WHITE PAPER. Best Practices for Deploying IPv6 over Broadband Access

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "WHITE PAPER. Best Practices for Deploying IPv6 over Broadband Access"

Transcription

1 WHITE PAPER Best Practices for Deploying IPv6 over Broadband Access Rev. C, December 2013

2 2

3 Table of Contents Udi cusciamenis minctorpos... 4 Toreptur aut dolo cone verum aute pelestiumque et alitis... 4 Udi cusciamenis minctorpos... 5 Toreptur aut dolo cone verum aute pelestiumque et alitis... 5 Udi cusciamenis minctorpos... 6 Toreptur aut dolo cone verum aute pelestiumque et alitis... 6 Udi cusciamenis minctorpos... 7 Toreptur aut dolo cone verum aute pelestiumque et alitis... 7 Udi cusciamenis minctorpos... 8 Toreptur aut dolo cone verum aute pelestiumque et alitis... 8 Udi cusciamenis minctorpos... 9 Toreptur aut dolo cone verum aute pelestiumque et alitis... 9 Udi cusciamenis minctorpos...10 Toreptur aut dolo cone verum aute pelestiumque et alitis...10 Udi cusciamenis minctorpos Toreptur aut dolo cone verum aute pelestiumque et alitis

4 Introduction Service Providers: The IPv6 Bell Tolls for Thee! After more than a decade of forewarning, the IPv4 to IPv6 transition has finally reached critical mass. On February 1, 2011, the Internet Assigned Numbers Authority (IANA) allocated the last freely-available block of IPv4 addresses. At the same time, the number of users and endpoints requiring Internet access, and thus a unique IP address, continues to explode. With broadband deployments achieving global exponential growth, next-generation wireless rollouts on the horizon, and smart-phone use escalating, it is expected that there will be an increase of 5 billion unique endpoints between 2010 and Service providers are challenged to prepare their networks for the influx of IPv6 addresses. As exemplified by Google s support of IPv6 on its search, news, docs, maps, and YouTube, the Internet is already rich with IPv6 content and services; but IPv4 won t just vanish as IPv6 comes on board. This creates a challenging situation for service providers, who must upgrade their network infrastructures to handle IPv4 and IPv6 co-existence. After more than a decade of forewarning, the IPv4 to IPv6 transition has finally reached critical mass. On February 1, 2011, the Internet Assigned Numbers Authority (IANA) allocated the last freely-available block of IPv4 addresses. While network cores are well-equipped to handle both IPv4 and IPv6, broadband access networks are not. IPv4 and IPv6 co-existence stresses the underlying network systems, which can introduce latency, degrade network responsiveness, and compromise servicelevel agreements (SLAs). The biggest transition concern is its impact on customers will introducing IPv6 endpoints, forwarding tables, and services affect connectivity speed, service quality, and network reliability? With fierce industry competitiveness over customer retention, service providers need assurance of a seamless IPv6 transition at least from the customer perspective. To proactively address customer-impacting problems, service providers need a quick and reliable test solution that enables them to predict the effect of the IPv6 transition on their broadband access network. IPv6 Solutions for Broadband Access An abrupt transition of the legacy IPv4 infrastructure to IPv6 is not practical because most Internet services are still based on IPv4 and many customers still run operating systems that do not fully support IPv6. Service providers must support both IPv4 and IPv6 endpoints and services to guarantee the quality of service (QoS) defined in their SLAs. There are different methods used to achieve this goal across broadband access networks including: Translation Tunneling (includes dual-stack lite and IPv6 rapid deployment) Dual-stack 4

5 Translation The easiest way to conserve the depleting IPv4 address space is to use translation so that the outward-facing interface uses a public interface while the private network uses IP addresses that are not routed on the Internet. However, the known performance and scalability issues compel most service providers to deploy either tunneling or dual-stack transition mechanisms in broadband access networks. Tunneling Tunneling mechanisms are used to tunnel IPv6 island traffic over IPv4 networks and vice versa. The two tunneling schemes currently receiving significant industry attention are: Dual-stack Lite IPv6 rapid deployment Dual-Stack Lite (DS-Lite) While service providers aim to capitalize on the benefits of quickly embracing IPv6, they must also contain the costs of doing so and ensure uninterrupted IPv4 support. With DS-Lite, broadband service providers handle IPv4 addresses using IP in IP (IPv4-in- IPv6) tunneling and Network Address Translation (NAT). DS-Lite simplifies the IPv4/IPv6 transition by de-coupling IPv6 deployment in the service provider network from the rest of the Internet. How DS-Lite works DS-Lite uses IPv6-only links between the provider and the customer. The DS-Lite home gateway is provisioned with an IPv6 address on its WAN interface. At the LAN-side interface, it operates its own DHCPv4 server, handing out RFC1918 private addresses to home devices. There is no NAT service on the customer premise equipment (CPE) device, such as a home gateway. The NAT service is located on a carrier-grade NAT device in the provider s network, which is also a tunnel terminator for the Pv4-in-IPv6 tunnel. While service providers aim to capitalize on the benefits of quickly embracing IPv6, they must also contain the costs of doing so and ensure uninterrupted IPv4 support. The IPv4 packet from the home device to an external destination is encapsulated in an IPv6 packet by the DS-Lite home gateway and transported into the provider network. The packet is decapsulated at the carrier-grade NAT device (CGN), also referred to as an Address Family Translation Router (AFTR) and NAT44 is performed to map the home device s private IPv4 address to a public IPv4 address. The IPv6 tunnel source address is added to the NAT table, along with an IPv4 source address and port, to both disambiguate the customer private address and provide the reference for the tunnel endpoint. If a home device needs to access an IPv6 service, it is transported as-is and routed to an Internet server. With DS-Lite technology, the communications between end-nodes stay within their address family without requiring protocol family translation. If a home device needs to access an IPv6 service, it is transported as-is and routed to an Internet server. 5

