Service Placement in Network-aware Cloud Infrastructures

Size: px
Start display at page:

Download "Service Placement in Network-aware Cloud Infrastructures"

Transcription

1 Service Placement in Network-aware Cloud Infrastructures Visions of Future Generation Networks (EuroView2009) Andreas Reifert July, 28th 2009 Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter Agenda Motivation Can the Cloud host telecommunication s? Integrated infrastructure Service and infrastructure model Service placement Algorithms Evaluation methodology Results Conclusion 2

2 Motivation Telecommunication requirements Maximal network delay guarantees / Maximal response time guarantees Due to Interactivity State lookup Data synchronization Particular locations of components Specialized components Replicated components Bandwidth guarantees Due to Stream transfers Large content transfers Particular locations of components Specialized components 3 Motivation Telecommunication requirements Maximal network delay guarantees / Maximal response time guarantees Due to Interactivity State lookup Data synchronization Particular locations of components Specialized components Replicated components Bandwidth guarantees Due to Stream transfers Large content transfers Particular locations of components Specialized components 4

3 Motivation Telecommunication s in the Cloud? Cloud = Infrastructure as a Service Cloud Decoupling of Service Provider is customer of Resource Infrastructure Provider (Cloud Provider) Components Loosely coupled Placement / location not relevant Usually one location Sufficient bandwidth Low inter-component delay No Network View No delay guarantees No bandwidth guarantees 5 Motivation IMS Another real world telecommunication Source: Wikipedia 6

4 Motivation Integrated Infrastructure and Network BMBF Project MAMS/MAMSplus Simple communication creation and execution for non-experts, Intelligent Service Oriented Network Infrastructure, Concepts and prototype Service AND resource management Integrated view of s, infrastructure, and network necessary 7 Model Service Description 8

5 Model Service Description 9 Model Service Description 10

6 Model Service Description 11 Model Service Description 12

7 Model Service Description 13 Model Resource Infrastructure / Network 14

8 Model Resource Infrastructure / Network 15 Model Resource Infrastructure / Network 16

9 Model Resource Infrastructure / Network 17 Model Placement 18

10 Model Placement Matching and Selection Placement 19 Placement Strategies RAND NODE TOP Type Random Greedy Greedy Optimal Principle Uninformed Node-based (Only Node resources) Topology-based (Service and Network inc. resources) MILP (Mixed Integer Linear Program) Quality Best Uninformed worst Low RAND NODE TOP High Complexity 20

11 Placement Evaluation Methodology Monte Carlo Simulation Independent samples with random placed on random infrastructure/network Parameters Allocated resources in infrastructure/network 0% (Empty) 100% (Full) Characteristic of Total Resource Demand Heavy-weight 80% Light-weight 20% Centralized Topology Distributed Performance Metrics Ability Fraction of non-placed s (Rejection) Quality Comparison of total link bandwidth allocation w.r.t. allocation 21 Results Ability to Find Placement Centralized, heavy-weight Centralized heavy-weight Low optimization potential % 90 RAND 80 Available Resources [%] Centralized, heavy weight % Non Placed Services 1% 0.1% 0.01% Allocated Resources [%] 22

12 Results Ability to Find Placement Centralized, heavy-weight Centralized heavy-weight Low optimization potential % 90 RAND 80 Available Resources [%] Centralized, heavy weight % Non Placed Services 1% 0.1% Best Functional Approximations (Regressions) 0.01% Allocated Resources [%] 23 Results Ability to Find Placement Centralized, heavy-weight Centralized heavy-weight Low optimization potential TOP close to % 90 RAND NODE 80 Available Resources [%] Centralized, heavy weight Service- and networktopology matter Non Placed Services 10% 1% TOP 0.1% Best Functional Approximation 0.01% Allocated Resources [%] 24

13 Results Ability to Find Placement Distributed, light-weight Distributed, light-weight Significant observed differences in algorithmic behavior High optimization potential Up to several orders of magnitude Even between TOP and Non Placed Services % 10% 1% Available Resources [%] Centralized, heavy weight RAND NODE TOP RAND NODE TOP Distributed, light weight 0 Service- and networktopology matter Simple algorithms leave significant room for improvement 0.1% Best Functional Approximation 0.01% Allocated Resources [%] 25 Results Quality of Found Placement PRELIMINARY RESULTS Centralized, heavyweight TOP almost optimal Distributed, light-weight TOP with acceptable placements If found! Behavior of NODE not yet understood Improved performance in high occupancy region due to few possible placements Total Link Bandwidth Allocation w.r.t. Available Resources [%] % Centralized, heavy weight 500% RAND 400% 300% 200% 100% Distributed, light weight RAND NODE NODE TOP TOP 10 0 Improvements without modification to routing! 0% Allocated Resources [%] 26

