Part II : Residence time

Size: px
Start display at page:

Download "Part II : Residence time"

Transcription

1 Part II : Residence time CART - the Constituent Oriented Age and Residence time Theory p. 42

2 Residence time Widely used concept in environmental studies : 9814 references found in the Elsevier Catalog (Science Direct - Environmental Science category) over the last 10 years! Very appealing concept to biologists and decision makers! CART - the Constituent Oriented Age and Residence time Theory p. 43

3 Lagrangian approach ω!!! Mixing!!! (t 0,x 0 ) (t out,x out ) distribution of residence times Define the control domain ω Introduce a particle at (t 0,x 0 ) Compute / observe the path of this particle and register its exit time (t out,x out ) Residence time at (t 0,x 0 ) = t out t 0 CART - the Constituent Oriented Age and Residence time Theory p. 44

4 Eulerian approach m(t 0 + τ) ω Define the control domain ω Introduce a unit discharge at (t 0,x 0 ) Follow the fate of the tracer and monitor the mass m(t 0 + τ) remaining in ω Cumulative distribution of RT τ CART - the Constituent Oriented Age and Residence time Theory p. 45

5 Mean residence time m(t 0 + τ) τ m(t 0 + τ) m(t 0 ) = Mean residence time θ = 1 m(t 0 ) Fraction of the initial release with a RT larger than τ Z 0 m(t 0 + τ)dτ CART - the Constituent Oriented Age and Residence time Theory p. 46

6 Forward Eulerian procedure Solve ] + v C = [ K C + Q c C t C(t 0,x) = δ(x x 0 ) and compute m(t;t 0,x 0 ) = ZZZ ω C dv But... Open boundary conditions? CART - the Constituent Oriented Age and Residence time Theory p. 47

7 BC - version 1 Residence time = time required to leave the control domain for the first time (Bolin and Rodhe, 1973; Takeoka, 1984) Lagrangian approach : discard particles when they leave the control domain (Lagrangian approach) Eulerian approach : put C = 0 at both inflow and outflow boundaries of the control domain (if diffusion 0) θ = 0 at the open boundary. (Delhez & Deleersnijder, Ocean Dynamics) CART - the Constituent Oriented Age and Residence time Theory p. 48

8 Asymmetric Random Walk ω = ( L,L) Z α β = 1 α p (n) i : probability distribution of particles at time t n. p (n+1) i = β p (n) i 1 + α p(n) i+1, i ( L,L) Z p (n+1) L = α p (n) L+1, Equivalent to p (n) L+1 = p(n) L 1 p(n+1) L = β p (n) L 1 = 0, i.e. C = 0 outside ω CART - the Constituent Oriented Age and Residence time Theory p. 49

9 Boundary layers of the RT (1) 1D infinite domain x (,+ ) ω = [ l,+l] Constant and uniform u and κ (and Pe = ul/κ) Pe = 100 Pe = θ u/l Pe = 10 Pe = 5 1 Advection time scale Pe = 1 Pe = x/l CART - the Constituent Oriented Age and Residence time Theory p. 50

10 Boundary layers of the RT (2) Idem with tidal (1 m/s) + residual (0.1 m/s) flow ωt 2π x/l Residence time CART - the Constituent Oriented Age and Residence time Theory p. 51

11 Exposure time Residence time = time required to leave the control domain for the first time Exposure time : allow particles to exit the domain and re-enter at a later time No BC at the boundary of the control domain Appropriate BC at the boundary of the computational domain CART - the Constituent Oriented Age and Residence time Theory p. 52

12 Exposure time M(t 0 + τ) ω (t 0,x 0 ) Z Θ = 1 M(t 0 + τ)dτ M(t 0 ) 0 = Measure of the time concentration to which the control region is exposed to particles originating from (t 0,x 0 ). = Exposure time τ CART - the Constituent Oriented Age and Residence time Theory p. 53

