Lectures on The Theory of Algebraic Functions of One Variable


 Malcolm Gibson
 3 years ago
 Views:
Transcription
1 Lectures on The Theory of Algebraic Functions of One Variable by M. Deuring Notes by C.P. Ramanujam No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Apollo Pier Road, Bombay  1 Tata Institute of Fundamental Research Bombay 1959
2
3 Contents 1 Lecture Introduction Ordered Groups Valuations, Places and Valuation Rings Lecture (Contd.) Lecture The Valuations of Rational Function Field Extensions of Places Lecture Valuations of Algebraic Function Fields The Degree of a Place Independence of Valuations Lecture Divisors Lecture The Space L(U ) The Principal Divisors Lecture The Riemann Theorem iii
4 iv Contents 13 Repartitions Lecture Differentials The RiemannRoch theorem Lecture Rational Function Fields Function Fields of Degree Two Fields of Genus Zero Fields of Genus One Lecture The Greatest Common Divisor of a Class The Zeta Function of Algebraic Lecture The Infinite Product forζ(s, K) The Functional Equation Lseries Lecture The Functional Equation for the Lfunctions Lecture The Components of a Repartition Lecture A Consequence of the RiemannRoch Theorem Lecture Classes ModuloF Lecture Characters ModuloF
5 Contents v 17 Lecture Lfunctions ModuloF The Functional Equations of the Lfunctions Lecture Extensions of Algebraic Function Fields Lecture Application of Galois Theory Lecture Divisors in an Extension Ramification Lecture Constant Field Extensions Lecture Constant Field Extensions Lecture Genus of a Constant Field Extension The Zeta Function of an Extension
6
7 Lecture 1 1 Introduction We shall be dealing in these lectures with the algebraic aspects of the 1 theory of algebraic functions of one variable. Since an algebraic function w(z) is defined implicitly by an equation of the form f (z, w)=0, where f is a polynomial, it is understandable that the study of such functions should be possible by algebraic methods. Such methods also have the advantage that the theory can be developed in the most general setting, viz. over an arbitrary field, and not only over field of complex numbers (the classical case). Definition. Let k be a field. An algebraic function field K over k is a finitely generated extension over k of transcendence degree at least equal to one. If the transcendence degree of K/k is r, we say that it is a function field in r variables. We shall confine ourselves in these lectures to algebraic function fields of one variable, and shall refer to them shortly as function fields. If K/k is a function field, it follows from our definition that there exists an X in K transcendental over k, such that K/k(X) is a finite algebraic extension. If Y is another transcendental element of k, it should satisfy a relation F(X, Y)=0, where F is a polynomial over K which does not vanish identically. Since Y is transcendental by assumption, 2 the polynomial cannot be independent of X. Rearranging in powers of X, we see that X is algebraic over k(y). Moreover, 1
8 2 1. Lecture 1 [K : k(y)]=[k : k(x, Y)].[k(X, Y) : k(y)] [K : k(x)].[k(x, Y) : k(y)]< and thus Y also satisfies the same conditions as X. Thus, any transcendental element of K may be used as a variable in the place of X. The set of all elements of K algebraic over k forms a subfield k of K, which is called the field of constants of K. Hence forward, we shall always assume, unless otherwise stated, that k=k, i.e., that k is algebraically closed in K. 2 Ordered Groups Definition. A multiplicative(additive) Abelian group W with a binary relation<(>) between its elements is said to be an ordered group if 0(1) forα,β W, one and only one of the relationsα<β,α=β,β< α (α>β,α=β>α) holds. 0(2) α<β,β<γ α<γ (α>β,β>γ α>γ) 0(3) α<β,δ W αδ<βδ(α>β,δ W α+δ>β+δ) 3 We shall denote the identity (zero) element by 1(0). In this and the following section, we shall express all our results in multiplicative notation. α > β shall mean the same thing as β < α. Let W 0 be the set{α :α Wα<1}. W 0 is seen to be a semi group by 0(2) and 0(3). Moreover, W= W 0 {1} W0 1 is a disjoint partitioning of W (where W0 1 means the set of inverses of elements of W 0 ). Conversely, if an Abelian group W can be partitioned as W 0 {1} W0 1, where W 0 is a semigroup, we can introduce an order in W by definingα<β to meanαβ 1 W 0 ; it is immediately verified that 0(1), 0(2) and 0(3) are fulfilled and that W 0 is precisely the set of elements<1 in this order. For an Abelian group W, the mapα α n (n any positive integer) is in general only an endomorphism. But if W is ordered, the map is a monomorphism; for ifαis greater than or less than 1,α n also satisfies the same inequality.