14 Conclusion Current IaaS Clouds not prepared for telecommunication s Network view essential for channels between components and towards end-systems Delay requirements Required bandwidth guarantees Integrated view Service/Infrastructure/Network necessary for system management Detailed model Placement of components has significant impact on Number of running s Bandwidth consumption Good placement algorithms must match - and network-topology Especially for distributed s TOP leaves room for improvement 27

Fault-Tolerant Application Placement in Heterogeneous Cloud Environments. Bart Spinnewyn, prof. Steven Latré

Fault-Tolerant Application Placement in Heterogeneous Cloud Environments. Bart Spinnewyn, prof. Steven Latré Fault-Tolerant Application Placement in Heterogeneous Cloud Environments Bart Spinnewyn, prof. Steven Latré Cloud Application Placement Problem (CAPP) Application Placement admission control: decide on

More information

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Felipe Augusto Nunes de Oliveira - GRR20112021 João Victor Tozatti Risso - GRR20120726 Abstract. The increasing

More information

On the effect of forwarding table size on SDN network utilization

On the effect of forwarding table size on SDN network utilization IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

SDN/Virtualization and Cloud Computing

SDN/Virtualization and Cloud Computing SDN/Virtualization and Cloud Computing Agenda Software Define Network (SDN) Virtualization Cloud Computing Software Defined Network (SDN) What is SDN? Traditional Network and Limitations Traditional Computer

More information

BSC vision on Big Data and extreme scale computing

BSC vision on Big Data and extreme scale computing BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,

More information

Hybrid Simulation von Kommunikationsnetzen für das Smart Grid

Hybrid Simulation von Kommunikationsnetzen für das Smart Grid für das Smart rid Hanno eorg 15.11.2013 Faculty of Electrical Engineering & Information Technology Communication Networks Institute Prof. Dr.-Ing. Christian Wietfeld für das Smart rid Overview Motivation

More information

Optimizing and simplifying SIP-based NGNs QoS architecture

Optimizing and simplifying SIP-based NGNs QoS architecture Optimizing and simplifying SIP-based NGNs QoS architecture International SIP 2008 January 31 st, 2008 (weber@e-technik.org) Prof. Dr.-Ing. Ulrich Trick (trick@e-technik.org) University of Applied Sciences

More information

Extracting Performance Metrics from NetFlow in Enterprise Networks

Extracting Performance Metrics from NetFlow in Enterprise Networks Extracting Performance Metrics from NetFlow in Enterprise Networks 2nd EMANICS Workshop on NetFlow/IPFIX Usage Jochen Kögel jochen.koegel@ikr.uni-stuttgart.de 8. October 2009 Universität Stuttgart Institute

More information

Real-Time (Paradigms) (51)

Real-Time (Paradigms) (51) Real-Time (Paradigms) (51) 5. Real-Time Communication Data flow (communication) in embedded systems : Sensor --> Controller Controller --> Actor Controller --> Display Controller Controller Major

More information

Chapter 4. VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network)

Chapter 4. VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network) Chapter 4 VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network) 4.1 Introduction Traffic Engineering can be defined as a task of mapping traffic

More information

TOPOLOGIES NETWORK SECURITY SERVICES

TOPOLOGIES NETWORK SECURITY SERVICES TOPOLOGIES NETWORK SECURITY SERVICES 1 R.DEEPA 1 Assitant Professor, Dept.of.Computer science, Raja s college of Tamil Studies & Sanskrit,Thiruvaiyaru ABSTRACT--In the paper propose about topology security

More information

Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network

Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network Hyacinth An IEEE 802.11-based Multi-channel Wireless Mesh Network 1 Gliederung Einführung Vergleich und Problemstellung Algorithmen Evaluation 2 Aspects Backbone Last mile access stationary commodity equipment

More information

Facilitating On-Demand Risk and Actuarial Analysis in MATLAB. Timo Salminen, CFA, FRM Model IT