13 ET : 1D example revisited θ, Θ κ = Const. u = Const.(> 0) ω M(t;t 0,x 0 ) m(t;t 0,x 0 ) Θ(t,x) θ(t,x) CART - the Constituent Oriented Age and Residence time Theory p. 54

14 Basin average RT & ET Compute 1 V ω ZZZ ω θ(x)dx or 1 V ω ZZZ ω Θ(x)dx or solve C ] + v C = [ K C + Q c t C(t 0,x) = 1 in ω + Approp. B.C. } < θ > = 1 Z m(t;t 0,x 0 )dt = 1 Z ZZZ C dv dt < Θ > V ω t 0 V ω ω t 0 CART - the Constituent Oriented Age and Residence time Theory p. 55

15 Direct Eulerian procedure Solve and compute C t ] + v C = [ K C C(t 0,x) = δ(x x 0 ) C(t,x) = 0 on ω m(t;t 0,x 0 ) = ZZZ ω C dv But... multiple runs are needed to compute θ(t 0,x 0 ). CART - the Constituent Oriented Age and Residence time Theory p. 56

16 Operator formulation m(t;t 0,x 0 ) = <A t,t0 δ(x x 0 ),δ ω (x) > where A t,t0 = forward operator such that C(t,x) =A t,t0 δ(x x 0 ) δ ω = characteristic function of control domain ω, < f,g > = δ ω (x) = ZZZ { 1 if x ω, 0 elsewhere R 3 f(x)g(x)dv CART - the Constituent Oriented Age and Residence time Theory p. 57

17 Operator formulation (2) m(t ;t 0,x 0 ) = <A T,t0 δ(x x 0 ),δ ω (x) > = < δ(x x 0 ),A T,t 0 δ ω (x) > wherea T,t 0 = adjoint operator ofa T,t0. C T v CT t = [K CT C T (T,x) = δ ω(x) C T (t,x) = 0 on ω Adjoint state C T (t 0,x 0 ) = m(t ;t 0,x 0 ) ] CART - the Constituent Oriented Age and Residence time Theory p. 58

18 Backward procedure C ] T v CT t = [K CT CT (T,x) = δ ω(x), (t,x) = 0 on ω C T Must be integrated backward in time. A single run of the adjoint model provides m(t ;t 0,x 0 ) for a range of (t 0,x 0 ). But m(t 0 + τ;t 0,x 0 ) is required for all τ > 0, solve the adjoint problem for a range of initial conditions Ct 0 +τ(t 0 + τ,x) = δ ω (x) (unless the hydrodynamics is constant) CART - the Constituent Oriented Age and Residence time Theory p. 59

19 Backward procedure (2) Definition : D(t,τ,x) = C t+τ(t,x) = m(t + τ;t,x) D t D D+ [ ] τ + v K D = 0 D(t,0,x) = δ ω (x), D(t,τ,x) = δ(τ) on ω to be solved in a five-dimensional space. Describes the spatial and temporal variations of the cumulative distribution function of residence times m(t + τ;t, x). CART - the Constituent Oriented Age and Residence time Theory p. 60

20 Mean residence time Z 0 θ(t,x) = Z 0 m(t + τ;t,x)dτ = Z 0 D(t,τ,x)dτ D t D D+ [ ] τ + v K D = 0 D(t,0,x) = δ ω (x), D(t,τ,x) = δ(τ) on ω...dτ, assuming lim τ D(t,τ,x) = 0 θ t + δ ω + v θ+ θ(t,x) = 0 on ω [ ] K θ = 0 CART - the Constituent Oriented Age and Residence time Theory p. 61

21 Boundary conditions or D t D D+ [ ] τ + v K D θ [ ] t + δ ω + v θ+ K θ = 0 = 0 At open boundaries of the control region ω prescribe D(t,τ,x) = δ(τ 0) or θ(t,x) = 0 Residence time in ω CART - the Constituent Oriented Age and Residence time Theory p. 62