6 CGN/AFTR: Builds NAT table (maps IPv4/IPv6) Terminates IPv4-in-IPv6 tunnel Encapsulates IPv4 packet in IPv6 tunnel DS-Lite Home Gateway: n order to quickly offer end-to-end IPv6 service, providers use 6rd to encapsulate IPv6 traffic in IPv4 headers, and tunnel home users IPv6 traffic through the IPv4 network to IPv6 internet service. Figure 1: How DS-Lite Works There are multiple advantages of DS-Lite over using NAT cascading: Tunneling IPv4 over IPv6 is far simpler than translation so it performs much better than NAT464. The deployment of IPv6 in the service provider network is decoupled and independent of the customers migrating to IPv6. If customer equipment is IPv6-aware, the packets simply follow the IPv6 routing to reach the destination, and no tunneling is performed. Increased traffic load is handled by adding more AFTR elements in the service provider network, providing flexibility to adapt to changing traffic load. IPv6 Rapid Deployment (6rd) Uses IPv6 address WAN interfaces Operates DHCPv4 server on LAN interfaces Encapsulates IPv4 packet in IPv6 going to network Decapsulates IPv6 packet coming from network In order to quickly offer end-to-end IPv6 service, providers use 6rd to encapsulate IPv6 traffic in IPv4 headers, and tunnel home users IPv6 traffic through the IPv4 network to IPv6 internet service. This tunnel is terminated by an edge router on the service provider network and native IPv6 packets are then transmitted to the IPv6-capable Internet. This allows for rapid introduction of IPv6 services in provider networks as they transition from IPv4 to IPv6. This approach minimizes deployment costs because it only requires upgrades to the routers at the customer edge (CE routers) to support 6rd and additional border routers (BR) that terminate the tunnel. The service provider can operate one or several BRs at its border between its IPv4 infrastructure and the IPv6 Internet depending on the number of IPv6 hosts it has to support and the capacity of a single BR. How 6rd works 6rd relies on IPv4 and is designed to deliver production-quality IPv6 alongside IPv4 with as little change to IPv4 networking and operation as possible.a 6rd domain consists of: 6

7 6rd CE routers, also referred to as Residential Gateways (RGs) or Customer Premises Equipment (CPE). A 6rd CE router functions as a customer edge in a 6rd deployment and is the initiator of the 6rd tunnel One or more 6rd BRs. A 6rd-enabled router is managed by the service provider at the edge of a 6rd domain. The BR terminates the IPv4 tunnel and transmits native IPv6 into the IPv6 network. 6rd CPE: Encapsulates IPv6 traffic in IPv4 going to BRs Decapsulates IPv4 traffic coming from BRs Advertises 6rd-delegated prefix or runs DHCPv6 server to assign IPv6 to home devices 6rd BR: Encapsulates IPv6 traffic from IPv6 Internet server in IPv4 tunnel and delivers to 6rd CE Decapsulates IPv4 traffic from 6rd CE and delivers to IPv6 Internet server Figure 2: ISP Architecture to Deploy IPv6 with 6rd (Source: The 6rd mechanism relies on an algorithmic mapping between the IPv6 addresses and IPv4 addresses that are assigned for use within the service provider network. An IPv6 prefix, called a 6rd prefix, is selected by the service provider for use by a 6rd domain. There is exactly one 6rd prefix for a given 6rd domain. A service provider may deploy 6rd with a single 6rd domain or multiple 6rd domains. A 6rd CE-calculated IPv6 prefix, called the 6rd delegated prefix is used within the customer site. The 6rd delegated prefix is achieved by combining the 6rd prefix and CE IPv4 address as shown in figure 2. An IPv6 prefix, called a 6rd prefix, is selected by the service provider for use by a 6rd domain. Figure 3: 6rd Delegated Prefix The above address mapping allows for automatic determination of IPv4 tunnel endpoints from IPv6 prefixes, allowing stateless operation of 6rd. The 6rd CE either includes the 6rd delegated prefix in its router advertisement out of its LAN-side interface (so each home device can auto-configure its IPv6 address), or runs a DHCPv6 server to assign IPv6 addresses from a 6rd-delegated prefix to home devices. The IPv6 packet is encapsulated inside IPv4 by a 6rd CE and follows the IPv4 routing topology within the service provider network among CEs and BRs. 7

8 Dual-Stack Many service providers plan to deploy dual-stack networks as a long-term strategy, supporting a mixture of IPv4 and IPv6 applications for customers that require both protocols. Dual-stack-capable devices support both IPv4 and IPv6, from the network layer to the applications. Applications choose to use either IPv4 or IPv6 based on the type of IP traffic and particular requirements of the communication. Dual-stack deployments are more costly and time-intensive to deploy than tunneling technologies, since all devices in the network require a software upgrade (at a minimum) to support both IPv4 and IPv6 protocol stacks and forwarding tables. One important dual-stack technology for DSL networks is dual-stack PPP. How Dual-Stack PPP works Many service providers plan to deploy dual-stack networks as a long-term strategy, supporting a mixture of IPv4 and IPv6 applications for customers that require both protocols. Dual-stack PPP resolves IPv4/IPv6 compatibility issues and facilitates transition to IPv6 by enabling IPv6/IPv4 nodes to send and receive both IPv4 and IPv6 packets. Each individual PPP session results in getting both an IPv4 address and an IPv6 prefix that are used to assign addresses to IP devices at the customer site. The CPE supports formation of IPv4CP and IPv6CP over the same logical PPP LCP session and allows the end hosts to get IPv6 addresses. Using dual-stack PPP, the user s Figure 4: Dual-Stack PPP Implementation CE device can support IPv4 and IPv6 connectivity over a single PPP link, while keeping IPv6 and IPv4 connectivity independent from each other. Dual-stack PPP over L2TP is a specialized case of dual-stack PPP, wherein the L2TP access concentrator (LAC) and L2TP network server (LNS) tunnel dual-stack PPP sessions. The result for the end user is still an IPv6 address, but dual-stack PPP over L2TP replicates PPP over an L2TP network. Dual-stack PPP supports the use of DHCPv6 to get broadband subscribers their IPv6 addressing and other networking configuration information directly from the provider edge (PE). 8

9 Test Requirements It is important to measure the functionality and performance of tunneling mechanisms on network equipment prior to deployment of DS-Lite and 6rd. To offer customers a seamless IPv6 transition, service providers must ensure services can be delivered with requisite quality guarantees. Network design and configuration requires protocol and traffic stresstesting to identify the scalability limits of each device. It is equally important to validate interoperability of the different network devices, especially given the compatibility risks between IPv4 and IPv6 devices. Test equipment plays a critical role in this validation as it enables reliable, repeatable measurements across network devices. Testing Tunneling Ixia Port Ixia Port Emulated Home Devices Emulated CPE HTTP IPv6 IPv4 NAT IPv4 DUT Carrier grade NAT devices Emulated Internet Services (Web Server) Figure 5: Test Equipment Emulates Customer Network and Internet Services to Test DS-Lite Implementation It is important to measure the functionality and performance of tunneling mechanisms on network equipment prior to deployment of DS-Lite and 6rd. Figures 5 and 6 show how test equipment is used to emulate the customer premises and home devices, as well as the Internet services, surrounding each broadband network device under test (DUT). This allows service providers to test network equipment under real-world scenarios without the time and expense of building extensive test beds of real equipment. 9