Facilitating On-Demand Risk and Actuarial Analysis in MATLAB. Timo Salminen, CFA, FRM Model IT Facilitating On-Demand Risk and Actuarial Analysis in MATLAB Timo Salminen, CFA, FRM Model IT Introduction It is common that insurance companies can valuate their liabilities only quarterly Sufficient

More information

Subcarrier Allocation Algorithms for multicellular OFDMA networks without Channel State Information

Subcarrier Allocation Algorithms for multicellular OFDMA networks without Channel State Information Subcarrier Allocation Algorithms for multicellular OFDMA networks without Channel State Information I.N. Stiakogiannakis, D.A. Zarbouti, G.V. Tsoulos, D.I. Kaklamani, NTUA Department of Telecommunication

More information

Bell Labs. Network Awareness and Virtualization Meets Cloud. Volker Hilt Bell Labs/Alcatel-Lucent. Slide 1

Bell Labs. Network Awareness and Virtualization Meets Cloud. Volker Hilt Bell Labs/Alcatel-Lucent. Slide 1 Network Awareness and Virtualization Meets Cloud Bell Labs Volker Hilt Bell Labs/Alcatel-Lucent Slide 1 CUSTOMER STORIES Slide 2 CUSTOMER STORIES I want a network which is elastic, that scales with my

More information

HSR HOCHSCHULE FÜR TECHNIK RA PPERSW I L

HSR HOCHSCHULE FÜR TECHNIK RA PPERSW I L 1 An Introduction into Modelling and Simulation 4. A Series of Labs to Learn Simio af&e Prof. Dr.-Ing. Andreas Rinkel andreas.rinkel@hsr.ch Tel.: +41 (0) 55 2224928 Mobil: +41 (0) 79 3320562 Lab 1 Lab

More information

Introduction to Quality of Service. Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.

Introduction to Quality of Service. Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito. Introduction to Quality of Service Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ QoS Issues in Telecommunication Networks - 1 Quality of service

More information

Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation

Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation Huibo Bi and Erol Gelenbe Intelligent Systems and Networks Group Department of Electrical and Electronic Engineering Imperial College

More information

Six Strategies for Building High Performance SOA Applications

Six Strategies for Building High Performance SOA Applications Six Strategies for Building High Performance SOA Applications Uwe Breitenbücher, Oliver Kopp, Frank Leymann, Michael Reiter, Dieter Roller, and Tobias Unger University of Stuttgart, Institute of Architecture

More information

A Novel Data Placement Model for Highly-Available Storage Systems

A Novel Data Placement Model for Highly-Available Storage Systems A Novel Data Placement Model for Highly-Available Storage Systems Rama, Microsoft Research joint work with John MacCormick, Nick Murphy, Kunal Talwar, Udi Wieder, Junfeng Yang, and Lidong Zhou Introduction

More information

Load Balancing in cloud computing

Load Balancing in cloud computing Load Balancing in cloud computing 1 Foram F Kherani, 2 Prof.Jignesh Vania Department of computer engineering, Lok Jagruti Kendra Institute of Technology, India 1 kheraniforam@gmail.com, 2 jigumy@gmail.com

More information

B4: Experience with a Globally-Deployed Software Defined WAN TO APPEAR IN SIGCOMM 13

B4: Experience with a Globally-Deployed Software Defined WAN TO APPEAR IN SIGCOMM 13 B4: Experience with a Globally-Deployed Software Defined WAN TO APPEAR IN SIGCOMM 13 Google s Software Defined WAN Traditional WAN Routing Treat all bits the same 30% ~ 40% average utilization Cost of

More information

Designing Applications with Distributed Databases in a Hybrid Cloud

Designing Applications with Distributed Databases in a Hybrid Cloud Designing Applications with Distributed Databases in a Hybrid Cloud Evgeniy Pluzhnik 1, Oleg Lukyanchikov 2, Evgeny Nikulchev 1 & Simon Payain 1 1 Moscow Technological Institute, Moscow, 119334, Russia,

More information

Constellation Technology Overview

Constellation Technology Overview Constellation Technology Overview October, 2014 William Simmons Cloud EcoSystems Specialist A Unique Set of Network Assets Over 30,000 local and regional fiber route miles across 80 markets Nearly 21,000