22 1D Exemple - Residence time θ κ = Const. u = Const.(> 0) ω ( ) t = 0 δ ] L,L[ + u d θ dx + θ κd2 dx 2 = 0 θ(+l) = θ( L) = 0 CART - the Constituent Oriented Age and Residence time Theory p. 63

23 Initial conditions θ [ ] t + δ ω + v θ+ K θ = 0 Must be solved by backward integration from initial conditions given at some time T. θ(t,x) =? CART - the Constituent Oriented Age and Residence time Theory p. 64

24 Initial conditions (2) τ T D(t,τ,x) known? assume D = 0 θ(t,x) = 0 θ(t,x) = T T Z 0 D(t,τ,x)dτ = Z T 0 T D(t,τ,x)dτ only material with RT < T is taken into account t CART - the Constituent Oriented Age and Residence time Theory p. 65

25 Initial conditions (3) Concentration of material with RT < T is given by C T = 1 C T where C ] T v CT t = [K CT CT (T,x) = δ ω(x) CART - the Constituent Oriented Age and Residence time Theory p. 66

26 Summary θ [ ] t + δ ω + v θ+ K θ θ(t,x) = 0, θ(t,x) = 0 on ω = 0 mean residence time C ] T + v CT t + [K CT = 0 CT (T,x) = δ ω(x), CT (t,x) = 0 on ω convergence if C T = 1 C T 1 CART - the Constituent Oriented Age and Residence time Theory p. 67

27 NWECS model x = z = 10, 10 σ-levels free-surface, baroclinic, k turbulence model 10 tidal constituents, NCEP Reanalysis met. data U.K. North Sea 51 Dover Strait Belgium 51 B English Channel 358 A 0 Control region 2 France CART - the Constituent Oriented Age and Residence time Theory p. 68

28 Residence time (days) U.K France 1 days Residence time Snapshot on 15/08/ Surface value CART - the Constituent Oriented Age and Residence time Theory p. 69

29 Exposure time (days) U.K France 1 days Exposure time Snapshot on 15/08/ Surface value CART - the Constituent Oriented Age and Residence time Theory p. 70

30 Variability 120 Convergence check Exposure time Residence time /1/1983 1/5/1983 1/9/1983 1/1/1984 1/5/1984 1/9/1984 Initialization Model start Basin average RT & ET (days) 0 CART - the Constituent Oriented Age and Residence time Theory p. 71

31 RT in the mixed layer Does turbulence increase or decrease the residence time in the surface mixed layer of settling particles? CART - the Constituent Oriented Age and Residence time Theory p. 72

32 RT in the mixed layer : set-up mixed layer depth = h air-sea interface κ(z) w = Cte. pycnocline wc+ κ C z = 0 κ θ z = 0 C t = ( wc+ κ(z) θ ) z z C(0,z) = δ(z z 0 ) ( d wθ κ(z) dθ ) = 1 dz dz κ C z = 0 wc κ θ z = 0 CART - the Constituent Oriented Age and Residence time Theory p. 73

33 RT in the mixed layer : results θ(z) = z w + 1 w z w No diffusion Z h z exp [ Z ζ w z ] dζ dζ κ(ζ) < θ(z) < h w Infinite mixing 1 2 h w < θ = 1 h Z h 0 Factor 2 only! θ(z)dz < h w Residence time increases with turbulence! CART - the Constituent Oriented Age and Residence time Theory p. 74

34 Conclusion of part II Useful diagnostic for numerical models Flexibility : residence / exposure time Can be generalized to tracers with linear dynamics. CART - the Constituent Oriented Age and Residence time Theory p. 75

General Ocean Turbulence Model: Recent advances and future plans

General Ocean Turbulence Model: Recent advances and future plans General Ocean Turbulence Model: Recent advances and future plans Hans Burchard 1,3, Lars Umlauf 1 Andreas Meister 2, Thomas Neumann 1, and Karsten Bolding 3 hans.burchard@io-warnemuende.de 1. Baltic Sea

More information

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

More information

Ocean Tracers. From Particles to sediment Thermohaline Circulation Past present and future ocean and climate. Only 4 hours left.