10 As shown in Table 1 and 2, test equipment can validate key measurements for device functionality, forwarding performance, and application performance, allowing comparative analysis between different network hardware and tunneling implementations (i.e., DS-Lite vs. 6rd). Ixia Port Ixia Port 6rd BR HTTP IPv4 IPv6 Emulated Home Devices Emulated CPE 6rd Border Relay Emulated Internet Services (Web Server) Figure 6: Test Equipment Emulates Customer Network and Internet Services to Test 6rd Implementation Below are summaries of key DS-Lite and 6rd test requirements. Table 1: DS-Lite Test Measurements 10

11 Testing Dual-Stack PPP Table 2: 6rd Test Measurements For dual-stack network deployments, supporting and scaling both IPv6 and IPv4 versions of each protocol can be process-intensive for infrastructure equipment. It is imperative to verify that the device under test (DUT) can successfully complete the protocol negotiations, setup sessions at a high rate, and scale clients and traffic. Figure 7 shows how test equipment is used to stress Dual-Stack PPP implementations by emulating DHCP clients, network servers, and access controllers. For dualstack network deployments, supporting and scaling both IPv6 and IPv4 versions of each protocol can be process-intensive for infrastructure equipment. Figure 7: Test Setup for Dual-Stack PPP Test equipment is used to emulate clients and servers surrounding the dual-stack DUT. Test equipment must: Simulate different clients types Emulate both IPv4 and IPv6 protocol stacks Generate both IPv4 and IPv6 traffic Test a variety of device types (BNGs, BRAS, LAC, LNS, etc.) Key dual-stack test requirements include: 11

12 Conclusion With IPv4 address depletion, IPv6 applications and endpoints will soon become ubiquitous across networks from end to end will be a year of significant access-network upgrades to support IPv6 and the dual-stack technologies required for IPv6 services. To ensure this evolution is transparent to subscribers, service providers and network equipment vendors must demonstrate that the network infrastructure equipment is ready for IPv4/IPv6 co-existence. Real-world and worst-case pre-deployment testing will play a critical role in mitigating any risk to service reliability, scalability, and quality. Comparative metrics between network equipment will also enable service providers to maximize their investment in new and upgraded infrastructure, and best optimize network configurations. Real-world and worst-case predeployment testing will play a critical role in mitigating any risk to service reliability, scalability, and quality. 12

13 13

14 WHITE PAPER Ixia Worldwide Headquarters Agoura Rd. Calabasas, CA (Toll Free North America) (Outside North America) (Fax) Ixia European Headquarters Ixia Technologies Europe Ltd Clarion House, Norreys Drive Maidenhead SL6 4FL United Kingdom Sales (Fax) Ixia Asia Pacific Headquarters 21 Serangoon North Avenue 5 #04-01 Singapore Sales Fax Rev. C, December 2013

TR-296 IPv6 Transition Mechanisms Test Plan

TR-296 IPv6 Transition Mechanisms Test Plan Technical Report TR-296 IPv6 Transition Mechanisms Test Plan Issue:1 Issue Date: November 2013 The Broadband Forum. All rights reserved. Notice The Broadband Forum is a non-profit corporation organized

More information

Transition to IPv6 for Managed Service Providers: Meet Customer Requirements for IP Addressing

Transition to IPv6 for Managed Service Providers: Meet Customer Requirements for IP Addressing White Paper Transition to IPv6 for Managed Service Providers: Meet Customer Requirements for IP Addressing What You Will Learn With the exhaustion of IPv4 addresses, businesses and government agencies

More information

Ensuring a Smooth Transition to Internet Protocol Version 6 (IPv6)

Ensuring a Smooth Transition to Internet Protocol Version 6 (IPv6) WHITE PAPER www.brocade.com APPLICATION DELIVERY Ensuring a Smooth Transition to Internet Protocol Version 6 (IPv6) As IPv4 addresses dwindle, companies face the reality of a dual-protocol world The transition

More information

Residential IPv6 IPv6 a t at S wisscom Swisscom a, n an overview overview Martin Gysi

Residential IPv6 IPv6 a t at S wisscom Swisscom a, n an overview overview Martin Gysi Residential IPv6 at Swisscom, an overview Martin Gysi What is Required for an IPv6 Internet Access Service? ADSL L2 platform, IPv6 not required VDSL Complex Infrastructure is Barrier to Cost-efficient

More information

Real World IPv6 Migration Solutions. Asoka De Saram Sr. Director of Systems Engineering, A10 Networks

Real World IPv6 Migration Solutions. Asoka De Saram Sr. Director of Systems Engineering, A10 Networks Real World IPv6 Migration Solutions Asoka De Saram Sr. Director of Systems Engineering, A10 Networks 1 Agenda Choosing the right solutions Design considerations IPv4 to IPv6 migration road map Consumer

More information

IPv6 Transition Work in the IETF

IPv6 Transition Work in the IETF IPv6 Transition Work in the IETF Ralph Droms, Internet Area Director Thanks to Jari Arkko, Fred Baker and many others for contributions to these slides 1 IPv6 Transition Work in the IETF Outline of Presentation

More information

IPv6 for AT&T Broadband

IPv6 for AT&T Broadband IPv6 for AT&T Broadband Chris Chase, AT&T Labs Sept 15, 2011 AT&T Broadband ~15 million subscribers Legacy DSL, PPP subscribers, ATM aggregation Not many CPE IPv6 capable Customer owned, unmanaged CPE

More information

Guide to TCP/IP Fourth Edition. Chapter 10: Transitioning from IPv4 to IPv6: Interoperation

Guide to TCP/IP Fourth Edition. Chapter 10: Transitioning from IPv4 to IPv6: Interoperation Guide to TCP/IP Fourth Edition Chapter 10: Transitioning from IPv4 to IPv6: Interoperation Objectives Describe the various methods that allow IPv4 and IPv6 networks to interact, including dual stack and

More information

Telepresence in an IPv6 World. Simplify the Transition

Telepresence in an IPv6 World. Simplify the Transition Telepresence in an IPv6 World Simplify the Transition IPV6 has the potential to transform communications, collaboration, learning, entertainment, physical security and more. What You Will Learn If you

More information

IPv6 TRANSITION TECHNOLOGIES

IPv6 TRANSITION TECHNOLOGIES IPv6 TRANSITION TECHNOLOGIES Alastair (AJ) JOHNSON August 2012 alastair.johnson@alcatel-lucent.com INTRODUCTION WHAT ARE TRANSITION TECHNOLOGIES Access Transition technologies are mechanisms that allow

