Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto

Size: px
Start display at page:

Download "Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto"

Transcription

1 ATheoryofTimedAutomata1 Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto ComputercienceDepartment,tanfordUniversity RajeevAlur2 tanford,ca DavidL.Dill3 annotatestate-transitiongraphswithtimingconstraintsusingnitelymanyrealvaluedclocks.atimedautomatonacceptstimedwords innitesequencesin intersection,butnotundercomplementation,whereasdeterministictimedmuller whichareal-valuedtimeofoccurrenceisassociatedwitheachsymbol.westudy ditions.weshowthatnondeterministictimedautomataareclosedunderunionand properties,decisionproblems,andsubclasses.weconsiderbothnondeterministic automataareclosedunderallbooleanoperations.themainconstructionofthe timedautomatafromtheperspectiveofformallanguagetheory:weconsiderclosure anddeterministictransitionstructures,andbothbuchiandmulleracceptancecon- Keywords:Real-timesystems,automaticverication,formallanguagesandautomatatheory. (nondeterministic)timedautomaton.wealsoprovethattheuniversalityproblem toautomaticvericationofreal-timerequirementsofnite-statesystems. paperisan(ppace)algorithmforcheckingtheemptinessofthelanguageofa completeinthedeterministiccase.finally,wediscusstheapplicationofthistheory andthelanguageinclusionproblemaresolvableonlyforthedeterministicautomata: bothproblemsareundecidable(1-hard)inthenondeterministiccaseandppace- 1PreliminaryversionsofthispaperappearintheProceedingsofthe17thInternationalColloquiumon necessarilyreectthepositionorthepolicyoftheu..government,andnoocialendorsementofthis workshouldbeinferred. theoryinpractice"(1991) Navy,OceoftheChiefofNavalResearchundergrantN J-1901.Thispublicationdoesnot Automata,Languages,andProgramming(1990),andintheProceedingsoftheREXworkshop\Real-time: 2Currentaddress:AT&TBellLaboratories,600MountainAvenue,Room2D-144,MurrayHill,NJ 3upportedbytheNationalcienceFoundationundergrantMIP ,andbytheUnitedtates

2 1Introduction Modallogicsand!-automataforqualitativetemporalreasoningaboutconcurrentsystems ofsystems.whenthesystemsarenite-state,asmanyare,wecanuseniteautomata, Theseformalismsabstractawayfromtime,retainingonlythesequencingofevents.In thelineartimemodel,itisassumedthatanexecutioncanbecompletelymodeledasa ofthesystemisasetofsuchexecutionsequences.inceasetofsequencesisaformal sequenceofstatesorsystemevents,calledanexecutiontrace(orjusttrace).thebehavior havebeenstudiedingreatdetail(selectedreferences:[36,32,16,28,47,44,37,11]). language,thisleadsnaturallytotheuseofautomataforthespecicationandverication!-regularexpressions,modalformulasof(extended)temporallogic,andsecond-orderformulasofthemonadictheoryofonesuccessor(1) havethesameexpressiveness,aningandanalyzingsystembehavior.theuniversalacceptanceofniteautomataasthe leadingtoeectiveconstructionsanddecisionproceduresforautomaticallymanipulat- nondeterministicbuchiautomata,deterministicandnondeterministicmullerautomata, modelandtheappealofitstheory.inparticular,avarietyofcompetingformalisms canonicalmodelofnite-statecomputationcanbeattributedtotherobustnessofthe vantages,itisultimatelycounterproductivewhenreasoningaboutsystemsthatmust interactwithphysicalprocesses;thecorrectfunctioningofthecontrolsystemofairplanes denetheclassof!-regularlanguages[7,9,33,46,42].consequentlymanyverication andtoastersdependscruciallyuponreal-timeconsiderations.wewouldliketobeableto specifyandverifymodelsofreal-timesystemsaseasilyasqualitativemodels.ourgoal istomodifyniteautomataforthistaskanddevelopatheoryoftimedniteautomata, theoriesarebasedonthetheoryof!-regularlanguages. similarinspirittothetheoryof!-regularlanguages.webelievethatthisshouldbethe Althoughthedecisiontoabstractawayfromquantitativetimehashadmanyad- events,notstates(thetheorywithstate-basedmodelsdiersonlyindetails).withinthis framework,itispossibletoaddtimingtoanexecutiontracebypairingitwithasequence time? i'thevent.atthispoint,however,afundamentalquestionarises:whatisthenatureof rststepinbuildingtheoriesforthereal-timevericationproblem. oftimes,wherethei'thelementofthetimesequencegivesthetimeofoccurrenceofthe Forsimplicity,wediscussmodelsthatconsiderexecutionstobeinnitesequencesof kindsofsynchronousdigitalcircuits,wheresignalchangesareconsideredtohavechanged Modelingtime Onealternative,whichleadstothediscrete-timemodel,requiresthetimesequenceto beamonotonicallyincreasingsequenceofintegers.thismodelisappropriateforcertain behaviorscanbemanipulatedusingordinaryniteautomata.ofcourse,inphysical silenteventasmanytimesasnecessarybetweeneventsintheoriginaltrace.oncethis transformationhasbeenperformed,thetimeofeacheventisthesameasitsposition, intoatracewherethetimesincreasebyexactlyoneateachstep,byinsertingaspecial exactlywhenaclocksignalarrives.oneoftheadvantagesofthismodelisthatitcanbe transformedeasilyintoanordinaryformallanguage.eachtimedtracecanbeexpanded sothetimesequencecanbediscarded,leavinganordinarystring.hence,discretetime 1

3 requiresthatcontinuoustimebeapproximatedbychoosingsomexedquantumapriori, processeseventsdonotalwayshappenatinteger-valuedtimes.thediscrete-timemodel whichlimitstheaccuracywithwhichphysicalsystemscanbemodeled. requiresthesequenceofintegertimestobenon-decreasing.theinterpretationofatimed executiontraceinthismodelisthateventsoccurinthespeciedorderatreal-valued arerecordedinthetrace.thismodelisalsoeasilytransformedintoaconventional formallanguage.first,addtothesetofeventsanewone,calledtick.theuntimed times,butonlythe(integer)readingsoftheactualtimeswithrespecttoadigitalclock tracecorrespondingtoatimedtracewillincludealloftheeventsfromthetimedtrace, Thectitious-clockmodelissimilartothediscretetimemodel,exceptthatitonly tomanipulatethesebehaviorsusingniteautomata,butthecompensatingdisadvantage isthatitrepresentstimeonlyinanapproximatesense. (i+1)'thevents(notethatthisnumbermaybe0).onceagain,itisconceptuallysimple inthesameorder,butwithti+1?tinumberofticksinsertedbetweenthei'thandthe withdensetimeinanite-automataframeworkismoredicultthantheothertwocases, naturalmodelforphysicalprocessesoperatingovercontinuoustime.inthismodel,the timesofeventsarerealnumbers,whichincreasemonotonicallywithoutbound.dealing timedautomatatosupportautomatedreasoningaboutsuchsystems. becauseitisnotobvioushowtotransformasetofdense-timetracesintoanordinary formallanguage.instead,wehavedevelopedatheoryoftimedformallanguagesand Wepreferadense-timemodel,inwhichtimeisadenseset,becauseitisamore elapsedsincethelastreset.thetransitionsoftheautomatonputcertainconstraintson automata.timedautomataaccepttimedwords innitesequencesinwhicharealvaluedtimeofoccurrenceisassociatedwitheachsymbol.atimedautomatonisanite Overview theclockvalues:atransitionmaybetakenonlyifthecurrentvaluesoftheclockssatisfy dentlyofeachother)withthetransitionsoftheautomaton,andkeeptrackofthetime automatonwithanitesetofreal-valuedclocks.theclockscanberesetto0(indepen- Toaugmentnite!-automatawithtimingconstraints,weproposetheformalismoftimed theassociatedconstraints.withthismechanismwecanmodeltimingpropertiessuch as\thechanneldeliverseverymessagewithin3to5timeunitsofitsreceipt".timed periodicity,boundedresponse,andtimingdelays. turessuchasliveness,fairness,andnondeterminism;andquantitativefeaturessuchas automatacancaptureseveralinterestingaspectsofreal-timesystems:qualitativefea- closurepropertiesforthedeterministicclassesaresimilartotheiruntimedcounterparts: bothdeterministicandnondeterministicvarieties,andforacceptancecriteriaweconsider bothbuchiandmullerconditions.weshowthatnondeterministictimedautomataare closedunderunionandintersection,butsurprisingly,notundercomplementation.the deterministictimedmullerautomataareclosedunderallbooleanoperations,whereas deterministictimedbuchiautomataareclosedunderonlythepositivebooleanoperations. Westudytimedautomatafromtheperspectiveofformallanguagetheory.Weconsider Theseresultsimplythat,unliketheuntimedcase,deterministictimedMullerautomata arestrictlylessexpressivethantheirnondeterministiccounterparts. Westudyavarietyofdecisionproblemsforthedierenttypesoftimedautomata.The 2