More information

An Approach to Load Balancing In Cloud Computing

An Approach to Load Balancing In Cloud Computing An Approach to Load Balancing In Cloud Computing Radha Ramani Malladi Visiting Faculty, Martins Academy, Bangalore, India ABSTRACT: Cloud computing is a structured model that defines computing services,

More information

Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks

Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks David Coudert, Napoleão Nepomuceno, Hervé Rivano Projet Mascotte, I3S(CNRS-UNSA) INRIA Réunion Mascotte, March 2009 MASCOTTE

More information

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age. Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Load Measurement

More information

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING R.Kohila

More information

Cost effective methods of test environment management. Prabhu Meruga Director - Solution Engineering 16 th July SCQAA Irvine, CA

Cost effective methods of test environment management. Prabhu Meruga Director - Solution Engineering 16 th July SCQAA Irvine, CA Cost effective methods of test environment management Prabhu Meruga Director - Solution Engineering 16 th July SCQAA Irvine, CA 2013 Agenda Basic complexity Dynamic needs for test environments Traditional

More information

Network Planning for Disaster Recovery

Network Planning for Disaster Recovery Network Planning for Disaster Recovery AndreaBianco,JorgeFinochietto,LucaGiraudo,MarcoModesti,FabioNeri Dip.diElettronica,PolitecnicodiTorino,Italy,Email: {firstname.lastname}@polito.it UniversidadNacionaldeCordoba-CONICET,Argentina,Email:jfinochietto@uncor.edu

More information

The Hadoop Distributed File System

The Hadoop Distributed File System The Hadoop Distributed File System The Hadoop Distributed File System, Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, Yahoo, 2010 Agenda Topic 1: Introduction Topic 2: Architecture

More information

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Quality of Service for unbounded data streams Reactive Congestion Management (proposals considered in IEE802.1Qau) Hugh Barrass (Cisco) 1 IEEE 802.1Qau

More information

HPAM: Hybrid Protocol for Application Level Multicast. Yeo Chai Kiat

HPAM: Hybrid Protocol for Application Level Multicast. Yeo Chai Kiat HPAM: Hybrid Protocol for Application Level Multicast Yeo Chai Kiat Scope 1. Introduction 2. Hybrid Protocol for Application Level Multicast (HPAM) 3. Features of HPAM 4. Conclusion 1. Introduction Video

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT

IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT Muhammad Muhammad Bala 1, Miss Preety Kaushik 2, Mr Vivec Demri 3 1, 2, 3 Department of Engineering and Computer Science, Sharda

More information

OpenFlow Based Load Balancing

OpenFlow Based Load Balancing OpenFlow Based Load Balancing Hardeep Uppal and Dane Brandon University of Washington CSE561: Networking Project Report Abstract: In today s high-traffic internet, it is often desirable to have multiple

More information

CS6204 Advanced Topics in Networking

CS6204 Advanced Topics in Networking CS6204 Advanced Topics in Networking Assoc Prof. Chan Mun Choon School of Computing National University of Singapore Aug 14, 2015 CS6204 Lecturer Chan Mun Choon Office: COM2, #04-17 Email: chanmc@comp.nus.edu.sg

More information

A hierarchical multicriteria routing model with traffic splitting for MPLS networks

A hierarchical multicriteria routing model with traffic splitting for MPLS networks A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra

More information

Middleware and Web Services Lecture 11: Cloud Computing Concepts

Middleware and Web Services Lecture 11: Cloud Computing Concepts Middleware and Web Services Lecture 11: Cloud Computing Concepts doc. Ing. Tomáš Vitvar, Ph.D. tomas@vitvar.com @TomasVitvar http://vitvar.com Czech Technical University in Prague Faculty of Information

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : II / III Section : CSE Subject Code : CP7028 Subject Name : ENTERPRISE

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of

More information

ANALYTICS IN BIG DATA ERA

ANALYTICS IN BIG DATA ERA ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut

More information

National Technical University of Athens School of Electrical and Computer Engineering

National Technical University of Athens School of Electrical and Computer Engineering the simulation and analysis of OFDMA subcarrier allocation techniques in multicellular environments. the performance evaluation of simple algorithms compared to a more sophisticated and computationally

More information

Real-Time Traffic Engineering Management With Route Analytics

Real-Time Traffic Engineering Management With Route Analytics Real-Time Traffic Engineering Management With Route Analytics Executive Summary Increasing numbers of service providers and mobile operators are using RSVP-TE based traffic engineering to provide bandwidth