More information

Deploying IPv6 Service Across Local IPv4 Access Networks

Deploying IPv6 Service Across Local IPv4 Access Networks Deploying IPv6 Service Across Local IPv4 Access Networks ALA HAMARSHEH 1, MARNIX GOOSSENS 1, RAFE ALASEM 2 1 Vrije Universiteit Brussel Department of Electronics and Informatics ETRO Building K, Office

More information

CPE requirements and IPv6. Ole Trøan, ot@cisco.com February 2010

CPE requirements and IPv6. Ole Trøan, ot@cisco.com February 2010 CPE requirements and IPv6 Ole Trøan, ot@cisco.com February 2010 Past and present: Worked as an implementer on every aspect of the IOS IPv6 stack. Routing, access, provisioning, ND, DHCP PD, Transition

More information

WHITE PAPER. Static Load Balancers Implemented with Filters

WHITE PAPER. Static Load Balancers Implemented with Filters WHITE PAPER Static Load Balancers Implemented with Filters www.ixiacom.com 915-6911-01 Rev. A, July 2014 2 Table of Contents Load Balancing of Monitoring Systems as a Key Strategy for Availability, Security

More information

IxChariot Virtualization Performance Test Plan

IxChariot Virtualization Performance Test Plan WHITE PAPER IxChariot Virtualization Performance Test Plan Test Methodologies The following test plan gives a brief overview of the trend toward virtualization, and how IxChariot can be used to validate

More information

Guidebook to MEF Certification

Guidebook to MEF Certification WHITE PAPER Guidebook to MEF Certification www.ixiacom.com Rev A September 2012, 915-6015-01 2 Table of Contents Introduction... 4 Benefits of Certification... 7 Overview... 7 Equipment Vendor... 7 Service

More information

TR-242 IPv6 Transition Mechanisms for Broadband Networks Issue: 2 Issue Date: February 2015

TR-242 IPv6 Transition Mechanisms for Broadband Networks Issue: 2 Issue Date: February 2015 TECHNICAL REPORT TR-242 IPv6 Transition Mechanisms for Broadband Networks Issue: 2 Issue Date: February 2015 The Broadband Forum. All rights reserved. Notice The Broadband Forum is a non-profit corporation

More information

WHITE PAPER. How To Compare Virtual Devices (NFV) vs Hardware Devices: Testing VNF Performance

WHITE PAPER. How To Compare Virtual Devices (NFV) vs Hardware Devices: Testing VNF Performance WHITE PAPER How To Compare Virtual Devices (NFV) vs Hardware Devices: Testing VNF Performance www.ixiacom.com 915-3132-01 Rev. B, June 2014 2 Table of Contents Network Functions Virtualization (NFV): An

More information

TR-187 IPv6 for PPP Broadband Access

TR-187 IPv6 for PPP Broadband Access TECHNICAL REPORT TR-187 IPv6 for PPP Broadband Access Issue: 2 Issue Date: February 2013 The Broadband Forum. All rights reserved. Notice The Broadband Forum is a non-profit corporation organized to create

More information

IPv4 and IPv6 Integration. Formation IPv6 Workshop Location, Date

IPv4 and IPv6 Integration. Formation IPv6 Workshop Location, Date IPv4 and IPv6 Integration Formation IPv6 Workshop Location, Date Agenda Introduction Approaches to deploying IPv6 Standalone (IPv6-only) or alongside IPv4 Phased deployment plans Considerations for IPv4

More information

IPv4/IPv6 Transition Mechanisms. Luka Koršič, Matjaž Straus Istenič

IPv4/IPv6 Transition Mechanisms. Luka Koršič, Matjaž Straus Istenič IPv4/IPv6 Transition Mechanisms Luka Koršič, Matjaž Straus Istenič IPv4/IPv6 Migration Both versions exist today simultaneously Dual-stack IPv4 and IPv6 protocol stack Address translation NAT44, LSN, NAT64

More information

Migrating to an IPv6 Internet while preserving IPv4 addresses

Migrating to an IPv6 Internet while preserving IPv4 addresses A Silicon Valley Insider Migrating to an IPv6 Internet while preserving IPv4 addresses Technology White Paper Serge-Paul Carrasco Abstract The Internet is running out of addresses! Depending on how long

More information

WHITE PAPER. Addressing Monitoring, Access, and Control Challenges in a Virtualized Environment

WHITE PAPER. Addressing Monitoring, Access, and Control Challenges in a Virtualized Environment WHITE PAPER Addressing Monitoring, Access, and Control Challenges in a Virtualized Environment www.ixiacom.com 915-6892-01 Rev. A, July 2014 2 Table of Contents The Challenge of the Virtual Environment...

More information

464XLAT in mobile networks

464XLAT in mobile networks STRATEGIC WHITE PAPER IPv6 migration strategies for mobile networks To cope with the increasing demand for IP addresses, most mobile network operators (MNOs) have deployed Carrier Grade Network Address

More information

IPv6 deployment status & Migration Strategy

IPv6 deployment status & Migration Strategy IPv6 deployment status & Migration Strategy Sify Technologies Ltd Mohamed Asraf Ali Head Network Engineering asraf.ali@sifycorp.com TEC IPv6 Workshop Migration from IPv4 to IPv6 in India Sify - Who are

More information

Basic IPv6 WAN and LAN Configuration

Basic IPv6 WAN and LAN Configuration Basic IPv6 WAN and LAN Configuration This quick start guide provides basic IPv6 WAN and LAN configuration information for the ProSafe Wireless-N 8-Port Gigabit VPN Firewall FVS318N. For complete IPv6 configuration

More information

Industry Automation White Paper Januar 2013 IPv6 in automation technology

Industry Automation White Paper Januar 2013 IPv6 in automation technology Table of contents: 1 Why another White Paper IPv6?... 3 2 IPv6 for automation technology... 3 3 Basics of IPv6... 3 3.1 Turning point/initial situation... 3 3.2 Standardization... 4 3.2.1 IPv6 address

More information

Transition to IPv6 in Service Providers

Transition to IPv6 in Service Providers Transition to IPv6 in Service Providers Jean-Marc Uzé Director Product & Technology, EMEA juze@juniper.net UKNOF14 Workshop Imperial college, London, Sept 11 th, 2009 1 Agenda Planning Transition Transition

More information

MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans

MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans Contents Overview 1 1. L2 VPN Padding Verification Test 1 1.1 Objective 1 1.2 Setup 1 1.3 Input Parameters 2 1.4 Methodology 2 1.5

More information

Service Provider IPv6 Deployment Strategies www.btdiamondip.com

Service Provider IPv6 Deployment Strategies www.btdiamondip.com Service Provider IPv6 Deployment Strategies By Tim Rooney Director, Product Management BT Diamond IP www.btdiamondip.com BT Diamond Whitepaper i Introduction... 1 IPv6 Deployment Scope... 1 Introduction

