Resilient Dynamic Programming


 Mercy Nelson
 3 years ago
 Views:
Transcription
1 Resilient Dynamic Programming Irene Finocchi, Saverio Caminiti, and Emanuele Fusco Dipartimento di Informatica, Sapienza Università di Roma via Salaria, Rome, Italy. {finocchi, caminiti, Kickoff AlgoDEEP Bertinoro, Italia. April (task C.1.1)
2 Outline 1 Introduction 2 A resilient framework for dynamic programming 3 Testing and experimental validation
3 Memories and faults Why should we care about memory faults in algorithm design? Memory faults happen: a large cluster of computers with a few gigabytes per node can experience one bit error every few minutes [Sah06]. Memory faults are harmful: undetected memory faults cause data corruption to spread; (potentially safety critical, e.g., avionics). Hardware solutions may be inadequate: faulttolerant memory chips does not guarantee complete fault coverage; (expensive system halt upon detection of uncorrectable errors interruptions of service) [JNW08].
4 From liars to data corruption Algorithmic research related to memory errors has focused mainly on sorting and searching problems: late 70 s: Rényi [Rén94] and Ulam [Ula77]: twenty questions game against a liar, handling noise in binary search. Yao and Yao [YY85], and then [AU91, LM99, LMP97]: destructive faults in faulttolerant sorting networks, comparison gates can destroy one of the input values.... [FI04] sorting in the faulty RAM model.
5 Faulty memories: an adversarial model Memory in a faultyram of wordsize w is divided in three classes: a large unreliable memory: an adaptive adversary of unlimited computational power can modify up to δ memory words; O(1) safe memory words: the adversary can read but not modify this memory; O(1) private memory words: the adversary cannot even read this memory.
6 Local dependency dynamic programming edit distance Let e i,j be the edit distance between the prefix up to the ith symbol of the input string X and the prefix up to the jth symbol of the input string Y. e i,j := { ei 1,j 1 if i, j > 0 and x j = y i 1 + min {e i 1,j, e i,j 1, e i 1,j 1 } if i, j > 0 and x j y i (e 0,j = j, e i,0 = i.)
7 Correctness requirements Correctness of sorting and searching required only on uncorrupted values. In our setting, such a relaxed definition of correctness does not seem to be natural.
8 Correctness requirements Correctness of sorting and searching required only on uncorrupted values. In our setting, such a relaxed definition of correctness does not seem to be natural. We seek algorithms that correctly compute the edit distance between the two input strings, in spite of memory faults.
9 Tools Majority. Table decomposition. Fingerprinting.
10 Majority A variable can be made resilient by making 2δ + 1 copies. As at most δ of them can be altered by the adversary, the majority value is the correct value. The majority value can be read in time O(δ) and space O(1) [BM91].
11 Table decomposition The DP table is split in blocks of size δ δ. The boundaries of each block are written reliably in the faulty memory. δ 2 values result in roughly 5δ 2 memory words.
12 Fingerprinting A fingerprint for a column is computed as: ϕ k = v 1 v 2... v δ mod p where p is a prime number uniformly chosen at randomly in interval [n c 1, n c ] (where c is an appropriate constant).
13 Fingerprinting A fingerprint for a column is computed as: ϕ k = v 1 v 2... v δ mod p where p is a prime number uniformly chosen at randomly in interval [n c 1, n c ] (where c is an appropriate constant). Using logical shifts and Horner s rule, each fingerprint can be incrementally computed while generating the values v h : for h = 1 to δ do ϕ = ((ϕ 2 w ) + v h ) mod p end for
14 Block computation B i 1,j 1 B i 1,j B i,j 1 B i,j The first column of a block is computed reading reliably all values it depends from. ϕ 1
15 Block computation B i 1,j 1 B i 1,j B i,j 1 B i,j While computing the first column, fingerprint ϕ 1 is also computed. ϕ 1
16 Block computation B i 1,j 1 B i 1,j B i,j 1 B i,j While computing the first column, fingerprint ϕ 1 is also computed. ϕ 1
17 Block computation B i 1,j 1 B i 1,j B i,j 1 Bi,j While computing column k + 1, we produce two fingerprints, ϕ k+1 and ϕ k. ϕ k ϕ k ϕk+1
18 Block computation B i 1,j 1 B i 1,j B i,j 1 Bi,j Fingerprint ϕ k is then compared with ϕ k (i.e., the fingerprint produced while computing column k). ϕ k ϕ k ϕk+1
19 Block computation B i 1,j 1 B i 1,j B i,j 1 Bi,j If ϕ k ϕ k, the block is recomputed from scratch. ϕ k ϕ k ϕk+1
20 As a result we have: Theorem The edit distance between two strings of length n and m, with n m, can be correctly computed, with high probability, in: O(nm + αδ 2 ) time; O(nm) space, when δ is polynomial in n.