More information

Load Balancing in Distributed Web Server Systems With Partial Document Replication

Load Balancing in Distributed Web Server Systems With Partial Document Replication Load Balancing in Distributed Web Server Systems With Partial Document Replication Ling Zhuo, Cho-Li Wang and Francis C. M. Lau Department of Computer Science and Information Systems The University of

More information

System of Systems to Provide Quality of Service Monitoring, Management and Response in Cloud Computing Environments

System of Systems to Provide Quality of Service Monitoring, Management and Response in Cloud Computing Environments System of Systems to Provide Quality of Service Monitoring, Management and Response in Cloud Computing Environments July 16-19, 2012 Paul C. Hershey 1 Shrisha Rao 2 Charles B. Silio, Jr. 3 Akshay Narayan

More information

Cloud Computing Patterns Fundamentals to Design, Build, and Manage Cloud Applications

Cloud Computing Patterns Fundamentals to Design, Build, and Manage Cloud Applications Cloud Computing Patterns Fundamentals to Design, Build, and Manage Cloud Applications Christoph Fehling Institute of Architecture of Application Systems University of Stuttgart Universitätsstr. 38 70569

More information

2. Research and Development on the Autonomic Operation. Control Infrastructure Technologies in the Cloud Computing Environment

2. Research and Development on the Autonomic Operation. Control Infrastructure Technologies in the Cloud Computing Environment R&D supporting future cloud computing infrastructure technologies Research and Development on Autonomic Operation Control Infrastructure Technologies in the Cloud Computing Environment DEMPO Hiroshi, KAMI

More information

Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation

Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation Anthony Kleerekoper 2nd year PhD Multi-Service Networks 2011 The Energy Hole Problem Uniform distribution of motes Regular,

More information

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François ICTEAM, Université catholique de Louvain (UCL), Belgium.

More information

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call

More information

! # % & (!) ( ( # +,% ( +& (. / + 0 + 10 %. 1. 0(2131( 12. 4 56 6!, 4 56 / + & 71 0 8

! # % & (!) ( ( # +,% ( +& (. / + 0 + 10 %. 1. 0(2131( 12. 4 56 6!, 4 56 / + & 71 0 8 ! # % & (!) ( ( # +,% ( +& (. / + 0 + 10 %. 1. 0(2131( 12. 4 56 6!, 4 56 / + & 71 0 8 9 Energy Efficient Tapered Data Networks for Big Data Processing in IP/WDM Networks Ali M. Al-Salim, Ahmed Q. Lawey,

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Bandwidth consumption: Adaptive Defense and Adaptive Defense 360

Bandwidth consumption: Adaptive Defense and Adaptive Defense 360 Contents 1. 2. 3. 4. How Adaptive Defense communicates with the Internet... 3 Bandwidth consumption summary table... 4 Estimating bandwidth usage... 5 URLs required by Adaptive Defense... 6 1. How Adaptive

More information

On Quality of Monitoring for Multi-channel Wireless Infrastructure Networks

On Quality of Monitoring for Multi-channel Wireless Infrastructure Networks On Quality of Monitoring for Multi-channel Wireless Infrastructure Networks Arun Chhetri, Huy Nguyen, Gabriel Scalosub*, and Rong Zheng Department of Computer Science University of Houston, TX, USA *Department

More information

Asynchronous Bypass Channels

Asynchronous Bypass Channels Asynchronous Bypass Channels Improving Performance for Multi-Synchronous NoCs T. Jain, P. Gratz, A. Sprintson, G. Choi, Department of Electrical and Computer Engineering, Texas A&M University, USA Table

More information

An Architecture for Video Surveillance Service based on P2P and Cloud Computing

An Architecture for Video Surveillance Service based on P2P and Cloud Computing An Architecture for Video Surveillance Service based on P2P and Cloud Computing Yu-Sheng Wu, Yue-Shan Chang, Tong-Ying Juang, Jing-Shyang Yen speaker: 饒 展 榕 Outline INTRODUCTION BACKGROUND AND RELATED

More information

Performance Monitoring on Networked Virtual Environments

Performance Monitoring on Networked Virtual Environments Performance Monitoring on Networked Virtual Environments C. Bouras 1, 2, E. Giannaka 1, 2 Abstract As networked virtual environments gain increasing interest and acceptance in the field of Internet applications,

