cloud based services and rich interac3ve applica3ons allowing engineers

More information

Data Management in the Cloud: Limitations and Opportunities. Annies Ductan

Data Management in the Cloud: Limitations and Opportunities. Annies Ductan Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management

More information

Task Scheduling for Efficient Resource Utilization in Cloud

Task Scheduling for Efficient Resource Utilization in Cloud Summer 2014 Task Scheduling for Efficient Resource Utilization in Cloud A Project Report for course COEN 241 Under the guidance of, Dr.Ming Hwa Wang Submitted by : Najuka Sankhe Nikitha Karkala Nimisha

More information

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age. Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Load Measurement

More information

PROJECT PORTFOLIO SUITE

PROJECT PORTFOLIO SUITE ServiceNow So1ware Development manages Scrum or waterfall development efforts and defines the tasks required for developing and maintaining so[ware throughout the lifecycle, from incep4on to deployment.

More information

WORKFLOW ENGINE FOR CLOUDS

WORKFLOW ENGINE FOR CLOUDS WORKFLOW ENGINE FOR CLOUDS By SURAJ PANDEY, DILEBAN KARUNAMOORTHY, and RAJKUMAR BUYYA Prepared by: Dr. Faramarz Safi Islamic Azad University, Najafabad Branch, Esfahan, Iran. Workflow Engine for clouds

More information

HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds

HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds Noname manuscript No. (will be inserted by the editor) : A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds Luiz Fernando Bittencourt Edmundo Roberto Mauro Madeira Received: date /

More information

Introduc)on to the IoT- A methodology

Introduc)on to the IoT- A methodology 10/11/14 1 Introduc)on to the IoTA methodology Olivier SAVRY CEA LETI 10/11/14 2 IoTA Objec)ves Provide a reference model of architecture (ARM) based on Interoperability Scalability Security and Privacy

More information

Parametric Analysis of Mobile Cloud Computing using Simulation Modeling

Parametric Analysis of Mobile Cloud Computing using Simulation Modeling Parametric Analysis of Mobile Cloud Computing using Simulation Modeling Arani Bhattacharya Pradipta De Mobile System and Solutions Lab (MoSyS) The State University of New York, Korea (SUNY Korea) StonyBrook

More information

Keywords: Cloudsim, MIPS, Gridlet, Virtual machine, Data center, Simulation, SaaS, PaaS, IaaS, VM. Introduction

Keywords: Cloudsim, MIPS, Gridlet, Virtual machine, Data center, Simulation, SaaS, PaaS, IaaS, VM. Introduction Vol. 3 Issue 1, January-2014, pp: (1-5), Impact Factor: 1.252, Available online at: www.erpublications.com Performance evaluation of cloud application with constant data center configuration and variable

More information

Cloud Computing Simulation Using CloudSim

Cloud Computing Simulation Using CloudSim Cloud Computing Simulation Using CloudSim Ranjan Kumar #1, G.Sahoo *2 # Assistant Professor, Computer Science & Engineering, Ranchi University, India Professor & Head, Information Technology, Birla Institute

More information

Virtual Machines. www.viplavkambli.com

Virtual Machines. www.viplavkambli.com 1 Virtual Machines A virtual machine (VM) is a "completely isolated guest operating system installation within a normal host operating system". Modern virtual machines are implemented with either software

More information

A Holistic Model of the Energy-Efficiency of Hypervisors

A Holistic Model of the Energy-Efficiency of Hypervisors A Holistic Model of the -Efficiency of Hypervisors in an HPC Environment Mateusz Guzek,Sebastien Varrette, Valentin Plugaru, Johnatan E. Pecero and Pascal Bouvry SnT & CSC, University of Luxembourg, Luxembourg

More information

Load Balancing for Improved Quality of Service in the Cloud

Load Balancing for Improved Quality of Service in the Cloud Load Balancing for Improved Quality of Service in the Cloud AMAL ZAOUCH Mathématique informatique et traitement de l information Faculté des Sciences Ben M SIK CASABLANCA, MORROCO FAOUZIA BENABBOU Mathématique

More information

OPTIMIZED PERFORMANCE EVALUATIONS OF CLOUD COMPUTING SERVERS

OPTIMIZED PERFORMANCE EVALUATIONS OF CLOUD COMPUTING SERVERS OPTIMIZED PERFORMANCE EVALUATIONS OF CLOUD COMPUTING SERVERS K. Sarathkumar Computer Science Department, Saveetha School of Engineering Saveetha University, Chennai Abstract: The Cloud computing is one

More information

Ch. 13 Cloud Services. Magda El Zarki Dept. of CS UC, Irvine

Ch. 13 Cloud Services. Magda El Zarki Dept. of CS UC, Irvine Ch. 13 Cloud Services Magda El Zarki Dept. of CS UC, Irvine The Cloud Cloud CompuBng Cloud Networking Cloud CompuBng Basic idea: renbng instead of buying IT It is a solubon that provides users with services

More information

System Models for Distributed and Cloud Computing

System Models for Distributed and Cloud Computing System Models for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Classification of Distributed Computing Systems

More information

Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm

Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Shanthipriya.M 1, S.T.Munusamy 2 ProfSrinivasan. R 3 M.Tech (IT) Student, Department of IT, PSV College of Engg & Tech, Krishnagiri,

More information