21 Generalizing Theorem A ddimensional local dependency dynamic programming table M of size n d can be correctly computed, with high probability, in: O(n d + αδ d ) time; O(n d + nδ) space, when the actual number α δ of memory faults occurring during the computation is polynomial in n. (Edit distance, longest common subsequence, sequence alignment,...)
22 faultylib We are developing a library to test program behavior in presence of memory faults. Plugging in the library should be very easy: existing C/C++ code should require minimal changes to be tested with our library. Implementation of different (and meaningful) adversaries should be easy....
23 faultylib: usage FaultyUInt M[n+1u][m+1u]; // An n+1 X m+1 matrix of // faulty unsigned int... for (unsigned int i = 1; i <= n; i++) { for (unsigned int j = 1; j <= m; j++) { M[i][j] = min(1 + min(m[i1][j], M[i][j1]), M[i1][j1] + ((x[i1]==y[j1])? 0 : 1)); } }...
24 faultylib: faulty types implementation template <typename T> class Faulty : public FaultyBase {... private: T _val; T read() const { FaultyMM::getInstance()>faultBeforeRead(&_val, sizeof(t), context); return _val; } void write(t v) { _val = v; FaultyMM::getInstance()>faultAfterWrite(&_val, sizeof(t), context); } }... typedef Faulty<unsigned int> FaultyUInt;
25 faultylib: overriding operators... //Assignment operator template <typename Targ> Faulty & operator=(const Targ & v) { write((t)v); return *this; }... //OR template <typename Targ> bool operator (const Targ & v) const { return (read() (T)v); } }...
26 faultylib: adversaries implementation class REDAdversary : public Adversary {... virtual void faultafterwrite(void * location, size_t s, Context * cnt) { if ((cnt!= NULL) && (cnt>tag == EDMATRIX_TAG)) { MatrixContext * m = (MatrixContext *)cnt; unsigned int * i = (unsigned int *)location; if (m>getindex(0) == 3) if (m>getindex(1) == 7) *i = *i +3; } }...
27 Thanks! Thank you for your attention!
28 References [AU91] [BM91] [FI04] S. Assaf and E. Upfal. Fault tolerant sorting networks. SIAM J. Discrete Math., 4(4): , R. S. Boyer and J. S. Moore. Mjrty: A fast majority vote algorithm. In Automated Reasoning: Essays in Honor of Woody Bledsoe, pages , Irene Finocchi and Giuseppe F. Italiano. Sorting and searching in the presence of memory faults (without redundancy). In László Babai, editor, STOC, pages ACM, [JNW08] B. L. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM, Disk. [LM99] Morgan Kaufmann, F. T. Leighton and Y. Ma. Tight bounds on the size of faulttolerant merging and sorting networks with destructive faults. SIAM J. Comput., 29(1): , [LMP97] F. T. Leighton, Y. Ma, and C. G. Plaxton. Breaking the θ(n log 2 n) barrier for sorting with faults. J. Comput. Syst. Sci., 54(2): , [Rén94] [Sah06] [Ula77] [YY85] A. Rény. A diary on information theory. J. Wiley and Sons, Original publication: Napló az információelméletröl, Gondolat, Budapest, G. K. Saha. Software based fault tolerance: a survey. Ubiquity, 7(25), S. M. Ulam. Adventures of a mathematician. Charles Scribner s Sons, New York, A. C. Yao and F. F. Yao. On faulttolerant networks for sorting. SIAM J. Comput., 14(1): , 1985.