Ocean Tracers. From Particles to sediment Thermohaline Circulation Past present and future ocean and climate. Only 4 hours left. Ocean Tracers Basic facts and principles (Size, depth, S, T,, f, water masses, surface circulation, deep circulation, observing tools, ) Seawater not just water (Salt composition, Sources, sinks,, mixing

More information

MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING

MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING 1 MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING This note is intended as a general guideline to setting up a standard MIKE 21 model for applications

More information

Dispersed flow reactor response to spike input

Dispersed flow reactor response to spike input Dispersed flow reactor response to spike input Pe = c c t/t R Fraction remaining 1..9.8.7.6.5.4.3.2.1. Dispersed-flow reactor performance for k =.5/day Pe = (FMT) Pe = 1 Pe = 2 Pe = 1 Pe = (PFR) 2 4 6

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

Period #16: Soil Compressibility and Consolidation (II)

Period #16: Soil Compressibility and Consolidation (II) Period #16: Soil Compressibility and Consolidation (II) A. Review and Motivation (1) Review: In most soils, changes in total volume are associated with reductions in void volume. The volume change of the

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

Lagrangian representation of microphysics in numerical models. Formulation and application to cloud geo-engineering problem

Lagrangian representation of microphysics in numerical models. Formulation and application to cloud geo-engineering problem Lagrangian representation of microphysics in numerical models. Formulation and application to cloud geo-engineering problem M. Andrejczuk and A. Gadian University of Oxford University of Leeds Outline

More information

Dear Editor. Answer to the General Comments of Reviewer # 1:

Dear Editor. Answer to the General Comments of Reviewer # 1: Dear Editor The paper has been fully rewritten and the title changed accordingly to Referee 1. Figures have been updated in order to answer to the well-posed questions of the reviewers. The general structure

More information

Physics of the Atmosphere I

Physics of the Atmosphere I Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

More information

Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004

Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004 FSI-02-TN59-R2 Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004 1. Introduction A major new extension of the capabilities of FLOW-3D -- the multi-block grid model -- has been incorporated

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

More information

Simulation of Offshore Structures in Virtual Ocean Basin (VOB)

Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Dr. Wei Bai 29/06/2015 Department of Civil & Environmental Engineering National University of Singapore Outline Methodology Generation of

More information

CHAPTER: 6 FLOW OF WATER THROUGH SOILS

CHAPTER: 6 FLOW OF WATER THROUGH SOILS CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY FEBRUARY 2012 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury

More information

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek

More information

Weierstrass Institute for Applied Analysis and Stochastics Coagulation equations and particle systems

Weierstrass Institute for Applied Analysis and Stochastics Coagulation equations and particle systems Weierstrass Institute for Applied Analysis and Stochastics Coagulation equations and particle systems Wolfgang Wagner Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de WIAS workshop,

More information

Transport of passive and active tracers in turbulent flows

Transport of passive and active tracers in turbulent flows Chapter 3 Transport of passive and active tracers in turbulent flows A property of turbulence is to greatly enhance transport of tracers. For example, a dissolved sugar molecule takes years to diffuse

More information

Dynamics in nanoworlds

Dynamics in nanoworlds Dynamics in nanoworlds Interplay of energy, diffusion and friction in (sub)cellular world 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto dal Dr. Attilio V. Vargiu presso

More information

Improving convergence of QuickFlow

Improving convergence of QuickFlow Improving convergence of QuickFlow A Steady State Solver for the Shallow Water Equations Femke van Wageningen-Kessels January 22, 2007 1 Background January 22, 2007 2 Background: software WAQUA QuickFlow