9 3. Valuations, Places and Valuation Rings 3 3 Valuations, Places and Valuation Rings We shall denote the nonzero elements of a field K by K. Definition. A Valuation of a field K is a mapping v of K onto an ordered multiplicative (additive) group W (called the group of the valuation or the valuation group) satisfying the following conditions: V(1) For a, b K, v(ab)=v(a)v(b) (v(ab)=v(a)+v(b)); i.e. v is homomorphism of the multiplicative group K onto W. V(2) For a, b, a+b K, v(a+b) max(v(a), v(b)) (v(a+b)) min(v(a) v(b))) V(3) v is nontrivial; i.e., there exists an a K with v(a) 1(v(a) 0) Let us add an element 0( ) to W satisfying the following (1) 0.0=α.0=0.α=0 for everyα W( + =α+ = +α= ), (2) α>0 for everyα W(α< ). If we extend a valuation v to the 4 whole of K by defining v(0)=0 (v(0)=, the new mapping also satisfies V(1), V(2) and V(3). The following are simple consequences of our definition. (a) For a K, v(a)=v( a). To prove this, it is enough by V(1) to prove that v( 1)=1. But v( 1). v( 1)=v(1)=1 by V(1), and hence v( 1)=1by the remark at the end of 2. (b) If v(a) v(b), v(a+ b)=max(v(a), v(b)). For let v(a)<v(b). Then, v(a+b) max(v(a), v(b)) = v(b) = v(a+b a) max(v(a+ b), v(a))=v(a+b) (c) Let a i K, (i=1,...n). Then an obvious induction on V(2) gives v( n a i ) max n v(a i), and equality holds if v(a i ) v(a j ) for i j. i=1 1 (d) If a i K, (i=1,...n) such that n a i = 0, then v(a i )=v(a j ) for at least one pair of unequal indices i and j. For let a i be such that 1
10 4 1. Lecture 1 v(a i ) v(a k ) for k i. Then v(a i )=v( n a k ) max n (v(a k ))=v(a j ) k=1 k i for some j i, which proves that v(a i )=v(a j ). Let be a field. By ( ), we shall mean the set of elements of together with an abstract element with the following properties. α+ = +α= for everyα. α. =.α= for everyα,α 0. + and 0. are not defined. k=1 k i 5 Definition. A place of a field K is a mappingϕ of K into U( ) (where may be any field ) such that P(1) ϕ(a+b)=ϕ(a)+ϕ(b). P(2) ϕ(ab)=ϕ(a).ϕ(b). P(3) There exist a, b K such thatϕ(a) = andϕ(b) 0 or. P(1)andP(2) are to hold whenever the right sides have a meaning. From this it follows, taking the b of P(3), thatϕ(1)ϕ(b)=ϕ(b), so that ϕ(1) = 1, and similarly ϕ(0) = 0. Consider the set O ϕ of elements a Ksuch thatϕ(a). Then by P(1), P(2) and P(3), O ϕ is a ring which is neither zero nor the whole of K, andϕis a homomorphism of this ring into. Since is a field, the kernel of this homomorphism is a prime ideal Y of O ϕ Let b be an element in K which is not in O ϕ. We contend thatϕ( 1 b )= 0. For if this mere not true, we would get 1=ϕ(1)=ϕ(b).ϕ( 1 b )=, by P(2). Thus 1 Y, and thus Y is precisely the set of nonunits of b O ϕ. Since any ideal strictly containing Y should contain a unit, we see that Y is a maximal ideal and hence the image of O ϕ in is again a field. We shall therefore always assume that is precisely the image of O ϕ byϕ, or thatϕis a mapping onto U( ). The above considerations motivate the
11 3. Valuations, Places and Valuation Rings 5 Definition. Let K be a field. A valuation ring of K is a proper subring O of K such that if a K, at least one of the elements a 1 is in O. 6 a In particular, we deduce that O contains the unity element. Let Y be the set of nonunits in O. Then Y is a maximal ideal. For, let a O, b Y. If ab Y, ab would be a unit of O, and hence 1 O. This implies ab that a 1 ab = 1 O, contradicting our assumption that b is a nonunit of b O. Suppose that c is another element of Y. To show that b c Y, we may assume that neither of them is zero. Since O is a valuation ring, at least one of b c or c b, say b c, is in O. Hence, b b c 1= O. If c c 1 b c were not in Y, b c O, and hence b c b c 1 = 1 c c O, contradicting our assumption that c Y. Finally, since every element outside Y is a unit of O, Y is a maximal ideal in O.