Dynamic Programming in faulty memory hierarchies (cacheobliviously)
Dynamic Programming in faulty memory hierarchies (cacheobliviously) Saverio Caminiti, Irene Finocchi, Emanuele G. Fusco Sapienza University of Rome Francesco Silvestri University of Padua Memory fault
More informationData Structures: Sequence Problems, Range Queries, and Fault Tolerance
Data Structures: Sequence Problems, Range Queries, and Fault Tolerance Allan Grønlund Jørgensen PhD Dissertation Department of Computer Science Aarhus University Denmark Data Structures: Sequence Problems,
More informationRANDOMIZATION IN APPROXIMATION AND ONLINE ALGORITHMS. Manos Thanos Randomized Algorithms NTUA
RANDOMIZATION IN APPROXIMATION AND ONLINE ALGORITHMS 1 Manos Thanos Randomized Algorithms NTUA RANDOMIZED ROUNDING Linear Programming problems are problems for the optimization of a linear objective function,
More informationData Structure. Lecture 3
Data Structure Lecture 3 Data Structure Formally define Data structure as: DS describes not only set of objects but the ways they are related, the set of operations which may be applied to the elements
More informationChapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
More informationChapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
More informationPhysical Data Organization
Physical Data Organization Database design using logical model of the database  appropriate level for users to focus on  user independence from implementation details Performance  other major factor
More informationCompiling CAO: from Cryptographic Specifications to C Implementations
Compiling CAO: from Cryptographic Specifications to C Implementations Manuel Barbosa David Castro Paulo Silva HASLab/INESC TEC Universidade do Minho Braga, Portugal April 8, 2014 Grenoble Motivation Developing
More informationClassifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang
Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical microclustering algorithm ClusteringBased SVM (CBSVM) Experimental
More informationIMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE OPERATORS
Volume 2, No. 3, March 2011 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at www.jgrcs.info IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE
More informationA Catalogue of the Steiner Triple Systems of Order 19
A Catalogue of the Steiner Triple Systems of Order 19 Petteri Kaski 1, Patric R. J. Östergård 2, Olli Pottonen 2, and Lasse Kiviluoto 3 1 Helsinki Institute for Information Technology HIIT University of
More informationprinceton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora
princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of
More informationVersatile weighting strategies for a citationbased research evaluation model
Versatile weighting strategies for a citationbased research evaluation model Gianna M. Del Corso, Francesco Romani joint work with Dario A. Binii Dipartimento di Informatica, Università di Pisa, Italy
More informationApache Spark and Distributed Programming
Apache Spark and Distributed Programming Concurrent Programming Keijo Heljanko Department of Computer Science University School of Science November 25th, 2015 Slides by Keijo Heljanko Apache Spark Apache
More informationA Fast Pattern Matching Algorithm with Two Sliding Windows (TSW)
Journal of Computer Science 4 (5): 393401, 2008 ISSN 15493636 2008 Science Publications A Fast Pattern Matching Algorithm with Two Sliding Windows (TSW) Amjad Hudaib, Rola AlKhalid, Dima Suleiman, Mariam
More informationArithmetic Coding: Introduction
Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation
More informationDistributed Storage Networks and Computer Forensics
Distributed Storage Networks 5 Raid6 Encoding Technical Faculty Winter Semester 2011/12 RAID Redundant Array of Independent Disks Patterson, Gibson, Katz, A Case for Redundant Array of Inexpensive Disks,
More informationExample Solution to Exam in EDA150 C Programming
Example Solution to Exam in EDA150 C Programming Janurary 12, 2011, 1419 Inga hjälpmedel! Examinator: Jonas Skeppstedt, tel 0767 888 124 30 out of 60p are needed to pass the exam. General Remarks A function
More informationTheoretical Aspects of Storage Systems Autumn 2009
Theoretical Aspects of Storage Systems Autumn 2009 Chapter 2: Double Disk Failures André Brinkmann Data Corruption in the Storage Stack What are Latent Sector Errors What is Silent Data Corruption Checksum
More informationAlgorithms and Methods for Distributed Storage Networks 5 Raid6 Encoding Christian Schindelhauer
Algorithms and Methods for Distributed Storage Networks 5 Raid6 Encoding Institut für Informatik Wintersemester 2007/08 RAID Redundant Array of Independent Disks Patterson, Gibson, Katz, A Case for Redundant
More informationMemory Management. memory hierarchy
Memory Management Ideally programmers want memory that is large fast non volatile Memory hierarchy small amount of fast, expensive memory cache some mediumspeed, medium price main memory gigabytes of
More informationSecure Way of Storing Data in Cloud Using Third Party Auditor
IOSR Journal of Computer Engineering (IOSRJCE) eissn: 22780661, p ISSN: 22788727Volume 12, Issue 4 (Jul.  Aug. 2013), PP 6974 Secure Way of Storing Data in Cloud Using Third Party Auditor 1 Miss.