More information

Time Dependent Radiation Transport in CHNOLOGY Hohlraums Using Integral Transport Methods

Time Dependent Radiation Transport in CHNOLOGY Hohlraums Using Integral Transport Methods FUSION TECHNOLOGY INSTITUTE Time Dependent Radiation Transport in Hohlraums Using Integral Transport Methods W I S C O N S I N K.R. Olson and D.L. Henderson June 1998 UWFDM-1081 Presented at the 13th Topical

More information

Real-time Ocean Forecasting Needs at NCEP National Weather Service

Real-time Ocean Forecasting Needs at NCEP National Weather Service Real-time Ocean Forecasting Needs at NCEP National Weather Service D.B. Rao NCEP Environmental Modeling Center December, 2005 HYCOM Annual Meeting, Miami, FL COMMERCE ENVIRONMENT STATE/LOCAL PLANNING HEALTH

More information

1D shallow convective case studies and comparisons with LES

1D shallow convective case studies and comparisons with LES 1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils

More information

PE s Research activities and potential links to MM5. Red Ibérica MM5 Valencia 9th -10th June 2005

PE s Research activities and potential links to MM5. Red Ibérica MM5 Valencia 9th -10th June 2005 PE s Research activities and potential links to MM5 Red Ibérica MM5 Valencia 9th -10th June 2005 PE and its R&D Area Puertos del Estado (PE) is a Public Institution that deals with the administration of

More information

Straits of Mackinac Contaminant Release Scenarios: Flow Visualization and Tracer Simulations

Straits of Mackinac Contaminant Release Scenarios: Flow Visualization and Tracer Simulations Straits of Mackinac Contaminant Release Scenarios: Flow Visualization and Tracer Simulations Research Report for the National Wildlife Federation Great Lakes Regional Center By David J. Schwab, Ph.D.,

More information

CFD Modelling of a Physical Scale Model: assessing model skill. Kristof Verelst 28-11-2014 FHR, Antwerp

CFD Modelling of a Physical Scale Model: assessing model skill. Kristof Verelst 28-11-2014 FHR, Antwerp CFD Modelling of a Physical Scale Model: assessing model skill Kristof Verelst 28-11-2014 FHR, Antwerp Introduction Introduction WL_13_61 CFD simulations of hydrodynamics for hydraulic structures (00_085)

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

17.3.1 Follow the Perturbed Leader

17.3.1 Follow the Perturbed Leader CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

More information

The Navier Stokes Equations

The Navier Stokes Equations 1 The Navier Stokes Equations Remark 1.1. Basic principles and variables. The basic equations of fluid dynamics are called Navier Stokes equations. In the case of an isothermal flow, a flow at constant

More information

FILTRATION. Water Treatment Course

FILTRATION. Water Treatment Course FILTRATION Course, Zerihun Alemayehu FILTRATION Filtration involves the removal of suspended and colloidal particles from the water by passing it through a layer or bed of a porous granular material, such

More information

On the relative humidity of the Earth s atmosphere

On the relative humidity of the Earth s atmosphere On the relative humidity of the Earth s atmosphere Raymond T. Pierrehumbert The University of Chicago In collaboration with Remy Roca, LMD 1 The Many Roles of Water in Climate IR radiation, heat transport,

More information

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3 CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Very High Resolution Arctic System Reanalysis for 2000-2011

Very High Resolution Arctic System Reanalysis for 2000-2011 Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University

More information

A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules. Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna

A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules. Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna PRESENTATION TOPICS Research Group Overview; Problem Description;

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,

More information

EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION

EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION IN ELBOW GEOMETRY Preshit Tambey and Michael Lengyel, Jr. Faculty Co-Author and Sponsor: Quamrul H. Mazumder Department of Computer Science, Engineering and

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science

More information

Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results

Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Stephan de Roode Delft University of Technology (TUD), Delft, Netherlands Mixed-layer model analysis: Melchior van Wessem (student,

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

DESCRIPTION OF THE DRAINAGE FLOW MODEL KALM. 1. Introduction. Lohmeyer, A., Schädler, G.