12
13 Lecture 2 3 (Contd.) In this lecture, we shall establish the equivalence of the concepts of val 7 uation, place and valuation ring. Two placesϕ 1 : K 1 ( ) andϕ 2 : K 2 ( ) are said to be equivalent if there exists an isomorphismλ of 1, onto 2 such that ϕ 2 (a)=λ ϕ 1 (a) for every a, with the understanding thatλ( )=. This is clearly an equivalence relation, and thus, we can put the set of places of K into equivalence classes. Moreover, equivalent placesϕ 1 andϕ 2 obviously define the same valuation rings O ϕ1 and O ϕ2. Thus, to every equivalence class of places is associated a unique valuation ring. Conversely, let O be any valuation ring and Y its maximal ideal. Let be the quotient field O/Y andηthe natural homomorphism of O onto. It is an easy matter to verify that the mapϕ : K U{ } defined by η(a) if a O ϕ(a)= if a O is a place, whose equivalence class corresponds to the given valuation ring O. Let v 1 and v 2 be two valuations of a field K in the ordered group W 1 and W 2. We shall denote the unit elements of both the groups by 1, 8 since it is not likely to cause confusion. We shall say that v 1 and v 2 are equivalent if v 1 (a)>1 if and only if v 2 (a)>1. Let v 1 and v 2 be two equivalent valuations. From the definition, it follows, by taking reciprocals, that v 1 (a)<1 if and only if v 2 (a)<1, 7
14 8 2. Lecture 2 9 and hence (the only case left) v 1 (a)=1 if and only if v 2 (a)=1. Let α be any element of W 1. Choose a K such that v 1 (a)=α (this is possible since v 1 is onto W 1 ). Defineσ(α) = v 2 (a). The definition is independent of the choice of a since if b were another element with v 1 (b)=α, then v 1 (ab 1 )=1 so that v 2 (ab 1 )=1, i.e. v 2 (a)=v 2 (b). Thus,σis a mapping from W 1 onto W 2 (since v 2 is onto W 2 ). It is easy to see thatσis an order preserving isomorphism of W 1 onto W 2 and we have v 2 (a)=(σ.v 1 )(a) for every a K. Thus, we see that the definition of equivalence of valuations can also be cast into a form similar to that for places. Again, equivalence of valuations is an equivalence relation, and we shall that equivalence classes of valuations of a field K correspond canonically and biunivocally to valuation rings of the field K. Let v be a valuation and O be the set of elements a in K such that v(a) 1. It is an immediate consequence ( ) of the definition that O is a 1 ring. Also, if a K, v(a)>1, then v < 1 and hence 1 O. Thus, O a a is a valuation ring. Also, if v 1 and v 2 are equivalent, the corresponding rings are the same. Suppose conversely that O is a valuation ring in K and Y its maximal ideal. The set difference O Y is the set of units of O and hence a subgroup of the multiplicative group K. Letη : K K /O Y be the natural group homomorphism. Thenη(O ) is obviously a semigroup and the decomposition K /O Y =η(o ) {1}U η(o ) 1 is disjoint, Hence, we can introduce an order in the group K /O Y and it is easy to verify thatηis a valuation on K whose valuation ring is precisely O. Summarising, we have Theorem. The valuations and places of a field K are, upto equivalence, in canonical correspondence with the valuation rings of the field.
15 Lecture 3 4 The Valuations of Rational Function Field Let K= k(x) be a rational function field over k ; i.e., K is got by ad 10 joining to k a single transcendental element X over k. We seek for all the valuations v of K which are trivial on k, that is, v(a)=1 for every a K. It is easily seen that these are the valuations which correspond to places whose restrictions to k are monomorphic. We shall henceforward write all our ordered groups additively. Letϕbe a place of K= k(x) onto ( ). We consider two cases Case 1. Letϕ(X)=ξ. Then, the polynomial ring k[x] is contained in O ϕ, and Y k[x] is a prime ideal in k[x]. Hence, it should be of the form (p(x)), where p(x) is an irreducible polynomial in X. Now, if r(x) K, it can be written in the form r(x)=(p(x)) ρ g(x), where g(x) h(x) and h(x) are coprime and prime to p(x). Let us agree to denote the image in of an element c in k by c, and that of a polynomial f over k by f. Then,we clearly have 0 ifρ>o g(ξ) ϕ(r(x))= h(ξ) ifρ=0 ifρ<0 Conversely, suppose p(x) is an irreducible polynomial in k[x] and 11 ξ a root of p(x). The above equations then define a mapping of k(x) onto k(ξ) { }, which is a place, as is verified easily. We have thus determined all places of k(x) under case 1 (upto equivalence). 9
16 10 3. Lecture 3 If Z is the additive group of integers with the natural order, the valuation v associated with the placeϕabove is given by v(r(x))=ρ. Case 2. Suppose now thatϕ(x)=. Thenϕ( 1 )=0. Then since K= X k(x)=k( 1 ), we see thatϕis determined by an irreducible polynomial X p( 1 X ), and sinceϕ 1 )=0, p(y) should divide Y. Thus, p(y) must be Y X (except for a constant in k), and if r(x)= a 0+ a 1 x+ +a n x n b 0 + b 1 x+ +b m x m,a n, b m 0, a 0 ϕ(r(x))=ϕ ( X 1 )m n x + a n 1 o if m>n + +a x n 1 n b 0 x + b m 1 + +b = a n b m if m=n x m 1 m if m<n The corresponding valuation with values in Z is given by v(r(x))= m n= deg r(x), where the degree of a rational function is defined in the degree of the numeratorthe degree of the denominator. We shall say that a valuation is discrete if the valuation group may be taken to be Z. We have in particular proved that all valuations of a rational function field trivial over the constant field are discrete. We shall extend this result later to all algebraic function fields of one variable. 5 Extensions of Places 12 Given a field K, a subfield L and a placeϕ L of L into, we wish to prove in this section that there exists a placeϕ K of K into 1, where 1 is a field containing and the restriction ofϕ K to L isϕ L. Such aϕ K is called an extension of the placeϕ L to K. For the proof of this theorem, we require the following Lemma (Chevalley). Let K be a field, O a subring andϕahomomorphism of O into a field which we assume to be algebraically closed. Let q be any element of K, and O[q] the ring generated by O and q in