4 ofuntimedwordsconsistentwiththetimingconstraintsofatimedautomatonformsan valuedclockvariables,thestatespaceofatimedautomatonisinnite,andtheuntiming mainpositiveresultisanuntimingconstructionfortimedautomata.duetothereal-!-regularset.italsoleadstoappacedecisionprocedurefortestingemptinessofthe algorithmconstructsanitequotientofthisspace.thisisusedtoprovethattheset languageofatimedautomaton.wealsoshowthatthedualproblemoftestingwhether asystemmodeledasaproductoftimedautomatasatisesitsspecicationgivenasa nite-statereal-timesystems.wegiveappacevericationalgorithmtotestwhether thedeterministicversions. languageinclusionproblem.however,boththeseproblemscanbesolvedinppacefor (1-hard)fornondeterministicautomata.Thisalsoimpliestheundecidabilityofthe atimedautomatonacceptsalltimedwords(i.e.,theuniversalityquestion)isundecidable deterministictimedmullerautomaton. Relatedwork Finally,weshowhowtoapplythetheoryoftimedautomatatoprovecorrectnessof havebeenproposedrecently,however,noattempthasbeenmadetodevelopatheory Dierentwaysofincorporatingtimingconstraintsinthequalitativemodelsofasystem Modecharts[25].Inatimedautomaton,unliketheseothermodels,aboundonthetime isbyassociatinglowerandupperboundswithtransitions.examplesoftheseinclude modelhavebeendeveloped. oftimedlanguagesandnoalgorithmsforcheckingreal-timepropertiesinthedense-time bydillthatemploystimers[13].amodelsimilartodill'swasindependentlyproposed transitions,canbedirectlyexpressed.ourmodelisbasedonanearliermodelproposed takentotraverseapathintheautomaton,notjustthetimeintervalbetweenthesuccessive timedpetrinets[38],timedtransitionsystems[35,21],timedi/oautomata[31],and Perhapsthemoststandardwayofintroducingtiminginformationinaprocessmodel transitionscanhappeninatimeintervalofunitlength.ouruntimingconstructiondoes andstudiedbylewis[30].hedenesstate-diagrams,andgivesawayoftranslatinga decidabilityandlowerboundresultspresentedherecarryovertohisformalismalso. notneedthelatterassumption,andhasabetterworst-casecomplexity.wenotethatthe everyedgeisannotatedwithamatrixofintervalsconstrainingvariousdelays.lewisalso developsanalgorithmforcheckingconsistencyofthetiminginformationforaspecial classofstate-diagrams;theonesforwhichthereexistsaconstantksuchthatatmostk circuitdescriptiontoastate-diagram.astate-diagramisanite-statemachinewhere anundecidabilityresult:in[5]itisshownthatthesatisabilityproblemforareal-time model. clocksemantics.inthecaseofthedense-timemodeltheonlypreviouslyknownresultis [6,24,26,35,17,5,20].Mostoftheselogicsemploythediscrete-timeorthectitious- extensionofthelinear-timetemporallogicptlisundecidable(1-hard)inthedense-time Therehavebeenafewattemptstoextendtemporallogicswithquantitativetime 3

5 Figure1:Buchiautomatonaccepting(a+b)a! a,b a given(nite)alphabet(see,forexample,[23]).asopposedtothis,an!-languageconsists 2!-automata a ofallinnitewordsover.!-automataprovideaniterepresentationforcertaintypes Inthissectionwewillbrieyreviewtherelevantaspectsofthetheoryof!-regularlan- ofinnitewords.thusan!-languageoveranitealphabetisasubsetof! theset Themorefamiliardenitionofaformallanguageisasasetofnitewordsoversome 0 1 inputwords.varioustypesof!-automatahavebeenstudiedintheliterature[7,33,9,42]. setofautomatonstates,0isasetofstartstates,andeisasetof edges.theautomatonstartsinaninitialstate,andifhs;s0;ai2ethentheautomaton automaton,butwiththeacceptanceconditionmodiedsuitablysoastohandleinnite of!-languages.an!-automatonisessentiallythesameasanondeterministicnite-state Wewillmainlyconsidertwotypesof!-automata:BuchiautomataandMullerautomata. canchangeitsstatefromstos0readingtheinputsymbola. AtransitiontableAisatupleh;;0;Ei,whereisaninputalphabet,isanite Foraword=12:::overthealphabet,wesaythat withanadditionalsetfofacceptingstates.arunrofaoveraword2!isan isarunofaover,provideds020,andhsi?1;si;ii2eforalli1.forsucharun, denitionofthetransitiontables.abuchiautomatonaisatransitiontableh;;0;ei thesetinf(r)consistsofthestatess2suchthats=siforinnitelymanyi0. Dierenttypesof!-automataaredenedbyaddinganacceptanceconditiontothe r:s01?!s12?!s23?! acceptingruniinf(r)\f6=;.inotherwords,arunrisacceptingisomestatefrom states0isthestartstateands1istheacceptingstate.everyacceptingrunofthe automatonhastheform Example2.1Considerthe2-stateautomatonofFigure1overthealphabetfa;bg.The thesetfrepeatsinnitelyoftenalongr.thelanguagel(a)acceptedbyaconsistsof thewords2!suchthatahasanacceptingrunover. withi2fa;bgfor1inforsomen1.theautomatonacceptsallwordswith onlyanitenumberofb's;thatis,thelanguagel0=(a+b)a!. r:s01?!s02?!n?!s0a 4?!s1a?!s1a?!

6 Figure2:DeterministicMullerautomatonaccepting(a+b)a! b a areknownconstructionsforcomplementingbuchiautomata[41,40]. thelanguagel0ofexample2.1isan!-regularlanguage. intersectionisimplementedbyaproductconstructionforbuchiautomata[9,47].there a vericationproblemreducestothatoflanguageinclusion.theinclusionproblemfor WhenBuchiautomataareusedformodelingnite-stateconcurrentprocesses,the An!-languageiscalled!-regulariitisacceptedbysomeBuchiautomaton.Thus Theclassof!-regularlanguagesisclosedunderalltheBooleanoperations.Language 0 1 containedintheother,wecheckforemptinessoftheintersectionoftherstautomaton!-regularlanguagesisdecidable.totestwhetherthelanguageofoneautomatonis b foracyclethatisreachablefromastartstateandincludesatleastoneacceptingstate. languageofadeterministicautomatoncanbedoneinpolynomialtime[27]. withthecomplementofthesecond.testingforemptinessiseasy;weonlyneedtosearch thatis,j0j=1,and(ii)thenumberofa-labelededgesstartingatsisatmostone [41].However,checkingwhetherthelanguageofoneautomatoniscontainedinthe forallstatess2andforallsymbolsa2.thus,foradeterministictransition Ingeneral,complementingaBuchiautomatoninvolvesanexponentialblow-upinthe numberofstates,andthelanguageinclusionproblemisknowntobeppace-complete table,thecurrentstateandthenextinputsymboldeterminethenextstateuniquely. Consequently,adeterministicautomatonhasatmostonerunoveragivenword.Unlike theautomataonnitewords,theclassoflanguagesacceptedbydeterministicbuchi automataisstrictlysmallerthantheclassof!-regularlanguages.forinstance,thereis AtransitiontableA=h;;0;Eiisdeterministici(i)thereisasinglestartstate, automata(denedbelow)avoidthisproblematthecostofamorepowerfulacceptance condition. nodeterministicbuchiautomatonwhichacceptsthelanguagel0ofexample2.1.muller Buchiautomata,andalsoequalsthatacceptedbydeterministicMullerautomata. F2.ArunrofAoveraword2!isanacceptingruniinf(r)2F.Thatis,a runrisacceptingithesetofstatesrepeatinginnitelyoftenalongrequalssomesetin F.ThelanguageacceptedbyAisdenedasincaseofBuchiautomata. TheclassoflanguagesacceptedbyMullerautomataisthesameasthatacceptedby AMullerautomatonAisatransitiontableh;;0;Eiwithanacceptancefamily consistingofallwordsoverfa;bgwithonlyanitenumberofb's.themulleracceptance Example2.2ThedeterministicMullerautomatonofFigure2acceptsthelanguageL0 familyisffs1gg.thuseveryacceptingruncanvisitthestates0onlynitelyoften. 5