More informationGraySort on Apache Spark by Databricks
GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner
More informationScheduling Parallel Machine Scheduling. Tim Nieberg
Scheduling Parallel Machine Scheduling Tim Nieberg Problem P C max : m machines n jobs with processing times p 1,..., p n Problem P C max : m machines n jobs with processing times p 1,..., p { n 1 if job
More informationSecuring Knowledge Queries Using Code Striping
Securing Knowledge Queries Using Code Striping Mark W. Bailey Kevin Kwiat Computer Science Department Air Force Research Laboratory Hamilton College 525 Brooks Road Clinton, NY 13323 Rome, NY 134414505
More informationSAMPLE. Computer Science. Essential Maths Skills. for AS/Alevel. Gavin Craddock and Victoria Ellis
Essential Maths Skills for AS/Alevel Computer Science Gavin Craddock and Victoria Ellis Series Editor Heather Davis Educational Consultant with Cornwall Learning Contents The listed content is assessed
More informationC++ Programming Language
C++ Programming Language Lecturer: Yuri Nefedov 7th and 8th semesters Lectures: 34 hours (7th semester); 32 hours (8th semester). Seminars: 34 hours (7th semester); 32 hours (8th semester). Course abstract
More informationAlgorithmic Techniques for Big Data Analysis. Barna Saha AT&T LabResearch
Algorithmic Techniques for Big Data Analysis Barna Saha AT&T LabResearch Challenges of Big Data VOLUME Large amount of data VELOCITY Needs to be analyzed quickly VARIETY Different types of structured
More informationData Distribution Algorithms for Reliable. Reliable Parallel Storage on Flash Memories
Data Distribution Algorithms for Reliable Parallel Storage on Flash Memories Zuse Institute Berlin November 2008, MEMICS Workshop Motivation Nonvolatile storage Flash memory  Invented by Dr. Fujio Masuoka
More informationLoad Distribution on a Linux Cluster using Load Balancing
Load Distribution on a Linux Cluster using Load Balancing Aravind Elango M. Mohammed Safiq Undergraduate Students of Engg. Dept. of Computer Science and Engg. PSG College of Technology India Abstract:
More informationWhy you shouldn't use set (and what you should use instead) Matt Austern
Why you shouldn't use set (and what you should use instead) Matt Austern Everything in the standard C++ library is there for a reason, but it isn't always obvious what that reason is. The standard isn't
More informationChapter Objectives. Chapter 9. Sequential Search. Search Algorithms. Search Algorithms. Binary Search
Chapter Objectives Chapter 9 Search Algorithms Data Structures Using C++ 1 Learn the various search algorithms Explore how to implement the sequential and binary search algorithms Discover how the sequential
More informationQuestion 2. Question 3. 0 out of 1 points. The basic commands that a computer performs are, and performance of arithmetic and logical operations.
The basic commands that a computer performs are, and performance of arithmetic and logical operations. input, file Question 2 input, output, storage output, folder storage, directory Main memory is called.