More information

PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM

PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM Akmal Basha 1 Krishna Sagar 2 1 PG Student,Department of Computer Science and Engineering, Madanapalle Institute of Technology & Science, India. 2 Associate

More information

Mixed-Criticality Systems Based on Time- Triggered Ethernet with Multiple Ring Topologies. University of Siegen Mohammed Abuteir, Roman Obermaisser

Mixed-Criticality Systems Based on Time- Triggered Ethernet with Multiple Ring Topologies. University of Siegen Mohammed Abuteir, Roman Obermaisser Mixed-Criticality s Based on Time- Triggered Ethernet with Multiple Ring Topologies University of Siegen Mohammed Abuteir, Roman Obermaisser Mixed-Criticality s Need for mixed-criticality systems due to

More information

Lightweight Service-Based Software Architecture

Lightweight Service-Based Software Architecture Lightweight Service-Based Software Architecture Mikko Polojärvi and Jukka Riekki Intelligent Systems Group and Infotech Oulu University of Oulu, Oulu, Finland {mikko.polojarvi,jukka.riekki}@ee.oulu.fi

More information

A Dynamic Polling Scheme for the Network Monitoring Problem

A Dynamic Polling Scheme for the Network Monitoring Problem A Dynamic Polling Scheme for the Network Monitoring Problem Feng Gao, Jairo Gutierrez* Dept. of Computer Science *Dept. of Management Science and Information Systems University of Auckland, New Zealand

More information

Measurement-Aware Monitor Placement and Routing: A Joint Optimization Approach for Network-Wide Measurements

Measurement-Aware Monitor Placement and Routing: A Joint Optimization Approach for Network-Wide Measurements IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION Measurement-Aware Monitor Placement and Routing: A Joint Optimization Approach for Network-Wide Measurements Guanyao Huang,

More information

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration 1 Harish H G, 2 Dr. R Girisha 1 PG Student, 2 Professor, Department of CSE, PESCE Mandya (An Autonomous Institution under

More information

On-demand Provisioning of Workflow Middleware and Services An Overview

On-demand Provisioning of Workflow Middleware and Services An Overview On-demand Provisioning of Workflow Middleware and s An Overview University of Stuttgart Universitätsstr. 8 70569 Stuttgart Germany Karolina Vukojevic-Haupt, Florian Haupt, and Frank Leymann Institute of

More information

Towards energy-aware scheduling in data centers using machine learning

Towards energy-aware scheduling in data centers using machine learning Towards energy-aware scheduling in data centers using machine learning Josep Lluís Berral, Íñigo Goiri, Ramon Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà, and Jordi Torres Universitat Politècnica

More information

Contextual-Bandit Approach to Recommendation Konstantin Knauf

Contextual-Bandit Approach to Recommendation Konstantin Knauf Contextual-Bandit Approach to Recommendation Konstantin Knauf 22. Januar 2014 Prof. Ulf Brefeld Knowledge Mining & Assesment 1 Agenda Problem Scenario Scenario Multi-armed Bandit Model for Online Recommendation

More information

Optimizing Configuration and Application Mapping for MPSoC Architectures

Optimizing Configuration and Application Mapping for MPSoC Architectures Optimizing Configuration and Application Mapping for MPSoC Architectures École Polytechnique de Montréal, Canada Email : Sebastien.Le-Beux@polymtl.ca 1 Multi-Processor Systems on Chip (MPSoC) Design Trends

More information

IPTV AND VOD NETWORK ARCHITECTURES. Diogo Miguel Mateus Farinha

IPTV AND VOD NETWORK ARCHITECTURES. Diogo Miguel Mateus Farinha IPTV AND VOD NETWORK ARCHITECTURES Diogo Miguel Mateus Farinha Instituto Superior Técnico Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: diogo.farinha@ist.utl.pt ABSTRACT IPTV and Video on Demand

More information

Load Balancing for Distributed Stream Processing Engines. Muhammad Anis Uddin Nasir EMDC 2011-13

Load Balancing for Distributed Stream Processing Engines. Muhammad Anis Uddin Nasir EMDC 2011-13 Load Balancing for Distributed Stream Processing Engines Muhammad Anis Uddin Nasir EMDC 011-13 About me Ex EMDC from Batch 011 (the party batch) Currently PhD Student at KTH Royal Institute of Technology