7 languages:theyareasexpressiveastheirnondeterministiccounterpart,andtheycanbe complementedinpolynomialtime.algorithmsforconstructingtheintersectionoftwo Mullerautomataandforcheckinglanguageinclusionareknown[10]. 3Timedautomata ThusdeterministicMullerautomataformastrongcandidateforrepresenting!-regular aword.thenweaugmentthedenitionof!-automatasothattheyaccepttimedwords, Inthissectionwedenetimedwordsbycouplingareal-valuedtimewitheachsymbolin andusethemtodevelopatheoryoftimedregularlanguagesanalogoustothetheoryof!-regularlanguages. Denition3.1Atimesequence=12isaninnitesequenceoftimevaluesi2R Wedenetimedwordssothatabehaviorofareal-timesystemcorrespondstoatimed nonnegativerealnumbers,r,ischosenasthetimedomain.awordiscoupledwitha wordoverthealphabetofevents.asinthecaseofthedense-timemodel,thesetof 3.1Timedlanguages withi>0,satisfyingthefollowingconstraints: timesequenceasdenedbelow: overandisatimesequence.atimedlanguageoverisasetoftimedwordsover. 1.Monotonicity:increasesstrictlymonotonically;thatis,i<i+1foralli1. 2.Progress:Foreveryt2R,thereissomei1suchthati>t. Atimedwordoveranalphabetisapair(;)where=12:::isaninniteword manyconsecutiveeventsinthesequence.toaccommodatethispossibilityonecoulduse correspondingcomponentiisinterpretedasthetimeofoccurrenceofi.undercertain iattimei.ifeachsymboliisinterpretedtodenoteaneventoccurrencethenthe circumstancesitmaybeappropriatetoallowthesametimevaluetobeassociatedwith aslightlydierentdenitionoftimedwordsbyrequiringatimesequencetoincreaseonly monotonically(i.e.,requireii+1foralli1).allourresultscontinuetoholdinthis Ifatimedword(;)isviewedasaninputtoanautomaton,itpresentsthesymbol Example3.2Letthealphabetbefa;bg.DeneatimedlanguageL1toconsistofall alternativemodelalso. timedwords(;)suchthatthereisnobaftertime5:6.thusthelanguagel1isgiven byletusconsidersomeexamplesoftimedlanguages. increasing.thelanguagel2isgivenas nate,andforthesuccessivepairsofaandb,thetimedierencebetweenaandbkeeps AnotherexampleisthelanguageL2consistingoftimedwordsinwhichaandbalter- L2=f((ab)!;)j8i:((2i?2i?1)<(2i+2?2i+1))g: L1=f(;)j8i:((i>5:6)!(i=a))g: 6

8 denedfortimedlanguagesasusual.inadditionwedenetheuntimeoperationwhich Thelanguage-theoreticoperationssuchasintersection,union,complementationare Figure3:Exampleofatimedtransitiontable a, x:=0 0 1 Untime(L2)consistsofasingleword(ab)!. discardsthetimevaluesassociatedwiththesymbols,thatis,itconsiderstheprojection ofatimedtrace(;)ontherstcomponent. of2!suchthat(;)2lforsometimesequence. Denition3.3ForatimedlanguageLover,Untime(L)isthe!-languageconsisting Forinstance,referringtoExample3.2,Untime(L1)isthe!-language(a+b)a!,and b, (x<2)? 3.2Transitiontableswithtimingconstraints Nowweextendtransitiontablestotimedtransitiontablessothattheycanreadtimed upontheinputsymbolread.incaseofatimedtransitiontable,wewantthischoiceto words.whenanautomatonmakesastate-transition,thechoiceofthenextstatedepends dependalsouponthetimeoftheinputsymbolrelativetothetimesofthepreviously Example3.4ConsiderthetimedtransitiontableofFigure3.Thestartstateiss0. thetimedtransitiontablesformally,letusconsidersomeexamples. betakenonlyifthecurrentvaluesoftheclockssatisfythisconstraint.beforewedene Witheachtransitionweassociateaclockconstraint,andrequirethatthetransitionmay instant,thereadingofaclockequalsthetimeelapsedsincethelasttimeitwasreset. transitiontable.aclockcanbesettozerosimultaneouslywithanytransition.atany readsymbols.forthispurpose,weassociateanitesetof(real-valued)clockswitheach fromstates1tos0isenabledonlyifthisvalueislessthan2.thewholecyclerepeats theactionofresettingtheclockxwhentheedgeistraversed.imilarlyanannotationof Thereisasingleclockx.Anannotationoftheformx:=0onanedgecorrespondsto theform(x<2)?onanedgegivestheclockconstraintassociatedwiththeedge. moreformally,thelanguageis clockxshowsthetimeelapsedsincetheoccurrenceofthelastasymbol.thetransition whentheautomatonmovesbacktostates0.thusthetimingconstraintexpressedby thistransitiontableisthatthedelaybetweenaandthefollowingbisalwayslessthan2; Theclockxgetssetto0alongwiththistransition.Whileinstates1,thevalueofthe Theautomatonstartsinstates0,andmovestostates1readingtheinputsymbola. f((ab)!;)j8i:(2i<2i?1+2)g: 7

9 clocktoberesetone1,andassociateanappropriateclockconstraintwithe2.notethat clockscanbesetasynchronouslyofeachother.thismeansthatdierentclockscan d, (y>2)? example. Thustoconstrainthedelaybetweentwotransitionse1ande2,werequireaparticular a b c 0 1 Example3.5ThetimedtransitiontableofFigure4usestwoclocksxandy,andaccepts berestartedatdierenttimes,andthereisnolowerboundonthedierencebetween theirreadings.havingmultipleclocksallowsmultipleconcurrentdelays,asinthenext 2 3 x:=0 y:=0 (x<1)? thelanguage itsvaluewhilereadingd,ensuresthatthedelaybetweenbandthefollowingdisalways 0eachtimeitmovesfroms0tos1readinga.Thecheck(x<1)?associatedwiththe c-transitionfroms2tos3ensuresthatchappenswithintime1oftheprecedinga.a similarmechanismofresettinganotherindependentclockywhilereadingbandchecking Theautomatoncyclesamongthestatess0,s1,s2ands3.Theclockxgetssetto L3=f((abcd)!;)j8j:((4j+3<4j+1+1)^(4j+4>4j+2+2))g: multipleclockswhichcanbesetindependentlyofeachother.theabovelanguagel3is banddtheautomatondoesnotputanyexplicitboundsonthetimedierencebetween aandthefollowingb,orcandthefollowingd.thisisanimportantadvantageofhaving theintersectionofthetwolanguagesl13andl23denedas greaterthan2. Noticethatintheaboveexample,toconstrainthedelaybetweenaandcandbetween clock;howevertoexpresstheirintersectionweneedtwoclocks. ofdierentcomponentsinadistributedsystem.alltheclocksincreaseattheuniform EachofthelanguagesL13andL23canbeexpressedbyanautomatonwhichusesjustone Weremarkthattheclocksoftheautomatondonotcorrespondtothelocalclocks L13=f((abcd)!;)j8j:(4j+3<4j+1+1)g; ratecountingtimewithrespecttoaxedglobaltimeframe.theyarectitiousclocks L23=f((abcd)!;)j8j:(4j+4>4j+2+2)g: andcheckedindependentlyofoneanother,butallstop-watchesrefertothesameclock. theautomatontobeequippedwithanitenumberofstop-watcheswhichcanbestarted inventedtoexpressthetimingpropertiesofthesystem.alternatively,wecanconsider 8 Figure4:Timedtransitiontablewith2clocks

10 timeconstant.weallowonlythebooleancombinationsofsuchsimpleconstraints.any valuefromq,thesetofnonnegativerationals,canbeusedasatimeconstant.later,in 3.3Clockconstraintsandclockinterpretations Denition3.6ForasetXofclockvariables,theset(X)ofclockconstraintsis Todenetimedautomataformally,weneedtosaywhattypeofclockconstraintsare denedinductivelyby additionofclockvalues,leadstoundecidability. allowedontheedges.thesimplestformofaconstraintcomparesaclockvaluewitha wherexisaclockinxandcisaconstantinq. ection5.5,wewillshowthatallowingmorecomplexconstraints,suchasthoseinvolving is,itisamappingfromxtor.wesaythataclockinterpretationforxsatisesa tions. Observethatconstraintssuchastrue,(x=c),x2[2;5)canbedenedasabbrevia- AclockinterpretationforasetXofclocksassignsarealvaluetoeachclock;that :=xcjcxj:j1^2; andagreeswithovertherestoftheclocks. 3.4Timedtransitiontables clockconstraintoverxievaluatestotrueusingthevaluesgivenby. (x)+t,andtheclockinterpretationtassignstoeachclockxthevaluet(x).for YX,[Y7!t]denotestheclockinterpretationforXwhichassignsttoeachx2Y, Fort2R,+tdenotestheclockinterpretationwhichmapseveryclockxtothevalue Denition3.7AtimedtransitiontableAisatupleh;;0;C;Ei,where Nowwegivetheprecisedenitionoftimedtransitiontables. E2C(C)givesthesetoftransitions.Anedgehs;s0;a;;i Cisanitesetofclocks,and 0isasetofstartstates, isanitealphabet, isanitesetofstates, attime0withallitsclocksinitializedto0.astimeadvances,thevaluesofallclocks Givenatimedword(;),thetimedtransitiontableAstartsinoneofitsstartstates constraintoverc. Cgivestheclockstoberesetwiththistransition,andisaclock representsatransitionfromstatestostates0oninputsymbola.theset change,reectingtheelapsedtime.attimei,achangesstatefromstos0usingsome transitionoftheformhs;s0;i;;ireadingtheinputi,ifthecurrentvaluesofclocks withrespecttothetimeofoccurrenceofthistransition.thisbehavioriscapturedby satisfy.withthistransitiontheclocksinareresetto0,andthusstartcountingtime clocksatthetransitionpoints.foratimesequence=12:::wedene0=0. deningrunsoftimedtransitiontables.arunrecordsthestateandthevaluesofallthe 9