17 5. Extensions of Places 11 K. Thenϕcan be extended into a homomorphismφof at least one of the rings O[q], O[ 1 ], such thatφrestricted to O coincides withϕ. q Proof. We may assume that ϕ is not identically zero. Since the image of O is contained in a field, the kernel{ ofϕis a prime ideal Y which is a } not the whole ring O. Let O 1 = O b a, b O, b Y. Clearly, O 1 is a ring with unit, ( andϕhas a unique extension ϕ to O 1 as a homomorphism, give by ϕ = a b) ϕ(a). The image by ϕ is then the quotient field ϕ(b) ofϕ(o). We shall denote ϕ(a) by ā for a O 1. Let X and X be indeterminates over O 1 and respectively. ϕ can be extended uniquely to a homomorphism ϕ of O 1 [X] onto [ X] which takes X to X by defining ϕ(a 0 + a 1 X+ +a n X n )=ā 0 + ā 1 X+ +ā n X n. Let U be the ideal O 1 [X] consisting of all polynomials which van 13 ish for X= q, and let U be the ideal ϕ(u ) in [ X]. We consider three cases. Case 1. Let U = (0). In this case, we defineφ(q) to be any fixed element of.φ is uniquely determined on all other elements of O 1 [q] by the requirement that it be a ring homomorphism which is an extension of ϕ. In order that it be well defined, it is enough to verify that if any polynomial over O 1 vanishes for q, its image by ϕ vanishes forφ(q). But this is implied by our assumption. Case 2. Let U (0), [ X]. Then U = ( f ( X)), where f is a nonconstant polynomial over. Letαbe any root f ( X) in (there is a root in since is algebraically closed). Define Φ(q) = α. This can be extended uniquely to a homomorphism of O 1 [q], since the image by ϕ of any polynomial vanishing for q is of the form f ( X) f ( X), and therefore vanishes for X=α. Case 3. Suppose U = [ X]. Then the homomorphism clearly cannot be extended to O 1 [q]. Suppose now that it cannot be extended to O 1 [ 1 q ]
18 12 3. Lecture 3 14 either. Then ifδdenotes the ideal of all polynomials in O 1 [X] which vanish for 1 q, and if δ is the ideal ϕ(δ)in [ X], we should have δ = [ X]. Hence, there exist polynomials f (X)=a 0 + a 1 X+ +a( n X) n and 1 b 0 +b 1 X+ +b m X m such that ϕ( f (X))= ϕ(g(x))=1, f (q)=g = 0. q We may assume that f and g are of minimal degree n and m satisfying the required conditions. Let us assume that m n. Then, we have ā 0 = b 0 = 1, ā i = b j = 1 for i, j>0. Let g 0 (X)=b 0 X m + +b m. Applying the division algorithm to the polynomials b n 0 f (X) and g 0(X), we obtain b n 0 f (X)=g 0(X)Q(X)+R(X), Q(X), R(X) O 1 [X], deg R<m. Substituting X=q, we obtain R(q)=0. Also, acting with ϕ, we have 1= b n 0 f ( X)=ḡ 0 ( X) Q( X)+ R( X)= Q( X) X m + R( X), and hence, we deduce that Q( X) = 0, R( X) = 1. Thus, R(X) is a polynomial with R(q)=0, R( X)=1, and deg F(X)<m n, which contradicts our assumption on the minimality of the degree of f (X). Our lemma is thus prove. We can now prove the Theorem. Let K be a field and O a subring of K. Letϕbe a homomorphism of O in an algebraically closed field. Then it can be extended either to a homomorphism of K in or to a place of K in ( ). In particular, any place of a subfield of K can be extended to a place of K. Proof. Consider the family of pairs{ϕ α, O α }, where O α is a subring if K containing O andϕ α a homomorphism of O α in extendingϕon O. The family is nonempty, since it contains (ϕ, O). We introduce a partial order in this family by defining (ϕ α, O α )>(ϕ β, O β ) if O α O β andϕ α is an extension ofϕ β. 15 The family clearly being inductive, it has a maximal element by Zorn s lemma. Let us denote it by (Φ, O). O is either the whole of K or
19 5. Extensions of Places 13 a valuation ring of K. For if not, there exists a q Ksuch that neither q nor 1 belongs to O. we may then extendφto a homomorphism of q [ ] 1 at least one of O[q] or O in. Since both these rings contain O q strictly, this contradicts the maximality of (Φ, O). If O were not the whole of K,Φ must vanish on every non ( ) unit of 1 O; for if q were a nonunit andφ(q) 0, we may defineφ = 1 [ ] q Φ(q) 1 and extend this to a homomorphism of O, which again contradicts q the maximality of O. This proves thatφcan be extended to a place of K by defining it to be outside O. In particular, a placeϕof a subfield L of K, when considered as a homomorphism of its valuation ring O ϕ and extended to K, gives a place on K; for ifϕwhere a homomorphism of the whole of K in, it should be an isomorphism (since the kernel, being a proper ideal in K, should be the zero ideal). ButΦbeing an extension ofϕ, the kernel contains at least one nonzero element. Corollary. If K/k is an algebraic function field and X any element of K transcendental over k, there exists at least one valuation v for which v(x)>0. Proof. We have already shown in the previous section that there exists a place Y 1 in k(x) such that v Y1 (X)>0. If we extend this place Y 1 to a place Y of K, we clearly have v Y (X)>0.