More informationC++ Keywords. If/else Selection Structure. Looping Control Structures. Switch Statements. Example Program
C++ Keywords There are many keywords in C++ that are not used in other languages. bool, const_cast, delete, dynamic_cast, const, enum, extern, register, sizeof, typedef, explicit, friend, inline, mutable,
More informationOptimization Problems in Infrastructure Security
Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1 Optimization Problems in Infrastructure Security Evangelos Kranakis Carleton University School of Computer Science Ottawa,
More informationData Structures, Sample Test Questions for the Material after Test 2, with Answers
Data Structures, Sample Test Questions for the Material after Test 2, with Answers 1. Recall the public interfaces of classes List and ListIterator: typedef int ListItemType; class ListIterator{ public:
More informationDistributed Data Stores
Distributed Data Stores 1 Distributed Persistent State MapReduce addresses distributed processing of aggregationbased queries Persistent state across a large number of machines? Distributed DBMS High
More informationCSEE5430 Scalable Cloud Computing Lecture 11
CSEE5430 Scalable Cloud Computing Lecture 11 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 30.112015 1/24 Distributed Coordination Systems Consensus
More informationCS5460: Operating Systems Lecture 16: Page Replacement (Ch. 9)
CS5460: Operating Systems Lecture 16: Page Replacement (Ch. 9) Last Time: Demand Paging Key idea: RAM is used as a cache for disk Don t give a process a page of RAM until it is needed When running short
More informationConfinement Problem. The confinement problem Isolating entities. Example Problem. Server balances bank accounts for clients Server security issues:
Confinement Problem The confinement problem Isolating entities Virtual machines Sandboxes Covert channels Mitigation 1 Example Problem Server balances bank accounts for clients Server security issues:
More informationMultimedia Communications. Huffman Coding
Multimedia Communications Huffman Coding Optimal codes Suppose that a i > w i C + is an encoding scheme for a source alphabet A={a 1,, a N }. Suppose that the source letter a 1,, a N occur with relative
More informationFactoring Algorithms
Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology  Project 1 Factoring Algorithms The purpose of this project is to understand
More informationChapter 8. Arithmetic in C++
Christian Jacob Chapter 8 Arithmetic in C++ 8.1 The C++ Vocabulary 8.2 Variables and Types 8.2.1 Data Objects 8.2.2 Variables 8.2.3 Declaration of Variables 8.3 Elementary C++ Data Types 8.3.1 Integers
More informationECEN 5682 Theory and Practice of Error Control Codes
ECEN 5682 Theory and Practice of Error Control Codes Convolutional Codes University of Colorado Spring 2007 Linear (n, k) block codes take k data symbols at a time and encode them into n code symbols.
More informationScalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011
Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis
More informationMerge Sort. 2004 Goodrich, Tamassia. Merge Sort 1
Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Merge Sort 1 DivideandConquer Divideand conquer is a general algorithm design paradigm: Divide: divide the input data S in two disjoint subsets
More informationDistributed Dynamic Load Balancing for IterativeStencil Applications
Distributed Dynamic Load Balancing for IterativeStencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,
More informationMotivating Quotation
Data Structures 1 Motivating Quotation Every program depends on algorithms and data structures, but few programs depend on the invention of brand new ones.  Kernighan & Pike 2 Programming in the Large
More informationLecture 9  Message Authentication Codes
Lecture 9  Message Authentication Codes Boaz Barak March 1, 2010 Reading: BonehShoup chapter 6, Sections 9.1 9.3. Data integrity Until now we ve only been interested in protecting secrecy of data. However,
More informationCategorical Data Visualization and Clustering Using Subjective Factors
Categorical Data Visualization and Clustering Using Subjective Factors ChiaHui Chang and ZhiKai Ding Department of Computer Science and Information Engineering, National Central University, ChungLi,
More informationLecture 6. Randomized data structures Random number generation Skip lists: ideas and implementation Skip list time costs. Reading:
Lecture 6 Randomized data structures Random number generation Skip lists: ideas and implementation Skip list time costs Reading: Skip Lists: A Probabilistic Alternative to Balanced Trees (author William
More informationParallel Computing for Data Science
Parallel Computing for Data Science With Examples in R, C++ and CUDA Norman Matloff University of California, Davis USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint
More informationSpark ΕΡΓΑΣΤΗΡΙΟ 10. Prepared by George Nikolaides 4/19/2015 1
Spark ΕΡΓΑΣΤΗΡΙΟ 10 Prepared by George Nikolaides 4/19/2015 1 Introduction to Apache Spark Another cluster computing framework Developed in the AMPLab at UC Berkeley Started in 2009 Opensourced in 2010
More informationMotivation for peertopeer
Peertopeer systems INF 5040 autumn 2007 lecturer: Roman Vitenberg INF5040, Frank Eliassen & Roman Vitenberg 1 Motivation for peertopeer Inherent restrictions of the standard client/server model Centralised
More informationSymbol Tables. IE 496 Lecture 13
Symbol Tables IE 496 Lecture 13 Reading for This Lecture Horowitz and Sahni, Chapter 2 Symbol Tables and Dictionaries A symbol table is a data structure for storing a list of items, each with a key and
More informationBUSINESS ANALYTICS. Data Preprocessing. Lecture 3. Information Systems and Machine Learning Lab. University of Hildesheim.