11 withsi2andi2[c!r],foralli0,satisfyingthefollowingrequirements: Denition3.8Arunr,denotedby(s;),ofatimedtransitiontableh;;0;C;Eiover atimedword(;)isaninnitesequenceoftheform Initiation:s020,and0(x)=0forallx2C. Consecution:foralli1,thereisanedgeinEoftheformhsi?1;si;i;i;iisuch that(i?1+i?i?1)satisesiandiequals[i7!0](i?1+i?i?1). r:hs0;0i1?!1hs1;1i2?!2hs2;2i3?!3 Example3.9ConsiderthetimedtransitiontableofExample3.5.Consideratimed listingthevalues[x;y]. Belowwegivetheinitialsegmentoftherun.Aclockinterpretationisrepresentedby word Thesetinf(r)consistsofthosestatess2suchthats=siforinnitelymanyi0. hs0;[0;0]ia?!2hs1;[0;2]ib (a;2)!(b;2:7)!(c;2:8)!(d;5)! i+1aregivenbytheinterpretation(i+t?i).whenthetransitionfromstatesitosi+1 occurs,weusethevalue(i+i+1?i)tochecktheclockconstraint;however,attime Alongarunr=(s;)over(;),thevaluesoftheclocksattimetbetweeniand?! 2:7hs2;[0:7;0]ic?! 2:8hs3;[0:8;0:1]id?!5hs0;[3;2:3]i i+1,thevalueofaclockthatgetsresetisdenedtobe0. Wecancoupleacceptancecriteriawithtimedtransitiontables,andusethemtodene tablea0.wechoosethesetofclockstobetheemptyset,andreplaceeveryedgehs;s0;ai byhs;s0;a;;;truei.therunsofa0areinanobviouscorrespondencewiththerunsofa. 3.5Timedregularlanguages NotethatatransitiontableA=h;;0;Eicanbeconsideredtobeatimedtransition whereh;;0;c;eiisatimedtransitiontable,andfisasetofacceptingstates. timedlanguages. Denition3.10AtimedBuchiautomaton(inshortTBA)isatupleh;;0;C;E;Fi, oftimedlanguagesacceptedbytbastimedregularlanguages. inf(r)\f6=;. f(;)jahasanacceptingrunover(;)g. InanalogywiththeclassoflanguagesacceptedbyBuchiautomata,wecalltheclass Arunr=(s;)ofaTBAoveratimedword(;)iscalledanacceptingruni ForaTBAA,thelanguageL(A)oftimedwordsitacceptsisdenedtobetheset 10

12 Denition3.11AtimedlanguageLisatimedregularlanguageiL=L(A)forsome Example3.12ThelanguageL3ofExample3.5isatimedregularlanguage.Thetimed transitiontableoffigure4iscoupledwiththeacceptancesetconsistingofallthestates. TBAA. Figure5:TimedBuchiautomatonacceptingLcrt b b,(x<2)? a, x:= requiresthatthetimedierencebetweenthesuccessivepairsofaandbformanincreasing Forevery!-regularlanguageLover,thetimedlanguagef(;)j2Lgisregular. AtypicalexampleofanonregulartimedlanguageisthelanguageL2ofExample3.2.It a a, x:=0 Example3.13TheautomatonofFigure5acceptsthetimedlanguageLcrtoverthe sequence. alphabetfa;bg.lcrt=f((ab)!;)j9i:8ji:(2j<2j?1+2)g: timingconstraintstospecifyaninterestingconvergentresponseproperty: TheautomatonofExample3.13combinestheBuchiacceptanceconditionwiththe Anothernonregularlanguageisf(a!;)j8i:(i=2i)g. automatonstartsinstates0,andcyclesbetweenthestatess0ands1forawhile.then, nondeterministically,itmovestostates2settingitsclockxto0.whileinthecycle theresponsetimeis\eventually"alwayslessthan2timeunits. thatthenextbiswithin2timeunits.interpretingthesymbolbasaresponsetoarequest betweenthestatess2ands3,theautomatonresetsitsclockwhilereadinga,andensures denotedbythesymbola,theautomatonmodelsasystemwithaconvergentresponsetime; Thestartstateiss0,theacceptingstateiss2,andthereisasingleclockx.The phabetfa;bg. Example3.14TheautomatonofFigure6acceptsthefollowinglanguageovertheal- Thenextexampleshowsthattimedautomatacanspecifyperiodicbehavioralso. equals3thereisanasymbol.thusitexpressesthepropertythatahappensatalltime valuesthataremultiplesof3. regularintervalsofperiod3timeunits.theautomatonrequiresthatwhenevertheclock Theautomatonhasasinglestates0,andasingleclockx.Theclockgetsresetat f(;)j8i:9j:(j=3i^j=a)g 11

13 Figure6:Timedautomatonspecifyingperiodicbehavior a,b,(x<3)? intersection. Thenexttheoremconsiderssomeclosurepropertiesoftimedregularlanguages. Theorem3.15Theclassoftimedregularlanguagesisclosedunder(nite)unionand 3.6Propertiesoftimedregularlanguages lossofgeneralitythattheclocksetsciaredisjoint.weconstructtbasacceptingthe unionandintersectionofl(ai). Proof.ConsiderTBAsAi=h;i;i0;Ci;Ei;Fii,i=1;2;:::n.Assumewithout 0 a,(x=3)?,x:=0 i-thcomponentofthetuplekeepstrackofthestateofai,andthelastcomponentisused constructionforbuchiautomata[9].thesetofclocksfortheproductautomatonais thedisjointunionofalltheautomata. [ici.thestatesofaareoftheformhs1;:::sn;ki,whereeachsi2i,and1kn.the asacounterforcyclingthroughtheacceptingconditionsofalltheindividualautomata. incetbasarenondeterministicthecaseofunioniseasy.therequiredtbaissimply Initiallythecountervalueis1,anditisincrementedfromkto(k+1)(modulon)ithe currentstateofthek-thautomatonisanacceptingstate.notethatwechoosethevalue Intersectioncanbeimplementedbyatrivialmodicationofthestandardproduct ofnmodntoben. toberesetwiththistransitionis[ii,andtheassociatedclockconstraintis^ii. pereachautomaton,withthesamelabela.correspondingtothisset,thereisajoint ishs01;:::s0n;jiwithj=(k+1)modnifsk2fk,andj=kotherwise.thesetofclocks havingthesamelabel.letfhsi;s0i;a;i;ii2eiji=1;:::ngbeasetoftransitions,one transitionofaoutofeachstateoftheformhs1;:::sn;kilabeledwitha.thenewstate Ai.AtransitionofAisobtainedbycouplingthetransitionsoftheindividualautomata TheinitialstatesofAareoftheformhs1;:::sn;1iwhereeachsiisastartstateof ceptingconditionsofalltheautomataaremet.consequently,wedenetheacceptingset foratoconsistofstatesoftheformhs1;:::sn;ni,wheresn2fn. isnijij.thenumberofclocksisijcij,andthesizeoftheedgesetisnijeij.note thatjejincludesthelengthoftheclockconstraintsassumingbinaryencodingforthe Thecountervaluecyclesthroughthewholerange1;:::ninnitelyoftenitheac- constants. Intheaboveproductconstruction,thenumberofstatesoftheresultingautomaton 12

14 Example3.16ThelanguageacceptedbytheautomatoninFigure7is other.considerthefollowingexample. inaniteintervaloftime.furthermore,thesymbolscanbearbitrarilyclosetoeach Observethatevenforthetimedregularlanguagesarbitrarilymanysymbolscanoccur Figure7:TimedautomatonacceptingLconverge a,(x=1)?,x:=0 a,x:=0 b (x=1)? y:=0 Everywordacceptedbythisautomatonhasthepropertythatthesequenceoftime Lconverge=f((ab)!;)j8i:(2i?1=i^(2i?2i?1>2i+2?2i+1))g: b,(y<1)?,y:=0 bytheautomatonis dierencesbetweenaandthefollowingbisstrictlydecreasing.asamplewordaccepted timemodel.ifwerequireallthetimevaluesitobemultiplesofsomexedconstant, howeversmall,thelanguageacceptedbytheautomatonoffigure7willbeempty. Thisexampleillustratesthatthemodelofrealsisindeeddierentfromthediscrete- (a;1)!(b;1:5)!(a;2)!(b;2:25)!(a;3)!(b;3:125)! staysunchanged. Theorem3.17LetLbeatimedregularlanguage.Foreveryword,2Untime(L)i thesetofrationalsq.onlythedensenessoftheunderlyingdomainplaysacrucialrole. Inparticular,Theorem3.17showsthatifwerequireallthetimevaluesintimesequences toberationalnumbers,theuntimedlanguageuntime[l(a)]ofatimedautomatona Ontheotherhand,timedautomatadonotdistinguishbetweenthesetofrealsRand thereexistsatimesequencesuchthati2qforalli1,and(;)2l. Otherwisechoose0i2Qsuchthatforall0j<i,foralln2N,(0 withallrationaltimevaluessuchthat(;)2l(a),thenclearly,2untime[l(a)]. everyconstantappearingintheclockconstraintsofaisanintegralmultipleof.let 0=0,and0=0.Ifi=j+nforsome0j<iandn2N,thenchoose0i=0j+n. Proof.ConsideratimedautomatonA,andaword.Ifthereexistsatimesequence Nowsupposeforanarbitrarytimesequence,(;)2L(A).Let2Qbesuchthat 0,ifaclockxisresetatthei-thtransitionpoint,thenitspossiblevaluesatthej-th possible. (i?j)<n.notethatbecauseofthedensenessofqsuchachoiceof0iisalways Consideranacceptingrunr=(s;)ofAover(;).Becauseoftheconstructionof 13 i?0j)<ni