20
21 Lecture 4 6 Valuations of Algebraic Function Fields It is our purpose in this paragraph to prove that all valuations of an al 16 gebraic function field K which are trivial on the constant field k are discrete. Henceforward, when we talk of valuations or places of an algebraic function field K, we shall only mean those which are trivial on k. Valuations will always be written additively. We require some lemmas. Lemma 1. Let K/L be a finite algebraic extension of degree [K : L] = n and let v be a valuation on K with valuation group V. If V denotes the subgroup of V which is the image of L under v and m the index of V in V, we have m n. Proof. It is enough to prove that of any n+1 elementsα 1,...α n+1 of V, at least two lie in the same coset modulo V. Choose a i K such that v(a i )=α i (i=1,...n+1). Since there can be at most n linearly independent elements of K over L, we should have n+1 l i a i = 0, l i L, not all l i being zero. i=1 This implies that v(l i a i )=y(l j a j ) for some i and j, i j (see Lecture 1, 3). Hence, we deduce that v(l i )+v(a i )=v(l i a i )=v(l j a j )=v(l j )+v(a j ), α i α j = v(a i ) v(a j )=v(l j ) v(l i ) V 15
22 16 4. Lecture 4 andα i andα j are in the same coset modulo V. Our lemma is proved. 17 Let V be an ordered abelian group. We shall say that V is archimedean if for any pair of elements α, β in V with α > 0, there corresponds an integer n such that nα>β. We shall call any valuation with value group archimedean an archimedean valuation. Lemma 2. An ordered group V is isomorphic to Z if and only if (i) it is archimedean and (ii) there exists an elementξ>0 in V such that it is the least positive element; i.e.,α>0 α ξ. Proof. The necessity is evident. Now, letαbe any element of V. Then by assumption, there exists a smallest integer n such that nξ α<(n+1)ξ. Thus, 0 α nξ< (n+1)ξ nξ=ξ, and since ξ is the least positive element, we have α = nξ. The mapping α V n Z is clearly an order preserving isomorphism, and the lemma is proved. Lemma 3. If a subgroup V of finite index of an ordered group V is isomorphic to Z, V is itself isomorphic to Z. ] Proof. Let the index be [V : V = n. Letα,β be any two elements of V, withα>0. Then nα and nβ are in V, nα>0. 18 Since V is archimedean, there exists an integer m such that mnα> nβ, from which it follows that mα>β. Again, consider the set of positive elementsαin V. Then nα are in V and are positive, and hence contain a least element nξ (since there is an order preserving isomorphism between V and Z). Clearly,ξis then the least positive element of V. V is therefore isomorphic to Z, by Lemma 2. We finally have the Theorem. All valuations of an algebraic function field K are discrete.
23 7. The Degree of a Place 17 Proof. If X is any transcendental element of K/ k, the degree [ ] K : k(x) <. Since we know that all valuations of k(x) are discrete, our result by applying Lemma 1 and Lemma 3. 7 The Degree of a Place Let Y be a place of an algebraic function field K with constant field k onto the field k Y. Since Y is an isomorphism when restricted to k, we may assume that k Y is an extension of k. We shall moreover assume that k Y is the quotient O Y /M Y where O Y is the ring of the place Y and M Y the maximal ideal. We now prove the Theorem. Let Y be a place of an algebraic function field. Then k Y/k is an algebraic extension of finite degree. Proof. Choose an element X 0 in K such that Y (X)=0. Then X should [ be transcendental, ] since Y is trivial on the field of constants. Let K : k(x) = n<. Letα 1,...α n+1 be any (n+1) elements of 19 k Y. Then, we should haveα i = Y (a i ) for some a i K(i=1,...n+1). There therefore exist polynomials f i (X) in k[x] such that n+1 f i (X)a i = 0, not all f i (X) having constant term zero. i=1 Writing f i (X)=l i + Xg i (X), we have the Y image, n+1 i=1 n+1 n+1 l i a i = X a i g i (X), and taking i=1 i=1 l i α i = Y (X) n+1 i=1 a i g i (Y X)=0, l i k, not all l i being zero. Thus, we deduce that the degree of k Y / k is at most n. The degree f Y of k Y over k is called the degree of the place Y. Note that f Y is always 1. If the constant field is algebraically closed (e.g. in the case of the complex number field), f Y = 1, since k Y, being an algebraic extension of k, should coincide with k.