Tomáš Horváth BUSINESS ANALYTICS Lecture 3 Data Preprocessing Information Systems and Machine Learning Lab University of Hildesheim Germany Overview The aim of this lecture is to describe some data preprocessing
More informationCOMPUTER ARCHITECTURE IT0205
COMPUTER ARCHITECTURE IT0205 M.Thenmozhi/Kayalvizhi Jayavel/M.B.Panbu Asst.Prof.(Sr.G)/Asst.Prof.(Sr.G)/Asst.Prof.(O.G) Department of IT SRM University, Kattankulathur 1 Disclaimer The contents of the
More informationRAID Technology Overview
RAID Technology Overview HP Smart Array RAID Controllers HP Part Number: J636990050 Published: September 2007 Edition: 1 Copyright 2007 HewlettPackard Development Company L.P. Legal Notices Copyright
More informationData Streams A Tutorial
Data Streams A Tutorial Nicole Schweikardt GoetheUniversität Frankfurt am Main DEIS 10: GIDagstuhl Seminar on Data Exchange, Integration, and Streams Schloss Dagstuhl, November 8, 2010 Data Streams Situation:
More informationBig Data and Scripting map/reduce in Hadoop
Big Data and Scripting map/reduce in Hadoop 1, 2, parts of a Hadoop map/reduce implementation core framework provides customization via indivudual map and reduce functions e.g. implementation in mongodb
More informationRAM & ROM Based Digital Design. ECE 152A Winter 2012
RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in
More informationMLR Institute of Technology
MLR Institute of Technology DUNDIGAL 500 043, HYDERABAD COMPUTER SCIENCE AND ENGINEERING Computer Programming Lab List of Experiments S.No. Program Category List of Programs 1 Operators a) Write a C program
More informationHardwareAware AlgorithmsandDataStructures. Gabriel Moruz BRICS University of Aarhus
HardwareAware AlgorithmsandDataStructures Gabriel Moruz BRICS University of Aarhus 1 Hardware/nm./: the part of the computer that you can kick. Geeky folklore. Gabriel Moruz: Hardware aware algorithms
More informationAlmost every lossy compression system contains a lossless compression system
Lossless compression in lossy compression systems Almost every lossy compression system contains a lossless compression system Lossy compression system Transform Quantizer Lossless Encoder Lossless Decoder
More informationFrom Dynamic Matrix Inverse to Dynamic Shortest Distances
From Dynamic Matrix Inverse to Dynamic Shortest Distances Piotr Sankowski sank@mimuw.edu.pl Institute of Informatics Warsaw University  p. 1/51 FOCS 04 Highlights  p. 2/51 FOCS 04 Highlights Hardness
More informationOutline. Towards Automatic Accuracy Validation and Optimization of FixedPoint Hardware Descriptions in SystemC. Typical and Proposed Design Method
Outline Motivations Towards Automatic Accuracy Validation and Optimization of FixedPoint Hardware Descriptions in Arnaud Tisserand CNRS, IRISA laboratory, CAIRN research team SCAN 2010, September 27 30,
More information12.0 Statistical Graphics and RNG
12.0 Statistical Graphics and RNG 1 Answer Questions Statistical Graphics Random Number Generators 12.1 Statistical Graphics 2 John Snow helped to end the 1854 cholera outbreak through use of a statistical
More informationTransparent D FlipFlop
Transparent FlipFlop The RS flipflop forms the basis of a number of 1bit storage devices in digital electronics. ne such device is shown in the figure, where extra combinational logic converts the input
More informationA FAST STRING MATCHING ALGORITHM
Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),877883 A FAST STRING MATCHING ALGORITHM H N Verma, 2 Ravendra Singh Department of CSE, Sachdeva Institute of Technology, Mathura, India, hnverma@rediffmail.com
More informationEffective Data Mining Using Neural Networks
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 6, DECEMBER 1996 957 Effective Data Mining Using Neural Networks Hongjun Lu, Member, IEEE Computer Society, Rudy Setiono, and Huan Liu,