15 0=0,andifthei-thtransitionalongrisaccordingtotheedgehsi?1;si;i;i;ii,then Figure8:TimedMullerautomaton a,(x<5)? a,(x<2)? 3.7TimedMullerautomata transitionpointalongthetwotimesequences,namely,(j?i)and(0j?0i),satisfythe r0=(s;0)over(;0)whichfollowsthesamesequenceofedgesasr.inparticular,choose samesetofclockconstraints.consequentlyitispossibletoconstructanacceptingrun WecandenetimedautomatawithMulleracceptanceconditionsalso. set0i=[i7!0](0i?1+0 i?0 i?1).consequently,aaccepts(;0). b,x:=0 c,x:=0 f(;)jahasanacceptingrunover(;)g. inf(r)2f. Denition3.18AtimedMullerautomaton(TMA)isatupleh;;0;C;E;Fi,where Example3.19ConsidertheautomatonofFigure8overthealphabetfa;b;cg.The h;;0;c;eiisatimedtransitiontable,andf2speciesanacceptancefamily. startstateiss0,andthemulleracceptancefamilyconsistsofasinglesetfs0;s2g.oany ForaTMAA,thelanguageL(A)oftimedwordsitacceptsisdenedtobetheset Arunr=(s;)oftheautomatonoveratimedword(;)isanacceptingruni acceptingrunshouldcyclebetweenstatess0ands1onlynitelymanytimes,andbetween theclassoftimedlanguagesacceptedbytmasisthesameastheclassoftimedregular power.thefollowingtheoremstatesthatthesameholdstruefortbasandtmas.thus than2ifthe(2i)-thsymbolisc,andlessthan5otherwise. statess0ands2innitelymanytimes.everyword(;)acceptedbytheautomaton languages.theproofofthefollowingtheoremcloselyfollowsthestandardargumentthat satises:(1)2(a(b+c))(ac)!,and(2)foralli1,thedierence(2i?1?2i?2)isless an!-regularlanguageisacceptedbyabuchiautomatoniitisacceptedbysomemuller automaton. Theorem3.20AtimedlanguageisacceptedbysometimedBuchiautomatoniitis RecallthatuntimedBuchiautomataandMullerautomatahavethesameexpressive timedtransitiontableasthatofa,andwiththeacceptancefamilyf=f0:0\f6= acceptedbysometimedmullerautomaton. ;g.itiseasytocheckthatl(a)=l(a0).thisprovesthe\onlyif"partoftheclaim. Proof.LetA=h;;0;C;E;FibeaTBA.ConsidertheTMAA0withthesame 14

16 AF=h;;0;C;E;fFgi,soitsucestoconstruct,foreachacceptancesetF,aTBA languageusingthesimulationofmulleracceptanceconditionbybuchiautomata.let A0FwhichacceptsthelanguageL(AF).AssumeF=fs1;:::skg.TheautomatonA0F tomakesurethateverystateinfisvisitedinnitelyoften.tatesofa0fareofthe AbeaTMAgivenash;;0;C;E;Fi.FirstnotethatL(A)=[F2FL(AF)where usesnondeterminismtoguesswhenthesetfisenteredforever,andthenusesacounter Intheotherdirection,givenaTMA,wecanconstructaTBAacceptingthesame formhs;ii,wheres2andi2f0;1;:::kg.thesetofinitialstatesis0f0g.the automatonsimulatesthetransitionsofa,andatsomepointnondeterministicallysets hasatransitionhhs;0i;hs0;0i;a;;i,and,inaddition,ifs02fitalsohasatransition thesecondcomponentto1.foreverytransitionhs;s0;a;;iofa,theautomatona0f hhs;0i;hs0;1i;a;;i. 4Checkingemptiness j=i.theonlyacceptingstateishsk;ki. setf.foreverya-transitionhs;s0;a;;iwithbothsands0inf,foreach1ik, thereisana0f-transitionhhs;ii;hs0;ji;a;;iwherej=(i+1)modk,ifsequalssi,else Whilethesecondcomponentisnonzero,theautomatonisrequiredtostaywithinthe timedautomaton.theexistenceofaninniteacceptingpathintheunderlyingtransition tableisclearlyanecessaryconditionforthelanguageofanautomatontobenonempty. However,thetimingconstraintsoftheautomatonruleoutcertainadditionalbehaviors. Inthissectionwedevelopanalgorithmforcheckingtheemptinessofthelanguageofa parisonswithrationalconstants.thefollowinglemmashowsthat,forcheckingemptiness, Recallthatourdenitionoftimedautomataallowsclockconstraintswhichinvolvecom- 4.1Restrictiontointegerconstants untimedwordsthatareconsistentwiththetimedwordsacceptedbyatimedautomaton. WewillshowthataBuchiautomatoncanbeconstructedthatacceptsexactlythesetof bymultiplyingallibyt. Lemma4.1ConsideratimedtransitiontableA,atimedword(;),andt2Q.(s;) constants.foratimedsequenceandt2q,lettdenotethetimedsequenceobtained wecanrestrictourselvestotimedautomatawhoseclockconstraintsinvolveonlyinteger transitiontableobtainedbyreplacingeachconstantdineachclockconstraintlabeling ttobetheleastcommonmultipleofdenominatorsofalltheconstantsappearinginthe theedgesofabytd. isarunofaover(;)i(s;t)isarunofatover(;t),whereatisthetimed clockconstraintsofa,thentheclockconstraintsforatuseonlyintegerconstants.inthis denominatorsofalltheoriginalconstants.weassumebinaryencodingfortheconstants. translation,thevaluesoftheindividualconstantsgrowatmostwiththeproductofthe ThusthereisanisomorphismbetweentherunsofAandtherunsofAt.Ifwechoose Proof.Thelemmacanbeprovedeasilyfromthedenitionsusinginduction. 15

17 weencodeconstantsinbinarynotation;ifweuseunaryencodingthenj(at)jcanbe j(at)jisboundedbyj(a)j2.observethatthisresultdependscruciallyonthefactthat exponentialinj(a)j. LetusdenotethelengthoftheclockconstraintsofAbyj(A)j.Itiseasytoprovethat L(A)weconsiderAt.AlsoUntime[L(A)]equalsUntime[L(At)].Intheremainderofthe sectionweassumethattheclockconstraintsuseonlyintegerconstants. 4.2Clockregions Ateverypointintimethefuturebehaviorofatimedtransitiontableisdeterminedby ObservethatL(A)isemptyiL[At]isempty.Hence,todecidetheemptinessof Denition4.2Foratimedtransitiontableh;;0;C;Ei,anextendedstateisapair itsstateandthevaluesofallitsclocks.thismotivatesthefollowingdenition: alsoontheorderingofthefractionalpartsofallclockvalues,thentherunsstartingfrom possiblybuildanautomatonwhosestatesaretheextendedstatesofa.butiftwo extendedstateswiththesamea-stateagreeontheintegralpartsofallclockvalues,and hs;iwheres2andisaclockinterpretationforc. thefractionalpartsisneededtodecidewhichclockwillchangeitsintegralpartrst.for thetwoextendedstatesareverysimilar.theintegralpartsoftheclockvaluesareneeded todeterminewhetherornotaparticularclockconstraintismet,whereastheorderingof incethenumberofsuchextendedstatesisinnite(infact,uncountable),wecannot withclockconstraint(x=1)canbefollowedbyatransitionwithclockconstraint(y=1), example,iftwoclocksxandyarebetween0and1inanextendedstate,thenatransition consequenceindecidingtheallowedpaths. comparedwithaconstantgreaterthanc,thenitsactualvalue,onceitexceedsc,isofno dependingonwhetherornotthecurrentclockvaluessatisfy(x<y). Theintegralpartsofclockvaluescangetarbitrarilylarge.Butifaclockxisnever cxbethelargestintegercsuchthat(xc)or(cx)isasubformulaofsomeclock Denition4.3LetA=h;;0;C;Eibeatimedtransitiontable.Foreachx2C,let clockincappearsinsomeclockconstraint. constraintappearingine. andbtcdenotestheintegralpartoft;thatis,t=btc+fract(t).weassumethatevery Nowweformalizethisnotion.Foranyt2R,fract(t)denotesthefractionalpartoft, 0iallthefollowingconditionshold: 1.Forallx2C,eitherb(x)candb0(x)carethesame,orboth(x)and0(x)are TheequivalencerelationisdenedoverthesetofallclockinterpretationsforC; AclockregionforAisanequivalenceclassofclockinterpretationsinducedby. 2.Forallx;y2Cwith(x)cxand(y)cy,fract((x))fract((y))i 3.Forallx2Cwith(x)cx,fract((x))=0ifract(0(x))=0. fract(0(x))fract(0(y)). greaterthancx. 16