24 18 4. Lecture 4 Finally, we shall make a few remarks concerning notation. If Y is a place of an algebraic function field, we shall denote the corresponding valuation with values in Z by v Y (v Y is said to be a normed valuation at the place Y ). The ring of the place shall be denoted by O Y and its unique maximal ideal by Y. (This is not likely to cause any confusion). 8 Independence of Valuations 20 In this section, we shall prove certain extremely useful result on valuations of an arbitrary field K. Theorem. Let K be an arbitrary field and v i (i=1,...n) a set of valuations on K with valuation rings O i such that O i O j if i j. There is then an element X Ksuch that v 1 (X) 0, v i (X)<0 (i=1,...n). Proof. We shall use induction. If n=2, since O 1 O 2, there is an X O 1, X O 2, and this X satisfies the required conditions. Suppose now that the theorem is true for n 1 instead of n. Then there exists a Y K such that v 1 (Y) 0, v i (Y)<0 (i=2,...n 1). Since O 1 nsubseto n, we can find a Z K such that v 1 (Z) 0, v n (Z)<0 Let m be a positive integer. Put X= Y+ Z m. Then v 1 (Y+ Z m ) min(v 1 (Y), mv 1 (Z)) 0 Now suppose r is one of the integers 2, 3,...n. If v r (Z) 0, r cannot be n, and since v r (Y)<0, we have v r (Y+ Z m )=v r (Y)<0.
25 8. Independence of Valuations If v r (Z)<0 and v r (Y+ Z m r ) 0for some m r, for m>m r we have v r (Y+ Z m )=v r (Y+ Z mr + Z m Z m r )=min(v r (Y+ Z m r ), v r (Z m Z m r )), and v r (Z m Z m r )=v r (Z m r )+v r (1 Z m m r )=m r v r (Z)<0, Since v r (1 Z m mr )=v r (1)=0 Thus, v r (Y+ Z m )<0 for large enough m in any case. Hence X satisfies the required conditions. If we assume that the valuations v i of the theorem are archimedean, then the hypothesis that O i O j for i j can be replaced by the weaker one that the valuations are inequivalent (which simply states that O i O j for i j). To prove this, we have only to show that if v and v 1 are two archimedean valuations such that the corresponding valuation rings O and O 1 satisfy O O 1, then v and v 1 are equivalent. ( ) For, consider an element 1 a K such that v(a)>0. Then, v < 0, and consequently 1 is not a ( ) a 1 in O, and hence not in O 1. Thus, v 1 < 0, v 1 (a)>0. Conversely, a suppose a K and v 1 (a)>0. Then by assumption, v(a) 0. Suppose now that v(a)=0. Find b K such that v(b)<0. If n is any positive integer, we have v(a n b)=nv(a)+v(b)<0, a n b O. But since v 1 is archimedean and v 1 (a)>0, for large enough n we have v 1 (a n b)=nv 1 (a)+v 1 (b)>0, a n b O 1. This contradicts our assumption that O 1 O, and thus, v(a) > 0. Hence v and v 1 are equivalent. Under the assumption that the v i archimedean, we can replace in the theorem above the first inequality V 1 (X) 0 even by the strict inequality v 1 (X)>0. To prove this let X 1 K satisfy v 1 (X 1 ) 0, v i (X 1 )<0, i>1. Let Y be an element in K with v 1 (Y)>0. Then, if X=X 1 m Y, where m is a sufficiently large positive integer, we have 22 v 1 (X)=v 1 (X m 1 Y)=mv 1(X 1 )+v 1 (Y)>0, v i (X)=v i (X m 1 Y)=mv i(x 1 )+v i (Y)<0, i=2,...,n.