DESCRIPTION OF THE DRAINAGE FLOW MODEL KALM. 1. Introduction. Lohmeyer, A., Schädler, G. Ingenieurbüro Dr.-Ing. Achim Lohmeyer Karlsruhe und Dresden Strömungsmechanik Immissionsschutz Windkanaluntersuchungen An der Roßweid 3 76229 Karlsruhe Telefon: 0721 / 6 25 10-0 Telefax: 0721 / 6 25 10

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield MTE 585 Oxidation of Materials Part 1 Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield Introduction To illustrate the case of high temperature oxidation, we will use Ni-base superalloys.

More information

NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS

NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS TASK QUARTERLY 15 No 3 4, 317 328 NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS WOJCIECH ARTICHOWICZ Department of Hydraulic Engineering, Faculty

More information

Understanding Complex Models using Visualization: San Bernardino Valley Ground-water Basin, Southern California

Understanding Complex Models using Visualization: San Bernardino Valley Ground-water Basin, Southern California Understanding Complex Models using Visualization: San Bernardino Valley Ground-water Basin, Southern California Zhen Li and Wesley R. Danskin U.S. Geological Survey, zhenli@usgs.gov, wdanskin@usgs.gov,

More information

Choices and Applications of 2D/3D models for supporting harbour & coastal management

Choices and Applications of 2D/3D models for supporting harbour & coastal management Choices and Applications of 2D/3D models for supporting harbour & coastal management Terug naar overzicht Rob Uittenbogaard (1,2) (1) WL Delft Hydraulics (2) Delft University of Technology ; J.M. Burgerscentre

More information

ATM 316: Dynamic Meteorology I Final Review, December 2014

ATM 316: Dynamic Meteorology I Final Review, December 2014 ATM 316: Dynamic Meteorology I Final Review, December 2014 Scalars and Vectors Scalar: magnitude, without reference to coordinate system Vector: magnitude + direction, with reference to coordinate system

More information

Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster

Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster Mark J. Stock, Ph.D., Adrin Gharakhani, Sc.D. Applied Scientific Research, Santa Ana, CA Christopher P. Stone, Ph.D. Computational

More information

Systems Biology II: Neural Systems (580.422) Lecture 8, Linear cable theory

Systems Biology II: Neural Systems (580.422) Lecture 8, Linear cable theory Systems Biology II: Neural Systems (580.422) Lecture 8, Linear cable theory Eric Young 5-3164 eyoung@jhu.edu Reading: D. Johnston and S.M. Wu Foundations of Cellular Neurophysiology (MIT Press, 1995).

More information

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) Problem (Q1): Evaluate each of the following to three significant figures and express each answer in SI units: (a) (0.631 Mm)/(8.60 kg) 2 (b) (35 mm) 2 *(48 kg) 3 (a) 0.631 Mm / 8.60 kg 2 6 0.631 10 m

More information

Theory of Chromatography

Theory of Chromatography Theory of Chromatography The Chromatogram A chromatogram is a graph showing the detector response as a function of elution time. The retention time, t R, for each component is the time needed after injection

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

More information

Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details

Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details Appendix C - Risk Assessment: Technical Details Page C1 C1 Surface Water Modelling 1. Introduction 1.1 BACKGROUND URS Scott Wilson has constructed 13 TUFLOW hydraulic models across the London Boroughs

More information

Valuation of Equity-Linked Insurance Products and Practical Issues in Equity Modeling. March 12, 2013

Valuation of Equity-Linked Insurance Products and Practical Issues in Equity Modeling. March 12, 2013 Valuation of Equity-Linked Insurance Products and Practical Issues in Equity Modeling March 12, 2013 The University of Hong Kong (A SOA Center of Actuarial Excellence) Session 2 Valuation of Equity-Linked