More information

An Architecture View of Softbank

An Architecture View of Softbank An Architecture View of Softbank to IPv6 transition and packet transport for Mobile and Broadband Satoru Matsushima Softbank Telecom Softbank BB Softbank Mobile Introduction Introduction In the transition

More information

Whitepaper IPv6. OpenScape UC Suite IPv6 Transition Strategy

Whitepaper IPv6. OpenScape UC Suite IPv6 Transition Strategy Whitepaper IPv6 OpenScape UC Suite IPv6 Transition Strategy Table of Contents 1. Executive Summary 3 2. Introduction 4 3. Technical Basics 5 3.1. IPv4 IPv6 Translation 6 3.2. IP-in-IP Tunneling 7 4. Selecting

More information

IPv6 Opportunity and challenge

IPv6 Opportunity and challenge Juniper Networks Solution from enterprise to service provider Jean-Marc Uzé juze@juniper.net 10 May 2004 1 Opportunity and challenge More devices demanding more addresses 3G Mobile IP multimedia specifies

More information

WHITE PAPER. Enabling 100 Gigabit Ethernet Implementing PCS Lanes

WHITE PAPER. Enabling 100 Gigabit Ethernet Implementing PCS Lanes WHITE PAPER Enabling 100 Gigabit Ethernet Implementing PCS Lanes www.ixiacom.com 915-0909-01 Rev. C, January 2014 2 Table of Contents Introduction... 4 The IEEE 802.3 Protocol Stack... 4 PCS Layer Functions...

More information

WHITE PAPER. Net Optics Phantom Virtual Tap Delivers Best-Practice Network Monitoring For Virtualized Server Environs

WHITE PAPER. Net Optics Phantom Virtual Tap Delivers Best-Practice Network Monitoring For Virtualized Server Environs WHITE PAPER Net Optics Phantom Virtual Tap Delivers Best-Practice Network Monitoring For Virtualized Server Environs www.ixiacom.com 915-6909-01 Rev. A, July 2014 2 Table of Contents Event... 4 Context...

More information

MOVING TO THE IPv6 WORLD Eric CARMÈS 6WIND

MOVING TO THE IPv6 WORLD Eric CARMÈS 6WIND MOVING TO THE IPv6 WORLD Eric CARMÈS 6WIND Transition issues IP version 6 (IPv6) is a new version of the Internet Protocol, designed as a successor to the current IP version 4 (). The transition between

More information

IPv6 Value Proposition. An Industry view of IPv6 Advantages. Madrid Global IPv6 Summit May 12-14, 2003

IPv6 Value Proposition. An Industry view of IPv6 Advantages. Madrid Global IPv6 Summit May 12-14, 2003 IPv6 Value Proposition An Industry view of IPv6 Advantages Madrid Global IPv6 Summit May 12-14, 2003 Yanick Pouffary Networks Technical Director - OSSG HP Pr. Member of Technical Staff Agenda What is IPv6

More information

Evaluating Wireless Broadband Gateways for Deployment by Service Provider Customers

Evaluating Wireless Broadband Gateways for Deployment by Service Provider Customers Evaluating Wireless Broadband Gateways for Deployment by Service Provider Customers Overview A leading provider of voice, video, and data services to the residential and businesses communities designed

More information

IPv6 Market Drivers and IPv6

IPv6 Market Drivers and IPv6 IPv6 Market Drivers and IPv6 Transition Strategies for Fixed Wireline Operators Nav Chander Research Analyst, Business Network Services Copyright IDC. Reproduction is forbidden unless authorized. All rights

More information

A Model of Customer Premises Equipment for Internet Protocol Version 6

A Model of Customer Premises Equipment for Internet Protocol Version 6 A Model of Customer Premises Equipment for Internet Protocol Version 6 Ihsan Lumasa Rimra, Firdaus, Wiwik Wiharti, and Andrizal, Member, IACSIT Abstract Computers and other communication devices at home

More information

Deploying IPv6 for Service Providers. Benoit Lourdelet IPv6 Product Manager, NSSTG

Deploying IPv6 for Service Providers. Benoit Lourdelet IPv6 Product Manager, NSSTG Deploying IPv6 for Service Providers Benoit Lourdelet IPv6 Product Manager, NSSTG Agenda Business case IPv6 basics Deployment scenarios Business case IPv6 - Key drivers for Next Generation Ubiquitous Networking

More information

EBOOK. The Network Comes of Age: Access and Monitoring at the Application Level

EBOOK. The Network Comes of Age: Access and Monitoring at the Application Level EBOOK The Network Comes of Age: Access and Monitoring at the Application Level www.ixiacom.com 915-6948-01 Rev. A, January 2014 2 Table of Contents How Flow Analysis Grows Into Total Application Intelligence...

More information

ITL BULLETIN FOR JANUARY 2011

ITL BULLETIN FOR JANUARY 2011 ITL BULLETIN FOR JANUARY 2011 INTERNET PROTOCOL VERSION 6 (IPv6): NIST GUIDELINES HELP ORGANIZATIONS MANAGE THE SECURE DEPLOYMENT OF THE NEW NETWORK PROTOCOL Shirley Radack, Editor Computer Security Division

More information

White Paper Security Risks of Not Migrating to IPv6

White Paper Security Risks of Not Migrating to IPv6 White Paper Security Risks of Not Migrating to IPv6 AFCEA International, Cyber Committee Gilliam E. Duvall, The National Defense University icollege Patrick McNabb, Booz Allen Hamilton, Inc. Tiffiny Smith,

More information

communications : IPv6 transition plans

communications : IPv6 transition plans Alcatel-Lucent Enterprise IP communications : transition plans Application Note Table of contents Introduction / 1 The promises of / 1 The exhaustion is becoming real in the Internet / 1 The adoption drivers

More information

IPv6 Integration in Federal Government: Adopt a Phased Approach for Minimal Disruption and Earlier Benefits

IPv6 Integration in Federal Government: Adopt a Phased Approach for Minimal Disruption and Earlier Benefits IPv6 Integration in Federal Government: Adopt a Phased Approach for Minimal Disruption and Earlier Benefits Abstract U.S. federal government agencies are required to integrate IPv6 into their network infrastructures,

More information

TABLE OF CONTENTS. Section 5 IPv6... 5-1 5.1 Introduction... 5-1 5.2 Definitions... 5-1 5.3 DoD IPv6 Profile... 5-3 5.3.1 Product Requirements...