26 20 4. Lecture 4 We shall hence forward assume that all valuations considered are archimedean. To get the strongest form of our theorem, we need two lemmas. Lemma 1. If v i (i=1,...n) are inequivalent archimedean valuations, andρ i are elements of the corresponding valuations group, we can find X i (i=1,...n) in K such that v i (X i 1)>ρ i, v j (X i )>ρ j, i j Proof. Choose Y i K such that v i (Y i )>0, v j (Y i )<0 for j i. 1 Put X i = 1+Yi m. Then, if m is chosen large enough, we have (since the valuation are archimedean) v j (X i )= v j (1+Y m i )= mv j (Y i )>ρ j, i j 23 and v i (X i 1)=v i ( Ym i 1+Yi m since v i(1+yi m )=0. )=mv i (Y i ) v i (1+Y m i )=mv i (Y i )>ρ i. A set of valuations v i (i=1,...n) are said to be independent if given any set of elements a i K and any set of elementsρ i in the respective valuation groups of v i, we can find an X Ksuch that We then have the following v i (X a i )>ρ i. Lemma 2. Any finite set of inequivalent archimedean valuations are independent. Proof. Suppose v i (i=1,...n) is a given set of inequivalent archimedean valuations. If a i K andρ i are elements of the valuation group of the v i, putσ i =ρ i min n v i(a j ). Choose X i as in Lemma 1 for the v i andσ i. j=1 Put X= n a i X i. Then 1 v i (X a i )=v i a j X j + a i (X i 1) >σ i+ min n v i(a j )=ρ i, j=1 j i
27 8. Independence of Valuations 21 and our lemma is proved. Finally, we have the following theorem, which we shall refer to in future as the theorem of independence of valuations. Theorem. If v i (i=1,...n) are inequivalent archimedean valuations, ρ i is an element of the value group of v i for every i, and a i are given 24 elements of the field, there exists an element X of the field such that v i (X a i )=ρ i Proof. Choose Y by lemma 2 such that v i (Y a i )>ρ i. Find b i K such that v i (b i )=ρ i and an Z Ksuch that v i (Z b i )>ρ i. Then it follows that v i (Z)=min(v i (Z b i ), v i (b i ))=ρ i. Put X= Y+ Z. Then, v i (X a i )=v i (Z+ Y a i )=v i (Z)=ρ i, and X satisfies the conditions of the theorem. Corollary. There are an infinity of places of any algebraic function field. Proof. Suppose there are only a finite number of places Y 1,...,Y n. Choose an X such that v Yi (X) > 0 (i = 1,...n). Then, v Yi (X+ 1)=v Yi (1)=0 for all the places, Y i, which is impossible since X an consequently X+ 1 is a transcendental element over k.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationit is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
More informationIntroduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationCHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
More informationFACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set
FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,
More information7. Some irreducible polynomials
7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of
More informationModule MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
More informationOSTROWSKI FOR NUMBER FIELDS
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the padic absolute values for
More informationModern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
More informationIntroduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
More informationminimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationsome algebra prelim solutions
some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no
More informationFactorization Algorithms for Polynomials over Finite Fields
Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 20110503 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is
More informationSubsets of Euclidean domains possessing a unique division algorithm
Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationQuotient Rings of Polynomial Rings
Quotient Rings of Polynomial Rings 87009 Let F be a field. is a field if and only if p(x) is irreducible. In this section, I ll look at quotient rings of polynomial rings. Let F be a field, and suppose
More informationPrime Numbers and Irreducible Polynomials
Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.
More information2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H.
Math 307 Abstract Algebra Sample final examination questions with solutions 1. Suppose that H is a proper subgroup of Z under addition and H contains 18, 30 and 40, Determine H. Solution. Since gcd(18,
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More information3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
More informationGroups, Rings, and Fields. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, S S = {(x, y) x, y S}.
Groups, Rings, and Fields I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, A binary operation φ is a function, S S = {(x, y) x, y S}. φ : S S S. A binary
More informationSolutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory
Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013
More informationa 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
More informationMA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES
MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions
More information11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
More informationUnique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
More informationSome Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,
More information(x + a) n = x n + a Z n [x]. Proof. If n is prime then the map
22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find
More informationThe Division Algorithm for Polynomials Handout Monday March 5, 2012
The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,
More informationIntroduction to finite fields
Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at
More informationFactoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationPROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationMOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu
Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
More informationElementary Number Theory We begin with a bit of elementary number theory, which is concerned
CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,
More informationFOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it
More informationRESULTANT AND DISCRIMINANT OF POLYNOMIALS
RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationComputer Algebra for Computer Engineers
p.1/14 Computer Algebra for Computer Engineers Preliminaries Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City p.2/14 Notation R: Real Numbers Q: Fractions
More informationFACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
More informationPutnam Notes Polynomials and palindromes
Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning
More informationORDERS OF ELEMENTS IN A GROUP
ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since
More informationFactoring of Prime Ideals in Extensions
Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree
More informationQuotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
More informationDie ganzen zahlen hat Gott gemacht
Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.