More information

Frequency-domain and stochastic model for an articulated wave power device

Frequency-domain and stochastic model for an articulated wave power device Frequency-domain stochastic model for an articulated wave power device J. Cândido P.A.P. Justino Department of Renewable Energies, Instituto Nacional de Engenharia, Tecnologia e Inovação Estrada do Paço

More information

Overset Grids Technology in STAR-CCM+: Methodology and Applications

Overset Grids Technology in STAR-CCM+: Methodology and Applications Overset Grids Technology in STAR-CCM+: Methodology and Applications Eberhard Schreck, Milovan Perić and Deryl Snyder eberhard.schreck@cd-adapco.com milovan.peric@cd-adapco.com deryl.snyder@cd-adapco.com

More information

Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs)

Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs) Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs) by Bernard B. Hsieh and Thad C. Pratt PURPOSE: The field data collection program consumes a major portion of a modeling budget.

More information

Thompson/Ocean 420/Winter 2005 Tide Dynamics 1

Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Tide Dynamics Dynamic Theory of Tides. In the equilibrium theory of tides, we assumed that the shape of the sea surface was always in equilibrium with the

More information

Chapter 7. Lyapunov Exponents. 7.1 Maps

Chapter 7. Lyapunov Exponents. 7.1 Maps Chapter 7 Lyapunov Exponents Lyapunov exponents tell us the rate of divergence of nearby trajectories a key component of chaotic dynamics. For one dimensional maps the exponent is simply the average

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

Simple CFD Simulations and Visualisation using OpenFOAM and ParaView. Sachiko Arvelius, PhD

Simple CFD Simulations and Visualisation using OpenFOAM and ParaView. Sachiko Arvelius, PhD Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

The Olympus stereology system. The Computer Assisted Stereological Toolbox

The Olympus stereology system. The Computer Assisted Stereological Toolbox The Olympus stereology system The Computer Assisted Stereological Toolbox CAST is a Computer Assisted Stereological Toolbox for PCs running Microsoft Windows TM. CAST is an interactive, user-friendly,

More information

Lecture 2 Introduction to Data Flow Analysis

Lecture 2 Introduction to Data Flow Analysis Lecture 2 Introduction to Data Flow Analysis I. Introduction II. Example: Reaching definition analysis III. Example: Liveness analysis IV. A General Framework (Theory in next lecture) Reading: Chapter

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and

More information

Claudio J. Tessone. Pau Amengual. Maxi San Miguel. Raúl Toral. Horacio Wio. Eur. Phys. J. B 39, 535 (2004) http://www.imedea.uib.

Claudio J. Tessone. Pau Amengual. Maxi San Miguel. Raúl Toral. Horacio Wio. Eur. Phys. J. B 39, 535 (2004) http://www.imedea.uib. Horacio Wio Raúl Toral Eur. Phys. J. B 39, 535 (2004) Claudio J. Tessone Pau Amengual Maxi San Miguel http://www.imedea.uib.es/physdept Models of Consensus vs. Polarization, or Segregation: Voter model,

More information

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Steady Heat Conduction

Steady Heat Conduction Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

Automatic mesh update with the solid-extension mesh moving technique

Automatic mesh update with the solid-extension mesh moving technique Comput. Methods Appl. Mech. Engrg. 193 (2004) 2019 2032 www.elsevier.com/locate/cma Automatic mesh update with the solid-extension mesh moving technique Keith Stein a, *, Tayfun E. Tezduyar b, Richard

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

1 The Diffusion Equation

1 The Diffusion Equation Jim Lambers ENERGY 28 Spring Quarter 2007-08 Lecture Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim Lambers. The Diffusion Equation This course considers

More information

Quality and Reliability in CFD

Quality and Reliability in CFD Quality and Reliability in CFD Open Source Challenges Hrvoje Jasak Wikki Ltd, United Kingdom Faculty of Mechanical Engineering and Naval Architecture University of Zagreb, Croatia Quality and Reliability