TABLE OF CONTENTS. Section 5 IPv6... 5-1 5.1 Introduction... 5-1 5.2 Definitions... 5-1 5.3 DoD IPv6 Profile... 5-3 5.3.1 Product Requirements... , Table of Contents TABLE OF CONTENTS SECTION PAGE IPv6... 5-1 5.1 Introduction... 5-1 5.2 Definitions... 5-1 5.3 DoD IPv6 Profile... 5-3 5.3.1 Product Requirements... 5-4 i , List of Figures LIST OF FIGURES

More information

SIIT-DC: IPv4 Service Continuity for IPv6 Data Centres. Tore Anderson Redpill Linpro AS RIPE69, London, November 2014

SIIT-DC: IPv4 Service Continuity for IPv6 Data Centres. Tore Anderson Redpill Linpro AS RIPE69, London, November 2014 SIIT-DC: IPv4 Service Continuity for IPv6 Data Centres Tore Anderson Redpill Linpro AS RIPE69, London, November 2014 Stop Thinking IPv4; IPv6 is Here IPv4 is a dying and cramped protocol IPv6 is the exact

More information

IEEE GLOBECOM 2009 Deploying IPv6 at AT&T

IEEE GLOBECOM 2009 Deploying IPv6 at AT&T IEEE GLOBECOM 2009 Deploying IPv6 at AT&T Simon Zelingher Vice President - Global Optical, IP & Data Development AT&T Labs 2009 AT&T Intellectual Property, Inc. All rights reserved Outline Drivers for

More information

WHITE PAPER. SDN Controller Testing: Part 1

WHITE PAPER. SDN Controller Testing: Part 1 WHITE PAPER SDN Controller Testing: Part 1 www.ixiacom.com 915-0946-01 Rev. A, April 2014 2 Table of Contents Introduction... 4 Testing SDN... 5 Methodologies... 6 Testing OpenFlow Network Topology Discovery...

More information

July 13, Copyright 2015 Thread Group, Inc. All rights reserved.

July 13, Copyright 2015 Thread Group, Inc. All rights reserved. July 13, 2015 This Thread Technical white paper is provided for reference purposes only. The full technical specification is available to Thread Group Members. To join and gain access, please follow this

More information

WHITE PAPER. Gaining Total Visibility for Lawful Interception

WHITE PAPER. Gaining Total Visibility for Lawful Interception WHITE PAPER Gaining Total Visibility for Lawful Interception www.ixiacom.com 915-6910-01 Rev. A, July 2014 2 Table of Contents The Purposes of Lawful Interception... 4 Wiretapping in the Digital Age...

More information

IPv6 Deployment Strategies

IPv6 Deployment Strategies Version History Version Number Date Notes 1 10/15/2001 This document was created. 2 11/13/2001 Update to the explanation of NAT along tunnel paths. 3 03/08/2002 Update to the Related Documents section.

More information

IPv6 Tunneling Over IPV4

IPv6 Tunneling Over IPV4 www.ijcsi.org 599 IPv6 Tunneling Over IPV4 A.Sankara Narayanan 1, M.Syed Khaja Mohideen 2, M.Chithik Raja 3 Department of Information Technology Salalah College of Technology Sultanate of Oman ABSTRACT

More information

Deployment of IPv6 protocol in broadband networks. Dmitry Sakharchuk Sakharchuk.ds@gmail.com

Deployment of IPv6 protocol in broadband networks. Dmitry Sakharchuk Sakharchuk.ds@gmail.com Deployment of protocol in broadband networks Dmitry Sakharchuk Sakharchuk.ds@gmail.com 1 over MPLS transport network Two technologies exist for implementacon over MPLS network: 6PE, RFC 4798 6PE technology

More information

ENTERPRISE CONNECTIVITY

ENTERPRISE CONNECTIVITY ENTERPRISE CONNECTIVITY IP Services for Business, Governmental & Non-Governmental Organizations The success of today s organizations and enterprises highly depends on reliable and secure connectivity.

More information

WHITE PAPER SERIES Transition to IPv6

WHITE PAPER SERIES Transition to IPv6 WHITE PAPER SERIES Transition to IPv6 INDEX Executive Summary Page 3 Till today-a Brief History of Internet Protocol (IP) Page 4 Challenges with IPv4 Page 5 Options for Business Continuity Page 6 The New

More information

ProCurve Networking IPv6 The Next Generation of Networking

ProCurve Networking IPv6 The Next Generation of Networking ProCurve Networking The Next Generation of Networking Introduction... 2 Benefits from... 2 The Protocol... 3 Technology Features and Benefits... 4 Larger number of addresses... 4 End-to-end connectivity...

More information

THE ADOPTION OF IPv6 *

THE ADOPTION OF IPv6 * THE ADOPTION OF IPv6 * STUDENT PAPER Brian Childress Southwest Texas State University BC56075@swt.edu Bryan Cathey Southwest Texas State University BC1033@swt.edu Sara Dixon Southwest Texas State University

More information

Cisco Which VPN Solution is Right for You?

Cisco Which VPN Solution is Right for You? Table of Contents Which VPN Solution is Right for You?...1 Introduction...1 Before You Begin...1 Conventions...1 Prerequisites...1 Components Used...1 NAT...2 Generic Routing Encapsulation Tunneling...2

More information

Technologies for an IPv4 Address Exhausted World

Technologies for an IPv4 Address Exhausted World WHITE PAPER Tools and Strategies for Coping with Address Depletion Technologies for an Address Exhausted World Copyright 2010, Juniper Networks, Inc. 1 Table of Contents Executive Summary........................................................................................................

More information

Daniel O. Awduche, MBA, PhD.

Daniel O. Awduche, MBA, PhD. Verizon IPv6 Transition Daniel O. Awduche, MBA, PhD. IP Network Architecture and Design Outline Infrastructure Readiness Verizon IPv6 Professional Services Verizon has made a firm commitment to evolve

More information

Implementing IP Addressing Services

Implementing IP Addressing Services Implementing IP Addressing Services Accessing the WAN Chapter 7 Version 4.0 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Configure DHCP in an enterprise branch network Configure

More information

Demonstrating the high performance and feature richness of the compact MX Series

Demonstrating the high performance and feature richness of the compact MX Series WHITE PAPER Midrange MX Series 3D Universal Edge Routers Evaluation Report Demonstrating the high performance and feature richness of the compact MX Series Copyright 2011, Juniper Networks, Inc. 1 Table

More information

Ensuring Success in a Virtual World: Demystifying SDN and NFV Migrations

Ensuring Success in a Virtual World: Demystifying SDN and NFV Migrations Ensuring Success in a Virtual World: Demystifying SDN and NFV Migrations Get Migration Right the First Time The virtualization of traditional networks promises vast and enduring benefits if the challenges