More informationFinite Fields and ErrorCorrecting Codes
Lecture Notes in Mathematics Finite Fields and ErrorCorrecting Codes KarlGustav Andersson (Lund University) (version 1.01316 September 2015) Translated from Swedish by Sigmundur Gudmundsson Contents
More informationRevision of ring theory
CHAPTER 1 Revision of ring theory 1.1. Basic definitions and examples In this chapter we will revise and extend some of the results on rings that you have studied on previous courses. A ring is an algebraic
More informationAppendix A. Appendix. A.1 Algebra. Fields and Rings
Appendix A Appendix A.1 Algebra Algebra is the foundation of algebraic geometry; here we collect some of the basic algebra on which we rely. We develop some algebraic background that is needed in the text.
More informationChapter 13: Basic ring theory
Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring
More information9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n1 x n1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
More informationON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
More informationGalois Theory III. 3.1. Splitting fields.
Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where
More informationA number field is a field of finite degree over Q. By the Primitive Element Theorem, any number
Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and
More informationPOLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
More information6. Fields I. 1. Adjoining things
6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general
More informationAlgebra 2. Rings and fields. Finite fields. A.M. Cohen, H. Cuypers, H. Sterk. Algebra Interactive
2 Rings and fields A.M. Cohen, H. Cuypers, H. Sterk A.M. Cohen, H. Cuypers, H. Sterk 2 September 25, 2006 1 / 20 For p a prime number and f an irreducible polynomial of degree n in (Z/pZ)[X ], the quotient
More informationcalculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
More informationAlgebra 3: algorithms in algebra
Algebra 3: algorithms in algebra Hans Sterk 20032004 ii Contents 1 Polynomials, Gröbner bases and Buchberger s algorithm 1 1.1 Introduction............................ 1 1.2 Polynomial rings and systems
More informationGroup Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
More informationThe cyclotomic polynomials
The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =
More informationNonunique factorization of polynomials over residue class rings of the integers
Comm. Algebra 39(4) 2011, pp 1482 1490 Nonunique factorization of polynomials over residue class rings of the integers Christopher Frei and Sophie Frisch Abstract. We investigate nonunique factorization
More information1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on realclosed fields These notes develop the algebraic background needed to understand the model theory of realclosed fields. To understand these notes, a standard graduate course in algebra is
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More informationEXERCISES FOR THE COURSE MATH 570, FALL 2010
EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime
More informationADDITIVE GROUPS OF RINGS WITH IDENTITY
ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsionfree
More informationGROUP ALGEBRAS. ANDREI YAFAEV
GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More information1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]
1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not
More informationField Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma
Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,
More informationCyclotomic Extensions
Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate
More information3. QUADRATIC CONGRUENCES
3. QUADRATIC CONGRUENCES 3.1. Quadratics Over a Finite Field We re all familiar with the quadratic equation in the context of real or complex numbers. The formula for the solutions to ax + bx + c = 0 (where
More informationReal Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
More informationREMARKS ABOUT EUCLIDEAN DOMAINS. 1. Introduction. Definition 1.2. An integral domain R is called Euclidean if there is a function d: R {0}
REMARKS ABOUT EUCLIDEAN DOMAINS KEITH CONRAD 1. Introduction The following definition of a Euclidean (not Euclidian!) textbooks. We write N for {0, 1, 2,... }. domain is very common in Definition 1.1.
More informationIntroduction to Modern Algebra
Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write
More information(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
More informationIrreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients
DOI: 10.2478/auom20140007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca
More informationSOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
More informationCONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
More informationCONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS
CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS JEREMY BOOHER Continued fractions usually get shortchanged at PROMYS, but they are interesting in their own right and useful in other areas
More information3 Factorisation into irreducibles
3 Factorisation into irreducibles Consider the factorisation of a nonzero, noninvertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could
More informationr + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.
Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationCHAPTER 5: MODULAR ARITHMETIC
CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called
More informationFactorization in Polynomial Rings
Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important
More informationAPPLICATIONS OF THE ORDER FUNCTION
APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More information50. Splitting Fields. 50. Splitting Fields 165
50. Splitting Fields 165 1. We should note that Q(x) is an algebraic closure of Q(x). We know that is transcendental over Q. Therefore, p must be transcendental over Q, for if it were algebraic, then (
More informationALGEBRA HW 5 CLAY SHONKWILER
ALGEBRA HW 5 CLAY SHONKWILER 510.5 Let F = Q(i). Prove that x 3 and x 3 3 are irreducible over F. Proof. If x 3 is reducible over F then, since it is a polynomial of degree 3, it must reduce into a product
More information4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
More informationG = G 0 > G 1 > > G k = {e}
Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same
More informationCS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On wellordering and induction: (a) Prove the induction principle from the wellordering principle. (b) Prove the wellordering
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationz = i ± 9 2 2 so z = 2i or z = i are the solutions. (c) z 4 + 2z 2 + 4 = 0. By the quadratic formula,
91 Homework 8 solutions Exercises.: 18. Show that Z[i] is an integral domain, describe its field of fractions and find the units. There are two ways to show it is an integral domain. The first is to observe:
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More information