More information

DESIGN OF A PLATFORM OF VIRTUAL SERVICE CONTAINERS FOR SERVICE ORIENTED CLOUD COMPUTING. Carlos de Alfonso Andrés García Vicente Hernández

DESIGN OF A PLATFORM OF VIRTUAL SERVICE CONTAINERS FOR SERVICE ORIENTED CLOUD COMPUTING. Carlos de Alfonso Andrés García Vicente Hernández DESIGN OF A PLATFORM OF VIRTUAL SERVICE CONTAINERS FOR SERVICE ORIENTED CLOUD COMPUTING Carlos de Alfonso Andrés García Vicente Hernández 2 INDEX Introduction Our approach Platform design Storage Security

More information

EN.600.450.01.FA11 Network Embedded Systems/Sensor Networks Week 7: Energy Management. Marcus Chang, Andreas Terzis @ CS JHU

EN.600.450.01.FA11 Network Embedded Systems/Sensor Networks Week 7: Energy Management. Marcus Chang, Andreas Terzis @ CS JHU EN.600.450.01.FA11 Network Embedded Systems/Sensor Networks Week 7: Energy Management Marcus Chang, Andreas Terzis @ CS JHU 1 Power Management Where does all my power go? Simulation Collect power measurements

More information

High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es

High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es High Throughput Computing on P2P Networks Carlos Pérez Miguel carlos.perezm@ehu.es Overview High Throughput Computing Motivation All things distributed: Peer-to-peer Non structured overlays Structured

More information

On real-time delay monitoring in software-defined networks

On real-time delay monitoring in software-defined networks On real-time delay monitoring in software-defined networks Victor S. Altukhov Lomonosov Moscow State University Moscow, Russia victoralt@lvk.cs.msu.su Eugene V. Chemeritskiy Applied Research Center for

More information

SYSTEMATIC NETWORK CODING FOR LOSSY LINE NETWORKS. (Paresh Saxena) Supervisor: Dr. M. A. Vázquez-Castro

SYSTEMATIC NETWORK CODING FOR LOSSY LINE NETWORKS. (Paresh Saxena) Supervisor: Dr. M. A. Vázquez-Castro SYSTEMATIC NETWORK CODING FOR LOSSY LINE NETWORKS Paresh Saxena Supervisor: Dr. M. A. Vázquez-Castro PhD Programme in Telecommunications and Systems Engineering Department of Telecommunications and Systems

More information

Automated Virtual Cloud Management: The need of future

Automated Virtual Cloud Management: The need of future Automated Virtual Cloud Management: The need of future Prof. (Ms) Manisha Shinde-Pawar Faculty of Management (Information Technology), Bharati Vidyapeeth Univerisity, Pune, IMRDA, SANGLI Abstract: With

More information

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility

More information

Managing Incompleteness, Complexity and Scale in Big Data

Managing Incompleteness, Complexity and Scale in Big Data Managing Incompleteness, Complexity and Scale in Big Data Nick Duffield Electrical and Computer Engineering Texas A&M University http://nickduffield.net/work Three Challenges for Big Data Complexity Problem:

More information

Path Selection Methods for Localized Quality of Service Routing

Path Selection Methods for Localized Quality of Service Routing Path Selection Methods for Localized Quality of Service Routing Xin Yuan and Arif Saifee Department of Computer Science, Florida State University, Tallahassee, FL Abstract Localized Quality of Service

More information

Big Data Analytics - Accelerated. stream-horizon.com

Big Data Analytics - Accelerated. stream-horizon.com Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements

More information

Federal Enterprise Architecture and Service-Oriented Architecture

Federal Enterprise Architecture and Service-Oriented Architecture Federal Enterprise Architecture and Service-Oriented Architecture Concepts and Synergies Melvin Greer Chief Strategist, SOA / Cloud Computing Certified Enterprise Architect Copyright August 19, 2010 2010

More information

Network-Aware Scheduling of MapReduce Framework on Distributed Clusters over High Speed Networks

Network-Aware Scheduling of MapReduce Framework on Distributed Clusters over High Speed Networks Network-Aware Scheduling of MapReduce Framework on Distributed Clusters over High Speed Networks Praveenkumar Kondikoppa, Chui-Hui Chiu, Cheng Cui, Lin Xue and Seung-Jong Park Department of Computer Science,

More information

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Green Network and Data Centre Virtualization