18 012 1y6???? -x6cornerpoints:e.g.[(0,1)] 14Openlinesegments:e.g.[0<x=y<1] uniquelycharacterizedbya(nite)setofclockconstraintsitsatises.forexample, Wewilluse[]todenotetheclockregiontowhichbelongs.Eachregioncanbe 8Openregions:e.g.[0<x<y<1] consideraclockinterpretationovertwoclockswith(x)=0:3and(y)=0:7.every clockinterpretationin[]satisestheconstraint(0<x<y<1),andwewillrepresent thisregionby[0<x<y<1].thenatureoftheequivalenceclassescanbebest Figure9:Clockregions cy=1.theclockregionsareshowninfigure9. Example4.4Consideratimedtransitiontablewithtwoclocksxandywithcx=2and understoodthroughanexample. clockconstraintievery2satises.eachregioncanberepresentedbyspecifying ofa,if0thensatisesi0satises.wesaythataclockregionsatisesa Notethatthereareonlyanitenumberofregions.Alsonotethatforaclockconstraint (1)foreveryclockx,oneclockconstraintfromtheset theupperboundinthefollowinglemma. Bycountingthenumberofpossiblecombinationsofequationsoftheaboveform,weget (2)foreverypairofclocksxandysuchthatc?1<x<candd?1<y<d appearin(1)forsomec;d,whetherfract(x)islessthan,equalto,or greaterthanfract(y). fx=cjc=0;1;:::cxg[fc?1<x<cjc=1;:::cxg[fx>cxg; sizeofthelargestconstantstheclocksarecomparedwith,thenthenumberofregions binaryencoding,andhencetheproductx2c(2cx+2)iso[2j(a)j].incethenumber O[2j(A)j].Notethatifweincrease(A)withoutincreasingthenumberofclocksorthe ofclocksjcjisboundedbyj(a)j,henceforth,weassumethatthenumberofregionsis Lemma4.5Thenumberofclockregionsisboundedby[jCj!2jCjx2C(2cx+2)]. doesnotgrowwithj(a)j.alsoobservethataregioncanberepresentedinspacelinear inj(a)j. Rememberthatj(A)jstandsforthelengthoftheclockconstraintsofAassuming 17

19 Therststepinthedecisionprocedureforcheckingemptinessistoconstructatransition tablewhosepathsmimictherunsofainacertainway.wewilldenotethedesired 4.3Theregionautomaton ofthetimedtransitiontablea,andtheequivalenceclassofthecurrentvaluesofthe transitiontablebyr(a),theregionautomatonofa.astateofr(a)recordsthestate clocks.itisoftheformhs;iwiths2andbeingaclockregion.theintended interpretationisthatwhenevertheextendedstateofaishs;i,thestateofr(a)is labeledwithaiainstateswiththeclockvalues2canmakeatransitiononato andtheclockinterpretation0assigns0toeveryclock.thetransitionrelationofr(a) hs;[]i.theregionautomatonstartsinsomestatehs0;[0]iwheres0isastartstateofa, theextendedstatehs0;0iforsome020. isdenedsothattheintendedsimulationisobeyed.ithasanedgefromhs;itohs0;0i Denition4.6Aclockregion0isatime-successorofaclockregioniforeach2, thereexistsapositivet2rsuchthat+t20. bevisitedbyaclockinterpretation2astimeprogresses. clockregions.thetime-successorsofaclockregionarealltheclockregionsthatwill Theedgerelationcanbeconvenientlydenedusingatime-successorrelationoverthe ofaregionaretheregionsthatcanbereachedbymovingalongalinedrawnfromsome pointininthediagonallyupwardsdirection(paralleltothelinex=y).forexample, theregion[(1<x<2);(0<y<x?1)]has,otherthanitself,thefollowingregionsas Example4.7ConsidertheclockregionsshowninFigure9again.Thetime-successors [(x>2);(y>1)]. time-successors:[(x=2);(0<y<1)],[(x>2);(0<y<1)],[(x>2);(y=1)]and Tocomputeallthetime-successorsofweproceedasfollows.Firstobservethatthe (d?1<y<d)appearin(1),theorderingrelationshipbetweenfract(x)andfract(y). or(c?1<x<c)or(x>cx),and(2)foreverypairxandysuchthat(c?1<x<c)and time-successorrelationisatransitiverelation.weconsiderdierentcases. clockregionisspeciedbygiving(1)foreveryclockx,aconstraintoftheform(x=c) Firstsupposethatsatisestheconstraint(x>cx)foreveryclockx.Theonly Nowletusseehowtoconstructallthetime-successorsofaclockregion.Recallthata time-successorofisitself.thisisthecasefortheregion[(x>2);(y>1)]infigure9. below:(1)forx2c0,ifsatises(x=cx)thensatises(x>cx),otherwiseif (x=c)forsomeccx,isnonempty.inthiscase,astimeprogressesthefractional time-successorsofaresameasthetime-successorsoftheclockregionspeciedas partsoftheclocksinc0becomenonzero,andtheclockregionchangesimmediately.the NowsupposethatthesetC0consistingofclocksxsuchthatsatisestheconstraint (2)Forclocksxandysuchthatx<cxandy<cyholdsin,theordering relationshipinbetweentheirfractionalpartsisthesameasin. satises(x=c)thensatises(c<x<c+1).forx62c0,theconstraint inisthesameasthatin. 18

20 Forinstance,inFigure9,thetime-successorsof[(x=0);(0<y<1)]aresameasthe time-successorsof[0<x<y<1]. thiscase,astimeprogresses,theclocksinc0assumeintegervalues.letbetheclock regionspeciedby clocksyforwhichdoesnotsatisfy(y>cy),fract(y)fract(x)isaconstraintof.in doesnotsatisfy(x>cx)andwhichhavethemaximalfractionalpart;thatis,forall Ifboththeabovecasesdonotapply,thenletC0bethesetofclocksxforwhich Inthiscase,thetime-successorsofinclude,,andallthetime-successorsof.For (1)Forx2C0,ifsatises(c?1<x<c)thensatises(x=c).For instance,infigure9,time-successorsof[0<x<y<1]includeitself,[(0<x<1);(y= (2)Forclocksxandysuchthat(c?1<x<c)and(d?1<y<d)appear asin. x62c0,theconstraintinissameasthatin. 1)],andallthetime-successorsof[(0<x<1);(y=1)]. Nowwearereadytodenetheregionautomaton. in(1),theorderingrelationshipinbetweentheirfractionalpartsissame Denition4.8ForatimedtransitiontableA=h;;0;C;Ei,thecorrespondingregionautomatonR(A)isatransitiontableoverthealphabet. ThestatesofR(A)areoftheformhs;iwheres2andisaclockregion. Theinitialstatesareoftheformhs0;[0]iwheres020and0(x)=0forallx2C. isfa;b;c;dg.everystateoftheautomatonisanacceptingstate.thecorresponding Example4.9ConsiderthetimedautomatonA0showninFigure10.Thealphabet R(A)hasanedgehhs;i;hs0;0i;aiithereisanedgehs;s0;a;;i2Eandaregion regionautomatonr(a0)isalsoshown.onlytheregionsreachablefromtheinitialregion 00suchthat(1)00isatime-successorof,(2)00satises,and(3)0=[7!0]00. automatonensurethatthetransitionfroms2tos3isnevertaken.theonlyreachable hs0;[x=y=0]iareshown.notethatcx=1andcy=1.thetimingconstraintsofthe regionwithstatecomponents2satisestheconstraints[y=1;x>1],andthisregionhas mostoneedgeoutofhs;iforeveryedgeoutofsandeverytime-successorof.itfollows iso[jj2j(a)j].aninspectionofthedenitionofthetime-successorrelationshowsthat everyregionhasatmostx2c[2cx+2]successorregions.theregionautomatonhasat canfollowab-transition. nooutgoingedges.thustheregionautomatonhelpsusinconcludingthatnotransitions thatthenumberofedgesinr(a)iso[jej2j(a)j].notethatcomputingthetime-successor relationiseasy,andcanbedoneintimelinearinthelengthoftherepresentationofthe region.constructingtheedgerelationfortheregionautomatonisalsorelativelyeasy;in Fromtheboundonthenumberofregions,itfollowsthatthenumberofstatesinR(A) additiontocomputingthetime-successors,wealsoneedtodeterminewhethertheclock 19

21 a 0 1 y:=0 2 b,(y=1)? c,(x<1)? c,(x<1)? a,(y<1)?,y:=0 3 d,(x>1)? 0 x=y=0 a a Figure10:AutomatonA0anditsregionautomaton a b b 1 0=y<x<1 1 y=0,x=1 1 y=0,x>1 b 2 1=y<x a c a a graphcanbeconstructedintimeo[(jj+jej)2j(a)j]. a d 3 d 3 3 d 3 d 0<y<x<1 0<y<1<x d 1=y<x x>1,y>1 Denition4.10Forarunr=(s;)ofAoftheform R(A). constraintlabelingaparticulara-transitionissatisedbyaclockregion.theregion NowweproceedtoestablishacorrespondencebetweentherunsofAandtherunsof d d r:hs0;0i1?!1hs1;1i2?!2hs2;2i3 d deneitsprojection[r]=(s;[])tobethesequence [r]:hs0;[0]i1?!hs1;[1]i2?!hs2;[2]i3?!3 20?!