More information

464XLAT: Breaking Free of IPv4. Cameron.Byrne @ T-Mobile.com NANOG 61 June 2014

464XLAT: Breaking Free of IPv4. Cameron.Byrne @ T-Mobile.com NANOG 61 June 2014 464XLAT: Breaking Free of IPv4 Cameron.Byrne @ T-Mobile.com NANOG 61 June 2014 1 Goals of Talk 1. Declare victory for IPv6 2. Explain IPv6-only approach at T-Mobile US 3. Discuss risks related to IPv4-only

More information

SIIT-DC: Stateless IP/ICMP Translation for IPv6 Data Centre Environments & SIIT-DC: Dual Translation Mode

SIIT-DC: Stateless IP/ICMP Translation for IPv6 Data Centre Environments & SIIT-DC: Dual Translation Mode SIIT-DC: Stateless IP/ICMP Translation for IPv6 Data Centre Environments & SIIT-DC: Dual Translation Mode Tore Anderson Redpill Linpro AS RIPE 91, Honolulu, November 2014 An IPv6 data centre The IPv6 Internet

More information

Campus IPv6 connection Campus IPv6 deployment

Campus IPv6 connection Campus IPv6 deployment Campus IPv6 connection Campus IPv6 deployment Campus Address allocation, Topology Issues János Mohácsi NIIF/HUNGARNET Copy Rights This slide set is the ownership of the 6DISS project via its partners The

More information

NATed Network Testing IxChariot

NATed Network Testing IxChariot TEST PLAN NATed Network Testing IxChariot www.ixiacom.com 915-6648-01, 2004 Contents 1. Test Overview...3 2. Configuring IxChariot for traditional static NAT...3 3. Configuring IxChariot for NAPT...7 Copyright

More information

WHITE PAPER. Extending Network Monitoring Tool Performance

WHITE PAPER. Extending Network Monitoring Tool Performance WHITE PAPER Extending Network Monitoring Tool Performance www.ixiacom.com 915-6915-01 Rev. A, July 2014 2 Table of Contents Benefits... 4 Abstract... 4 Introduction... 4 Understanding Monitoring Tools...

More information

IPv6 and Fortinet: Network Security in the Next Generation of IP Communication

IPv6 and Fortinet: Network Security in the Next Generation of IP Communication IPv6 and Fortinet: Network Security in the Next Generation of IP Communication FORTINET IPv6 and Fortinet Solution Guide PAGE 2 Abstract With the recent exhaustion of the IPv4 address space, many organizations

More information

NAT Tutorial. Dan Wing, dwing@cisco.com. IETF78, Maastricht July 25, 2010

NAT Tutorial. Dan Wing, dwing@cisco.com. IETF78, Maastricht July 25, 2010 NAT Tutorial Dan Wing, dwing@cisco.com IETF78, Maastricht July 25, 2010 v3 1 2 Agenda NAT and NAPT Types of NATs Application Impact Application Layer Gateway (ALG) STUN, ICE, TURN Large-Scale NATs (LSN,

More information

A10 Networks IPv6 Overview. November 2011

A10 Networks IPv6 Overview. November 2011 A10 Networks IPv6 Overview November 2011 2007 2007 2006 2007 2008 2009 2010 2010-2011 1 A10 Networks Company Overview Mission: The Technology Leader in Application Networking Flagship Product AX Series

More information

CPNI VIEWPOINT. SECURITY IMPLICATIONS OF IPv6. Disclaimer: MARCH 2011

CPNI VIEWPOINT. SECURITY IMPLICATIONS OF IPv6. Disclaimer: MARCH 2011 CPNI VIEWPOINT SECURITY IMPLICATIONS OF IPv6 MARCH 2011 Abstract: IPv6 is coming to a network near you. CPNI has extracted salient points from recently published documents to highlight some of the major

More information

QUALITY OF SERVICE FOR CLOUD-BASED MOBILE APPS: Aruba Networks AP-135 and Cisco AP3602i

QUALITY OF SERVICE FOR CLOUD-BASED MOBILE APPS: Aruba Networks AP-135 and Cisco AP3602i QUALITY OF SERVICE FOR CLOUD-BASED MOBILE APPS: Aruba Networks AP-135 and Cisco AP3602i Conducted at the Aruba Proof-of-Concept Lab November 2012 Statement of test result confidence Aruba makes every attempt

More information

Testing Packet Switched Network Performance of Mobile Wireless Networks IxChariot

Testing Packet Switched Network Performance of Mobile Wireless Networks IxChariot TEST PLAN Testing Packet Switched Network Performance of Mobile Wireless Networks IxChariot www.ixiacom.com 915-6649-01, 2006 Contents Testing Packet Switched Network Performance of Mobile Wireless Networks...3

More information

VoIP Testing IxChariot

VoIP Testing IxChariot TEST PLAN VoIP Testing IxChariot www.ixiacom.com 915-6680-01, 2005 Contents 1. VoIP Testing with IxChariot... 1 1.1 Key Facts... 1 2. Determine Voice Quality Deterioration with Increasing Application

More information

Deploying IPv6, Now. Christian Huitema. Architect Windows Networking & Communications Microsoft Corporation

Deploying IPv6, Now. Christian Huitema. Architect Windows Networking & Communications Microsoft Corporation Deploying IPv6, Now Christian Huitema Architect Windows Networking & Communications Microsoft Corporation Agenda The Opportunity Key Problems The Promise of IPv6 What is Microsoft doing Call to Action

More information

IPv4 to IPv6 Transition

IPv4 to IPv6 Transition An overview of the new Internet addressing protocol, its implications for wholesale customers, and Telstra s approach to the transition. Audience Chief Information Officers IT Managers Network Managers

More information

So#bank group s IPv6 deployment experiences

So#bank group s IPv6 deployment experiences So#bank group s IPv6 deployment experiences @APRICOT 2011 IPv6 TransiEon Conference Satoru Matsushima / Masato Yamanishi So#bank BB So#bank Telecom IntroducEon (from technical point view) In the transieon

More information

IPv6 and xdsl. Speaker name email address

IPv6 and xdsl. Speaker name email address IPv6 and xdsl Speaker name email address Copy... Rights This slide set is the ownership of the 6DEPLOY project via its partners The Powerpoint version of this material may be reused and modified only with

More information

Lab Testing Summary Report

Lab Testing Summary Report Key findings and conclusions: Huawei AR27V-P router achieved 177.5 Mbps throughput with IMIX traffic and IPsec security enabled Lab Testing Summary Report March 212 Report SR12221B AR Series Routers Performance

More information

Network Functions Virtualization in Home Networks

Network Functions Virtualization in Home Networks Network Functions Virtualization in Home Networks Marion Dillon Timothy Winters Abstract The current model of home networking includes relatively low- cost, failure- prone devices, requiring frequent intervention

More information

IPV6 DEPLOYMENT GUIDELINES FOR. ARRIS Group, Inc.