More information

Extension of the OpenFOAM CFD tool set for modelling multiphase flow

Extension of the OpenFOAM CFD tool set for modelling multiphase flow Extension of the OpenFOAM CFD tool set for modelling multiphase flow Ridhwaan Suliman Johan Heyns Oliver Oxtoby Advanced Computational Methods Research Group, CSIR South Africa CHPC National Meeting, Durban,

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

A Modeling Study of the Satilla River Estuary, Georgia. I: Flooding-Drying Process and Water Exchange over the Salt Marsh-Estuary-Shelf Complex

A Modeling Study of the Satilla River Estuary, Georgia. I: Flooding-Drying Process and Water Exchange over the Salt Marsh-Estuary-Shelf Complex Estuaries Vol. 6, No. 3, p. 651 669 June 003 A Modeling Study of the Satilla River Estuary, Georgia. I: Flooding-Drying Process and Water Exchange over the Salt Marsh-Estuary-Shelf Complex LIANYUAN ZHENG

More information

Principles of groundwater flow

Principles of groundwater flow Principles of groundwater flow Hydraulic head is the elevation to which water will naturally rise in a well (a.k.a. static level). Any well that is not being pumped will do for this, but a well that is

More information

A spot price model feasible for electricity forward pricing Part II

A spot price model feasible for electricity forward pricing Part II A spot price model feasible for electricity forward pricing Part II Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Wolfgang Pauli Institute, Wien January 17-18

More information

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M)

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Stability of Evaporating Polymer Films For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Submitted by: Ted Moore 4 May 2000 Motivation This problem was selected because the writer observed a dependence

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

3. Experimental Results

3. Experimental Results Experimental study of the wind effect on the focusing of transient wave groups J.P. Giovanangeli 1), C. Kharif 1) and E. Pelinovsky 1,) 1) Institut de Recherche sur les Phénomènes Hors Equilibre, Laboratoire

More information

Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models

Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics

More information

Optiffuser. High-performance, high bandwidth lightweight 1D diffuser.

Optiffuser. High-performance, high bandwidth lightweight 1D diffuser. Optiffuser High-performance, high bandwidth lightweight 1D diffuser. General product information The Optiffuser comes in packs of four panels. Two positives and two negatives (see page 5) per package.

More information

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

More information

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

More information

National Oceanography Centre. Research & Consultancy Report No. 26

National Oceanography Centre. Research & Consultancy Report No. 26 National Oceanography Centre Research & Consultancy Report No. 26 Re-analysis of the December 1981 storm surge event in the Bristol Channel using the current operational tide-surge model suite J Williams,

More information

Validation of SEVIRI cloud-top height retrievals from A-Train data

Validation of SEVIRI cloud-top height retrievals from A-Train data Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary

More information

2D Modeling of Urban Flood Vulnerable Areas

2D Modeling of Urban Flood Vulnerable Areas 2D Modeling of Urban Flood Vulnerable Areas Sameer Dhalla, P.Eng. Dilnesaw Chekol, Ph.D. A.D. Latornell Conservation Symposium November 22, 2013 Outline 1. Toronto and Region 2. Evolution of Flood Management

More information

Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf. Flow Visualization. Image-Based Methods (integration-based)

Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf. Flow Visualization. Image-Based Methods (integration-based) Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf Flow Visualization Image-Based Methods (integration-based) Spot Noise (Jarke van Wijk, Siggraph 1991) Flow Visualization:

More information

ALL GROUND-WATER HYDROLOGY WORK IS MODELING. A Model is a representation of a system.

ALL GROUND-WATER HYDROLOGY WORK IS MODELING. A Model is a representation of a system. ALL GROUND-WATER HYDROLOGY WORK IS MODELING A Model is a representation of a system. Modeling begins when one formulates a concept of a hydrologic system, continues with application of, for example, Darcy's

More information