22 over.incetimeprogresseswithoutboundalongr,everyclockx2ciseitherreset followingdenition: Denition4.11Arunr=(s;)oftheregionautomatonR(A)oftheform innitelyoften,orfromacertaintimeonwardsitincreaseswithoutbound.hence,for allx2c,forinnitelymanyi0,[i]satises[(x=0)_(x>cx)].thispromptsthe FromthedenitionoftheedgerelationforR(A),itfollowsthat[r]isarunofR(A) Lemma4.13impliesthatprogressiverunsofR(A)preciselycorrespondtotheprojected [(x=0)_(x>cx)]. isprogressiveiforeachclockx2c,thereareinnitelymanyi0suchthatisatises ThusforarunrofAover(;),[r]isaprogressiverunofR(A)over.Thefollowing r:hs0;0i1?!hs1;1i2?!hs2;2i3?! again. Example4.12ConsidertheregionautomatonR(A0)ofFigure10.Everyrunrof runsofa.beforeweprovethelemmaletusconsidertheregionautomatonofexample4.9 (ii),eventhoughthevalueofxisnotbounded,theclockyisresetonlynitelyoften, thoughygetsresetinnitelyoften,thevalueofxisalwayslessthan1.forrunsoftype theregionshs1;[y=0<x<1]iandhs3;[0<y<x<1]i,(ii)theautomatonstaysinthe hs3;[x>1;y>1]i. regionhs3;[0<y<1<x]iusingtheself-loop,or(iii)theautomatonstaysintheregion R(A0)hasasuxofoneofthefollowingthreeforms:(i)theautomatoncyclesbetween R(A0)oftype(iii). andyet,itsvalueisbounded.thuseveryprogressiverunofa0correspondstoarunof Lemma4.13IfrisaprogressiverunofR(A)overthenthereexistsatimesequence Onlythecase(iii)correspondstotheprogressiveruns.Forrunsoftype(i),even thattheextendedstateofaishsi;iiattimeiwithi2i.thereisanedgeinr(a) fromhsi;iitohsi+1;i+1ilabeledwithi+1.fromthedenitionoftheregionautomaton itfollowsthatthereisanedgehsi;si+1;i+1;i+1;i+1i2eandatime-successor0i+1of r0andthetimesequencestepbystep.asusual,r0startswithhs0;0i.nowsuppose andarunr0ofaover(;)suchthatrequals[r0]. isuchthat0i+1satisesi+1andi+1=[i+17!0]0i+1.fromthedenitionoftimesuccessor,thereexistsatimei+1suchthat(i+i+1?i)20i+1.nowitisclearthe Proof.Consideraprogressiverunr=(s;)ofR(A)over.Weconstructtherun Usingthisconstructionrepeatedlywegetarunr0=(s;)over(;)with[r0]=r. nexttransitionofacanbeattimei+1toanextendedstatehsi+1;i+1iwithi+12i+1. thattheautomatoncanfollowthesamesequenceoftransitionsasr0butattimes0i. runtoconstructanothertimesequence0satisfyingtheprogressrequirementandshow condition.upposethatisaconvergingsequence.weusethefactthatrisaprogressive sequence,afteracertainpositiononwards,everyclockinc0getsresetbeforeitreaches thevalue1.incerisprogressive,everyclockxnotinc0,afteracertainposition Theonlyproblemwiththeaboveconstructionisthatmaynotsatisfytheprogress LetC0bethesetofclocksresetinnitelyoftenalongr.inceisaconverging 21

23 onwards,nevergetsreset,andcontinuouslysatisesx>cx.thisensuresthatthere existsj0suchthat(1)afterthej-thtransitionpointeachclockx62c0continuously satises(x>cx),andeachclockx2c0continuouslysatises(x<1),and(2)foreach constructanothersequencer00=(s;0)withthesequenceoftransitiontimes0asfollows. Thesequenceoftransitionsalongr00issameasthatalongr0.Ifi62fk1;k2:::gthen isresetatleastoncebetweentheki-thandki+1-thtransitionpointsalongr.nowwe k>j,(k?j)islessthan0:5. werequirethe(i+1)-thtransitiontohappenafteradelayof(i+1?i),otherwisewe transitionpointsislessthan1.consequently,inspiteoftheadditionaldelays,thevalue requirethedelaytobe0:5.observethatalongr00thedelaybetweentheki-thandki+1-th Letj<k1<k2;:::beaninnitesequenceofintegerssuchthateachclockxinC0 andisarunofa.furthermore,[r00]=[r0]=r. (ascomparedtor0).fromthisweconcludethatr00satisestheconsecutionrequirement, alltheclockconstraintsandtheclockregionsatthetransitionpointsremainunchanged ofeveryclockinc0remainslessthan1afterthej-thtransitionpoint.othetruthof ForatimedautomatonA,itsregionautomatoncanbeusedtorecognizeUntime[L(A)]. ThefollowingtheoremisstatedforTBAs,butitalsoholdsforTMAs. 4.4Theuntimingconstruction quirement.hencer00istherunrequiredbythelemma. ince0hasinnitelymanyjumpseachofduration0:5,itsatisestheprogressre- theregionautomatoncorrespondingtothetimedtransitiontableh;;0;c;ei.the Theorem4.14GivenaTBAA=h;;0;C;E;Fi,thereexistsaBuchiautomaton acceptingsetofa0isf0=fhs;ijs2fg.,thelemmagivesatimesequenceandarunr0ofaover(;)suchthatrequals[r0]. overwhichacceptsuntime[l(a)]. A0over.TheconversefollowsfromLemma4.13.GivenaprogressiverunrofA0over Ifrisanacceptingrun,soisr0.Itfollowsthat2Untime[L(A)]iA0hasaprogressive, IfrisanacceptingrunofAover(;),then[r]isaprogressiveandacceptingrunof Proof.WeconstructaBuchiautomatonA0asfollows.ItstransitiontableisR(A), acceptingrunoverit. Example4.15LetusconsidertheregionautomatonR(A0)ofExample4.9again.ince progressiveisomestatefromeachfxrepeatsinnitelyoften.itisstraightforwardto overia00hasanacceptingrunover. constructanotherbuchiautomatona00suchthata0hasaprogressiveandacceptingrun Forx2C,letFx=fhs;ijj=[(x=0)_(x>cx)]g.RecallthatarunofA0is itfollowsthatthetransitiontabler(a0)canbechangedtoabuchiautomatonbychoosingtheacceptingsettoconsistofasingleregionhs3;[x>1;y>1]i.consequently allstatesofa0areaccepting,fromthedescriptionoftheprogressiverunsinexample4.12 TheautomatonA00isthedesiredautomaton;L(A00)equalsUntime[L(A)]. Untime[L(A0)]=L[R(A0)]=ac(ac)d!: 22

24 incharacter;itsconsistencycanbecheckedbyanite-stateautomaton.anequivalent formulationofthetheoremis Theorem4.14saysthatthetiminginformationinatimedautomatonis\regular" theproofoftheorem4.14.thenexttheoremfollows. fortheemptinessofthelanguageofthecorrespondingbuchiautomatonconstructedby Theorem4.16GivenatimedBuchiautomatonA=h;;0;C;E;Fitheemptinessof Furthermore,tocheckwhetherthelanguageofagivenTBAisempty,wecancheck IfatimedlanguageListimedregularthenUntime(L)is!-regular. L(A)canbecheckedintimeO[(jj+jEj)2j(A)j]. boundofthetheoremfollows. ofthesetsfx.thiscanbecheckedintimelinearinthesizeofa0[41].thecomplexity fromsomestartstateofa0andccontainsatleastonestateeachfromthesetf0andeach orem4.14.recallthatinection4.3wehadshownthatthenumberofstatesina0is O[jj2j(A)j],thenumberofedgesisO[jEj2j(A)j]. Proof.LetA0betheBuchiautomatonconstructedasoutlinedintheproofofThe- constants,weneedtoapplytheabovedecisionprocedureonatfortheleastcommon RecallthatifwestartwithanautomatonAwhoseclockconstraintsinvolverational ThelanguageL(A)isnonemptyithereisacycleCinA0suchthatCisaccessible thesizeoftheclockconstraints;wehave[at]=o[(a)2]. emptinessofl(a). denominatortofalltherationalconstants(seeection4.1).thisinvolvesablow-upin 4.5Complexityofcheckingemptiness amuller(or,buchi)automatonwhichacceptsuntime[l(a)],anduseittocheckforthe automata.inparticular,givenatimedmullerautomatonawecaneectivelyconstruct Theabovemethodcanbeusedevenifwechangetheacceptanceconditionfortimed ThecomplexityofthealgorithmfordecidingemptinessofaTBAisexponentialinthe numberofclocksandthelengthoftheconstantsinthetimingconstraints.thisblow-up incomplexityseemsunavoidable;wereducetheacceptanceproblemforlinearbounded tobeppace-completebyarguingthatthealgorithmofection4.4canbeimplemented automatona,isppace-complete. inpolynomialspace. Theorem4.17Theproblemofdecidingtheemptinessofthelanguageofagiventimed automata,aknownppace-completeproblem[23],totheemptinessquestionfortbas toprovetheppacelowerboundfortheemptinessproblem.wealsoshowtheproblem automatonbyguessingapathofthedesiredformusingonlypolynomialspace.thisisa fairlystandardtrick,andhenceweomitthedetails. table.butitispossibleto(nondeterministically)checkfornonemptinessoftheregion isexponentialinthenumberofclocksofa,wecannotconstructtheentiretransition Proof.[PPACE-membership]incethenumberofstatesoftheregionautomaton 23

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c

FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c Tallahassee Community College 55 FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c This kind of trinomial differs from the previous kind we have factored because the coefficient of x is no longer "1".