Green Network and Data Centre Virtualization Green Network and Data Centre Virtualization Leonard Nonde, Taisir El-Gorashi and Jaafar M. H. Elmirghani School of Electronic and Electrical Engineering University of Leeds, UK j.m.h.elmirghani@leeds.ac.uk

More information

IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION

IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND SCIENCE IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION N.Vijaya Sunder Sagar 1, M.Dileep Kumar 2, M.Nagesh 3, Lunavath Gandhi

More information

A New Path Selection Algorithm for MPLS Networks Based on Available Bandwidth Measurement

A New Path Selection Algorithm for MPLS Networks Based on Available Bandwidth Measurement A New Path Selection Algorithm for MPS Networks Based on Available Bandwidth Measurement T. Anjali, C. Scoglio, J. de Oliveira,. C. Chen, I. F. Akyildiz, J. A. Smith *, G. Uhl *, A. Sciuto * Broadband

More information

Datacenter Wide-area Enterprise

Datacenter Wide-area Enterprise Datacenter Wide-area Enterprise Client LOAD-BALANCER Can t choose path : ( Servers Outline and goals A new architecture for distributed load-balancing joint (server, path) selection Demonstrate a nation-wide

More information

Influence of Load Balancing on Quality of Real Time Data Transmission*

Influence of Load Balancing on Quality of Real Time Data Transmission* SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 6, No. 3, December 2009, 515-524 UDK: 004.738.2 Influence of Load Balancing on Quality of Real Time Data Transmission* Nataša Maksić 1,a, Petar Knežević 2,

More information

Chapter 9 Integrating Security Services into Communication Architectures

Chapter 9 Integrating Security Services into Communication Architectures Network Security Chapter 9 Integrating Security Services into Communication Architectures Prof. Dr.-Ing. Georg Carle Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science

More information

Florian Liers, Thomas Volkert, Andreas Mitschele-Thiel

Florian Liers, Thomas Volkert, Andreas Mitschele-Thiel Florian Liers, Thomas Volkert, Andreas Mitschele-Thiel The Forwarding on Gates architecture: Flexible placement of QoS functions and states in internetworks Original published in: International Journal

More information

Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems

Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems G.Rajina #1, P.Nagaraju #2 #1 M.Tech, Computer Science Engineering, TallaPadmavathi Engineering College, Warangal,

More information

Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm

Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm 1 Parita Vinodbhai Desai, 2 Jignesh Patel, 3 Sangeeta Jagdish Gurjar 1 Department of Electrical Engineering,

More information

Further Analysis Of A Framework To Analyze Network Performance Based On Information Quality

Further Analysis Of A Framework To Analyze Network Performance Based On Information Quality Further Analysis Of A Framework To Analyze Network Performance Based On Information Quality A Kazmierczak Computer Information Systems Northwest Arkansas Community College One College Dr. Bentonville,

More information

A study on machine learning and regression based models for performance estimation of LTE HetNets

A study on machine learning and regression based models for performance estimation of LTE HetNets A study on machine learning and regression based models for performance estimation of LTE HetNets B. Bojović 1, E. Meshkova 2, N. Baldo 1, J. Riihijärvi 2 and M. Petrova 2 1 Centre Tecnològic de Telecomunicacions

More information

An Autonomous Agent for Supply Chain Management

An Autonomous Agent for Supply Chain Management In Gedas Adomavicius and Alok Gupta, editors, Handbooks in Information Systems Series: Business Computing, Emerald Group, 2009. An Autonomous Agent for Supply Chain Management David Pardoe, Peter Stone

More information

An Efficient Hybrid Data Gathering Scheme in Wireless Sensor Networks

An Efficient Hybrid Data Gathering Scheme in Wireless Sensor Networks An Efficient Hybrid Data Gathering Scheme in Wireless Sensor Networks Ayon Chakraborty 1, Swarup Kumar Mitra 2, and M.K. Naskar 3 1 Department of CSE, Jadavpur University, Kolkata, India 2 Department of

More information

Project Group A Distributed Framework for Social Networks www.p2pframework.com

Project Group A Distributed Framework for Social Networks www.p2pframework.com Monitoring and Management of Peer-to-Peer Systems Project Group A Distributed Framework for Social Networks www.p2pframework.com UPB SS2011 PG-Framework Lecture-04 Monitoring-and-Management.ppt Dr.-Ing.

More information