IPV6 DEPLOYMENT GUIDELINES FOR. ARRIS Group, Inc. IPV6 DEPLOYMENT GUIDELINES FOR CABLE OPERATORS Patricio i S. Latini i ARRIS Group, Inc. Current IPv4 Situationti IANA has already assigned the last IPv4 Blocks to the RIRs. RIRs address exhaustion may

More information

TCP/IP Basis. OSI Model

TCP/IP Basis. OSI Model TCP/IP Basis 高 雄 大 學 資 訊 工 程 學 系 嚴 力 行 Source OSI Model Destination Application Presentation Session Transport Network Data-Link Physical ENCAPSULATION DATA SEGMENT PACKET FRAME BITS 0101010101010101010

More information

XpressPath Optimized Media Functionality For VoiceFlow Session Border Controllers

XpressPath Optimized Media Functionality For VoiceFlow Session Border Controllers XpressPath Optimized Functionality For VoiceFlow Session Border Controllers Kagoor Networks White Paper XpressPath Optimized Functionality 1 Table of Contents Introduction... 3 XpressPath description...

More information

End of Life, IPv4 - IPv6 solutions. Markus Handte Senior Systems Engineer

End of Life, IPv4 - IPv6 solutions. Markus Handte Senior Systems Engineer End of Life, IPv4 - IPv6 solutions Markus Handte Senior Systems Engineer mhandte@a10networks.com +49.171.4338628 1 A10 Networks Introduction Incorporated in 2004 2009 Mission: Leader in the Application

More information

Unifying the Distributed Enterprise with MPLS Mesh

Unifying the Distributed Enterprise with MPLS Mesh Unifying the Distributed Enterprise with MPLS Mesh Technical Whitepaper June 2011 Copyright 2011 AireSpring Introduction Today s modern enterprise employs IT technologies that deliver higher value, resiliency,

More information

Network Address Translation (NAT) Good Practice Guideline

Network Address Translation (NAT) Good Practice Guideline Programme NPFIT Document Record ID Key Sub-Prog / Project Infrastructure Security NPFIT-FNT-TO-IG-GPG-0011.06 Prog. Director Chris Wilber Status Approved Owner James Wood Version 2.0 Author Mike Farrell

More information

Addressing Inter Provider Connections With MPLS-ICI

Addressing Inter Provider Connections With MPLS-ICI Addressing Inter Provider Connections With MPLS-ICI Introduction Why migrate to packet switched MPLS? The migration away from traditional multiple packet overlay networks towards a converged packet-switched

More information

References and Requirements for CPE Architectures for Data Access

References and Requirements for CPE Architectures for Data Access Technical Report TR-018 References and Requirements for CPE Architectures for Data Access March 1999 '1999 Asymmetric Digital Subscriber Line Forum. All Rights Reserved. ADSL Forum technical reports may

More information

Tomás P. de Miguel DIT-UPM. dit UPM

Tomás P. de Miguel DIT-UPM. dit UPM Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability

More information

IPv6 Migration Challenges for Large Service Providers

IPv6 Migration Challenges for Large Service Providers IPv6 Migration Challenges for Large Service Providers Aruna P General manager Network Operation Agenda Airtel Overview Drivers of IPV6 Migration challenges Design Considerations Deployment plan Airtel

More information

IPv6 Fundamentals, Design, and Deployment

IPv6 Fundamentals, Design, and Deployment IPv6 Fundamentals, Design, and Deployment Course IP6FD v3.0; 5 Days, Instructor-led Course Description The IPv6 Fundamentals, Design, and Deployment (IP6FD) v3.0 course is an instructor-led course that

More information

6rd. Alain Durand, Juniper Marla Azinger, Frontier Communications Mark Townsley, Cisco

6rd. Alain Durand, Juniper Marla Azinger, Frontier Communications Mark Townsley, Cisco 6rd Alain Durand, Juniper Marla Azinger, Frontier Communications Mark Townsley, Cisco 6rd: IPv6 overlay on IPv4 Access IPv6 prefix derived from IPv4 address of residential gateway One line global config

More information

Supporting Document PPP

Supporting Document PPP Supporting Document PPP Content 1 Starter Kit... 3 2 Technical Specification Access... 3 2.1 Overview... 3 2.2 Upstream Policing for PPP@ISP... 3 2.3 Supported Protocols... 3 2.4 PPPoA... 3 2.5 PPPoE...

More information

IPv6: Network Security and the Next Generation of IP Communication

IPv6: Network Security and the Next Generation of IP Communication IPv6: Network Security and the Next Generation of IP Communication FORTINET IPv6 and Fortinet Solution Guide PAGE 2 Summary Many enterprises have IPv6 adoption on their technology roadmap due to the exhaustion

More information

Next Generation IPv6 Network Security a Practical Approach Is Your Firewall Ready for Voice over IPv6?

Next Generation IPv6 Network Security a Practical Approach Is Your Firewall Ready for Voice over IPv6? Next Generation IPv6 Network Security a Practical Approach Is Your Firewall Ready for Voice over IPv6? - and many other vital questions to ask your firewall vendor Zlata Trhulj Agilent Technologies zlata_trhulj@agilent.com

More information

EXPEDITING ACCESS TO V6 SERVICES: GETTING WEB CONTENT AVAILABLE OVER IPV6 QUICKLY AND AT LOW COST

EXPEDITING ACCESS TO V6 SERVICES: GETTING WEB CONTENT AVAILABLE OVER IPV6 QUICKLY AND AT LOW COST EXPEDITING ACCESS TO V6 SERVICES: GETTING WEB CONTENT AVAILABLE OVER IPV6 QUICKLY AND AT LOW COST Tim LeMaster lemaster@juniper.net IPV6 REALITY CHECK: THE IPV4 LONG TAIL Post IPv4 allocation completion:

More information

SANS Technology Institute Group Discussion/Written Project. The Rapid Implementation of IPv6 at GIAC Enterprises

SANS Technology Institute Group Discussion/Written Project. The Rapid Implementation of IPv6 at GIAC Enterprises SANS Technology Institute Group Discussion/Written Project The Rapid Implementation of IPv6 at GIAC Enterprises 12/9/2010 Stacy Jordan Beth Binde Glen Roberts Table of Contents Executive Summary 3 Background

More information