More informationVariable Base Interface
Chapter 6 Variable Base Interface 6.1 Introduction Finite element codes has been changed a lot during the evolution of the Finite Element Method, In its early times, finite element applications were developed
More informationHBase Schema Design. NoSQL Ma4ers, Cologne, April 2013. Lars George Director EMEA Services
HBase Schema Design NoSQL Ma4ers, Cologne, April 2013 Lars George Director EMEA Services About Me Director EMEA Services @ Cloudera ConsulFng on Hadoop projects (everywhere) Apache Commi4er HBase and Whirr
More informationCUDA Programming. Week 4. Shared memory and register
CUDA Programming Week 4. Shared memory and register Outline Shared memory and bank confliction Memory padding Register allocation Example of matrixmatrix multiplication Homework SHARED MEMORY AND BANK
More informationSupport Vector Machines with Clustering for Training with Very Large Datasets
Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano
More information1 Scope and Motivation. Revised 2/4/2015 9:31 AM
N4355 : Shared Multidimensional Array with Polymorphic Layout Authors: Carter Edwards hcedwar@sandia.gov Christian Trott crtrott@sandia.gov Related papers: N4177 Multidimensional bounds, index and array_view,
More informationNew Hash Function Construction for Textual and Geometric Data Retrieval
Latest Trends on Computers, Vol., pp.483489, ISBN 9789647434, ISSN 7945, CSCC conference, Corfu, Greece, New Hash Function Construction for Textual and Geometric Data Retrieval Václav Skala, Jan
More informationFact Sheet InMemory Analysis
Fact Sheet InMemory Analysis 1 Copyright Yellowfin International 2010 Contents In Memory Overview...3 Benefits...3 Agile development & rapid delivery...3 Data types supported by the InMemory Database...4
More informationWhat s New in MATLAB and Simulink
What s New in MATLAB and Simulink Kevin Cohan Product Marketing, MATLAB Michael Carone Product Marketing, Simulink 2015 The MathWorks, Inc. 1 What was new for Simulink in R2012b? 2 What Was New for MATLAB
More informationLossless Data Compression Standard Applications and the MapReduce Web Computing Framework
Lossless Data Compression Standard Applications and the MapReduce Web Computing Framework Sergio De Agostino Computer Science Department Sapienza University of Rome Internet as a Distributed System Modern
More informationOutline. Database Tuning. Disk Allocation Raw vs. Cooked Files. Overview. Hardware Tuning. Nikolaus Augsten. Unit 6 WS 2015/16
Outline Database Tuning Hardware Tuning Nikolaus Augsten University of Salzburg Department of Computer Science Database Group Unit 6 WS 2015/16 1 2 3 Conclusion Adapted from Database Tuning by Dennis Shasha
More informationOptimal Cheque Production: A Case Study
Blo UNIVERSITÀ DI SALERNO Dipartimento di Matematica e Informatica D.M.I. Via Ponte don Melillo 84084 Fisciano (SA) Italy Optimal Cheque Production: A Case Study Raffaele Cerulli, Renato De Leone, Monica
More informationComputer Science Terminology II
Computer Science 1000 Terminology II Storage a computer has two primary tasks store data operate on data a processor's primary job is to operate on data math operations move operations note that processors
More informationA PartitionBased Efficient Algorithm for Large Scale. MultipleStrings Matching
A PartitionBased Efficient Algorithm for Large Scale MultipleStrings Matching Ping Liu Jianlong Tan, Yanbing Liu Software Division, Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
More informationCHAPTER 5 A MEMORY EFFICIENT SPEECH CODING SCHEME WITH FAST DECODING
86 CHAPTE A MEMOY EFFICIENT SPEECH CODING SCHEME WITH FAST DECODING. INTODUCTION Huffman coding proposed by Huffman (9) is the most widely used minimal prefix coding algorithm because of its robustness,
More informationHadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically nonenterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
More informationBig Data Storage Options for Hadoop Sam Fineberg, HP Storage
Sam Fineberg, HP Storage SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies and individual members may use this material in presentations
More informationContents. SnapComms Data Protection Recommendations
Contents Abstract... 2 SnapComms Solution Environment... 2 Concepts... 3 What to Protect... 3 Database Failure Scenarios... 3 Physical Infrastructure Failures... 3 Logical Data Failures... 3 Service Recovery
More informationA Tool for Generating Partition Schedules of Multiprocessor Systems
A Tool for Generating Partition Schedules of Multiprocessor Systems HansJoachim Goltz and Norbert Pieth Fraunhofer FIRST, Berlin, Germany {hansjoachim.goltz,nobert.pieth}@first.fraunhofer.de Abstract.
More informationReliable Systolic Computing through Redundancy
Reliable Systolic Computing through Redundancy Kunio Okuda 1, Siang Wun Song 1, and Marcos Tatsuo Yamamoto 1 Universidade de São Paulo, Brazil, {kunio,song,mty}@ime.usp.br, http://www.ime.usp.br/ song/
More informationBig Data & Scripting storage networks and distributed file systems
Big Data & Scripting storage networks and distributed file systems 1, 2, in the remainder we use networks of computing nodes to enable computations on even larger datasets for a computation, each node
More information1 Abstract Data Types Information Hiding
1 1 Abstract Data Types Information Hiding 1.1 Data Types Data types are an integral part of every programming language. ANSIC has int, double and char to name just a few. Programmers are rarely content
More informationCMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma
CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma Please Note: The references at the end are given for extra reading if you are interested in exploring these ideas further. You are
More informationPARTA Questions. 2. How does an enumerated statement differ from a typedef statement?
1. Distinguish & and && operators. PARTA Questions 2. How does an enumerated statement differ from a typedef statement? 3. What are the various members of a class? 4. Who can access the protected members
More informationQuantum Computing Lecture 7. Quantum Factoring. Anuj Dawar
Quantum Computing Lecture 7 Quantum Factoring Anuj Dawar Quantum Factoring A polynomial time quantum algorithm for factoring numbers was published by Peter Shor in 1994. polynomial time here means that
More informationA Comparison of Five Methods for Signal Intensity Standardization in MRI
A Comparison of Five Methods for Signal Intensity Standardization in MRI JanPhilip Bergeest, Florian Jäger Lehrstuhl für Mustererkennung, FriedrichAlexanderUniversität ErlangenNürnberg jan.p.bergeest@informatik.stud.unierlangen.de
More informationA Mathematical Programming Solution to the Mars Express Memory Dumping Problem
A Mathematical Programming Solution to the Mars Express Memory Dumping Problem Giovanni Righini and Emanuele Tresoldi Dipartimento di Tecnologie dell Informazione Università degli Studi di Milano Via Bramante
More informationDepartment of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Course Information
Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Course Information Course title: Computer Organization Course number: EECE 321 Catalog
More informationScalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
More informationSystem Aware Cyber Security
System Aware Cyber Security Application of Dynamic System Models and State Estimation Technology to the Cyber Security of Physical Systems Barry M. Horowitz, Kate Pierce University of Virginia April, 2012
More informationBigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduceHadoop
More information