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style Removing Brackets 1. Introduction In order to simplify an expression which contains brackets it is often necessary to rewrite the expression in an equivalent form but without any brackets. This process

More information

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1) Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

More information

Algebra 1 Chapter 08 review

Algebra 1 Chapter 08 review Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

Factoring Polynomials: Factoring by Grouping

Factoring Polynomials: Factoring by Grouping OpenStax-CNX module: m21901 1 Factoring Polynomials: Factoring by Grouping Wade Ellis Denny Burzynski This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

Using the ac Method to Factor

Using the ac Method to Factor 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

More information

( ) FACTORING. x In this polynomial the only variable in common to all is x.

( ) FACTORING. x In this polynomial the only variable in common to all is x. FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

More information

The Greatest Common Factor; Factoring by Grouping

The Greatest Common Factor; Factoring by Grouping 296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

How To Understand The Theory Of Algebraic Functions

How To Understand The Theory Of Algebraic Functions Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions 6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

More information

Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring. Factoring Monomials Monomials can often be factored in more than one way. Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

More information

Test Case Generation for Ultimately Periodic Paths Joint work with Saddek Bensalem Hongyang Qu Stavros Tripakis Lenore Zuck Accepted to HVC 2007 How to find the condition to execute a path? (weakest precondition

More information

Veterans Upward Bound Algebra I Concepts - Honors

Veterans Upward Bound Algebra I Concepts - Honors Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER

More information

Factoring - Grouping

Factoring - Grouping 6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in

More information

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares 284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this

More information

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

2D Geometric Transformations

2D Geometric Transformations 2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.

More information

Factoring Polynomials

Factoring Polynomials Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Deterministic Finite Automata

Deterministic Finite Automata 1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

The Handshake Problem

The Handshake Problem The Handshake Problem Tamisha is in a Geometry class with 5 students. On the first day of class her teacher asks everyone to shake hands and introduce themselves to each other. Tamisha wants to know how

More information

Sect 6.1 - Greatest Common Factor and Factoring by Grouping

Sect 6.1 - Greatest Common Factor and Factoring by Grouping Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

Unit 3: Day 2: Factoring Polynomial Expressions

Unit 3: Day 2: Factoring Polynomial Expressions Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored

More information

Academic Success Centre

Academic Success Centre 250) 960-6367 Factoring Polynomials Sometimes when we try to solve or simplify an equation or expression involving polynomials the way that it looks can hinder our progress in finding a solution. Factorization

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

INTEGRATING FACTOR METHOD

INTEGRATING FACTOR METHOD Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content

7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content 7-6 Choosing a Factoring Model Extension: Factoring Polynomials with More Than One Variable Essential question: How can you factor polynomials with more than one variable? What is the connection between

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

6.3 FACTORING ax 2 bx c WITH a 1

6.3 FACTORING ax 2 bx c WITH a 1 290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100

More information

Decomposing Rational Functions into Partial Fractions:

Decomposing Rational Functions into Partial Fractions: Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

On closed-form solutions to a class of ordinary differential equations

On closed-form solutions to a class of ordinary differential equations International Journal of Advanced Mathematical Sciences, 2 (1 (2014 57-70 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closed-form

More information

Factoring Trinomials of the Form x 2 bx c

Factoring Trinomials of the Form x 2 bx c 4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

More information

Factoring Flow Chart

Factoring Flow Chart Factoring Flow Chart greatest common factor? YES NO factor out GCF leaving GCF(quotient) how many terms? 4+ factor by grouping 2 3 difference of squares? perfect square trinomial? YES YES NO NO a 2 -b

More information

Converting Finite Automata to Regular Expressions

Converting Finite Automata to Regular Expressions Converting Finite Automata to Regular Expressions Alexander Meduna, Lukáš Vrábel, and Petr Zemek Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 00 Brno, CZ http://www.fit.vutbr.cz/

More information

QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12

QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12 QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12 JOAN C. ARTÉS1, JAUME LLIBRE 1 AND NICOLAE VULPE 2 Abstract. A quadratic polynomial

More information

Don't Forget the Differential Equations: Finishing 2005 BC4

Don't Forget the Differential Equations: Finishing 2005 BC4 connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College

More information

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University

More information

FACTOR POLYNOMIALS by SPLITTING

FACTOR POLYNOMIALS by SPLITTING FACTOR POLYNOMIALS by SPLITTING THE IDEA FACTOR POLYNOMIALS by SPLITTING The idea is to split the middle term into two pieces. Say the polynomial looks like c + bx + ax 2. Further more suppose the DL METHOD

More information

SPECIAL PRODUCTS AND FACTORS

SPECIAL PRODUCTS AND FACTORS CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

AIP Factoring Practice/Help

AIP Factoring Practice/Help The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

6.1 The Greatest Common Factor; Factoring by Grouping

6.1 The Greatest Common Factor; Factoring by Grouping 386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

More information

To add fractions we rewrite the fractions with a common denominator then add the numerators. = +

To add fractions we rewrite the fractions with a common denominator then add the numerators. = + Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

More information

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1 5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

4. Binomial Expansions

4. Binomial Expansions 4. Binomial Expansions 4.. Pascal's Triangle The expansion of (a + x) 2 is (a + x) 2 = a 2 + 2ax + x 2 Hence, (a + x) 3 = (a + x)(a + x) 2 = (a + x)(a 2 + 2ax + x 2 ) = a 3 + ( + 2)a 2 x + (2 + )ax 2 +

More information

Systems of Linear Equations and Inequalities

Systems of Linear Equations and Inequalities Systems of Linear Equations and Inequalities Recall that every linear equation in two variables can be identified with a line. When we group two such equations together, we know from geometry what can

More information

Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013

Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013 ARML Practice 12/15/2013 Problem Solution Warm-up problem Lunes of Hippocrates In the diagram below, the blue triangle is a right triangle with side lengths 3, 4, and 5. What is the total area of the green

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting

More information

Online EFFECTIVE AS OF JANUARY 2013

Online EFFECTIVE AS OF JANUARY 2013 2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break

More information

(!' ) "' # "*# "!(!' +,

(!' ) ' # *# !(!' +, Normally, when single line commands are entered, MATLAB processes the commands immediately and displays the results. MATLAB is also capable of processing a sequence of commands that are stored in files

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Math 432 HW 2.5 Solutions

Math 432 HW 2.5 Solutions Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

More information

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

More information

tegrals as General & Particular Solutions

tegrals as General & Particular Solutions tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx

More information

( )( ax b) ( ) 2. x 2 10x + 25 = (x 5) 2. 9x 2 + 12x + 4 = (3x + 2) 2. x 2 6x + 9 = (x 3) 2. 4x 2 + 20x + 25 = (2x + 5) 2

( )( ax b) ( ) 2. x 2 10x + 25 = (x 5) 2. 9x 2 + 12x + 4 = (3x + 2) 2. x 2 6x + 9 = (x 3) 2. 4x 2 + 20x + 25 = (2x + 5) 2 FACTORING SHORTCUTS.. Although most factoring problems can be done with generic rectangles, there are two special factoring patterns that, if recognized, can be done by sight. The two patterns are known

More information

Anyone know these guys?

Anyone know these guys? Anyone know these guys? Gavin Brown and Miles Reid We observe that some of our diptych varieties have a beautiful description in terms of key 5-folds V (k) A k+5 that are almost homogeneous spaces. By

More information

Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

More information

Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai

Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for

More information

How To Solve Factoring Problems

How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES

Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian co-ordinates. The Gradient of a Line. As

More information

1 Mathematical Models of Cost, Revenue and Profit

1 Mathematical Models of Cost, Revenue and Profit Section 1.: Mathematical Modeling Math 14 Business Mathematics II Minh Kha Goals: to understand what a mathematical model is, and some of its examples in business. Definition 0.1. Mathematical Modeling

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

Faculty of Engineering Student Number:

Faculty of Engineering Student Number: Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering Final Exam, First Semester: 2012/2013 Course Title: Microprocessors Date: 17/01//2013 Course No:

More information

Math 113 Review for Exam I

Math 113 Review for Exam I Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular

More information

How To Factor By Grouping

How To Factor By Grouping Lecture Notes Factoring by the AC-method page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x

More information

Vector Spaces. Chapter 2. 2.1 R 2 through R n

Vector Spaces. Chapter 2. 2.1 R 2 through R n Chapter 2 Vector Spaces One of my favorite dictionaries (the one from Oxford) defines a vector as A quantity having direction as well as magnitude, denoted by a line drawn from its original to its final

More information

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1 Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

More information