A Case Study in Software Enhancements as Six Sigma Process Improvements: Simulating Productivity Savings

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Case Study in Software Enhancements as Six Sigma Process Improvements: Simulating Productivity Savings"

Transcription

1 A Case Study in Software Enhancements as Six Sigma Process Improvements: Simulating Productivity Savings Dan Houston, Ph.D. Automation and Control Solutions Honeywell, Inc. Abstract This case study illustrates the application of Six Sigma process improvement to software upgrades justification. Specifically, software use was simulated based on business process maps and data provided by users. The simulation results were combined with upgrade investment estimates to calculate the return on investment and justify the upgrades. 1. Introduction Information technology (IT) has become recognized as an essential component of business, providing the platform for a wide array of business processes. When considered in this context, IT enhancements may result from process improvement projects. IT software upgrades can often be justified in terms of savings due to increased productivity. However, in a Six Sigma organization, the DMAIC method and a host of tools can be brought to bear on business process improvement through software enhancement. This paper presents such a case study, the Configurator ROI project, relating the application of Monte Carlo simulation as a Six Sigma tool to identifying productivity savings in the deployment phase of a software lifecycle. Information technology software enhancements are performed for many reasons, including better customer service, better decision support, higher productivity, and so forth. Return on investment (ROI) is ordinarily calculated in terms of a focused objective for savings. Many of these enhancements either provide support for, or implement improved business processes, but the ROI is typically produced solely from a financial analysis, and not necessarily in the context of a process analysis. 2. Six Sigma DMAIC Six Sigma is a quality improvement program that looks at processes with a view to analyzing process steps, determining what process elements most need improvement, developing alternatives for improvement, then selecting and implementing one. It relies on a variety of qualitative and quantitative tools, emphasizing the use of data and statistical analysis within a method called DMAIC, an acronym for the names of its five phases (Define, Measure, Analyze, Improve, and Control) (Table 1). Six Sigma projects are typically selected for their potential savings in improving any process, whether it is in production, administration, engineering, or services. A Six Sigma project typically begins with a high level definition of a process, using a diagram to specify the process boundaries, inputs, outputs, customers, and requirements. In the measure phase, a process metric is selected and used to baseline the current performance of the process. In the analysis phase, the process is analyzed, usually with a process map and a failure modes and effects analysis (FMEA), but may include other types of analysis. The process map shows each process step with its inputs and outputs and provides the basis for either a FMEA or a quantitative, usually statistical, analysis. Areas for improvement are pinpointed and alternatives are generated and evaluated. Once an improvement option is selected Phase Define Measure Analyze Improve Control Table 1. DMAIC Method for Process Improvement Steps Identify an opportunity and define a project to address it. Analyze the current process and specify the desired outcome. Identify root causes and proposed solutions. Prioritize solutions; select, plan, validate, and implement a solution. Develop a plan for measuring progress and maintaining gains.

2 and implemented, the project enters the control phase. In this phase, a plan is established for monitoring and controlling the process to ensure that gains are maintained. The use of the DMAIC method may vary between projects. For example, the Measure and Analyze phases of this project ran concurrently rather than sequentially. Also, a proposed solution may emerge early in the Measure and Analysis phase, leading to an emphasis on planning and implementation in the Improve phase. Such was the case in the Configurator ROI project. Consequently, this paper focuses on the Measure and Analyze phases in which a simulation based on a process map provided the justification for an IT enhancement. 3. Configurators and the Configurator ROI Project Honeywell Industry Solutions, a division of Honeywell International, produces and services control systems for industrial process such as refining, power generation, and paper production. These complex control systems consist of a multitude of components controllers, sensors, monitoring devices, network cabling, signal converters, and so forth that must be configured to each customer s specifications. Over the years a number of software packages have been developed for configuring the various Honeywell control systems, each configuration package supporting a control system serving a particular market. A product configurator is essentially a rule-based package that specifies all the necessary components for a proposed control system, prices the components, then provides a set of reports, including a bill of materials. Salespersons and estimators use the configurators to develop proposals for customers. Each configurator was predicated on different business processes. With corporate globalization, the inefficiency of using multiple processes and software programs for system configuration became evident. In April 2001, a division-wide study of configurator requirements was undertaken with a Voice of the Customer (VOC) process. This process solicited input from sales, marketing, manufacturing, engineering, and information technology departments, analyzed it, and produced a set of high-level requirements for a comprehensive product configurator. This case study discusses the follow-on project, Configurator ROI, in which detailed requirements were specified and used as the basis for estimating ROI for the proposed upgrades to the TotalPlant Configurator (TPC), the primary existing product configuration system. Figure 1 illustrates the Measure and Analyze phases of the Configurator ROI project. Calculation of the ROI was broken down into two parts, the investment calculation and the productivity savings calculation. The investment calculation was performed by (1) identifying differences between the current configurator tools and the configurator requirements derived from the VOC process, (2) proposing engineering solutions to close the gaps, (3) using a quality function deployment matrix to evaluate the solutions against the requirements, and (4) estimating the cost of each solution. As the Configurator ROI project began, the solution was undecided. Two alternatives were available. These involved upgrading either one of the two leading Current Tools System Requirements Identify Gaps Estimate Upgrade Costs of Each Alternative Calculate ROI To-Be Process Map Survey System Users for Productivity Data Simulate To-Be Process Forecast Productivity Savings As-Is Process Map Simulate As-Is Process Fig. 1. Configurator ROI Project Diagram

3 Configuration and Proposal Order Entry Bill of Materials Fig. 2. Primary Functions of a Complete Configurator configurators, TPC or ebob, to address all of the requirements elicited during the VOC process. These two systems addressed, to varying degrees, the requirements of a complete system for configuration and proposal, order entry and Bill of Materials (BOM) for manufacturing (Figure 2). Though ebob provided much more flexibility in delivering a BOM and its data was automatically transferred into the order processing system, its configuration capabilities were largely manual because it lacked a rule base and expert system engine. TPC, on the other hand, had a well-designed and up-to-date rules base and expert engine, but needed more BOM flexibility and order entry capability. During the process of estimating the cost of each solution, it became clear that upgrading ebob would cost roughly twice the upgrade cost of TPC. From that point on, the project focused on the expected ROI for upgrading TPC. The productivity savings calculations were produced using a Monte Carlo simulation of existing productivity and comparing these results with those of a simulation of expected productivity after the upgrades. The remainder of this paper dwells on the details of data collection and simulation. 4. Simulation Approach Although many groups benefit from a product configurator, the primary beneficiaries are the estimators who develop proposals and provide quotes to salespersons and customers. This group of configurator users has defined a complex process for developing proposals. The paths of the proposal development process depend on the size of the proposed system, whether engineering services are to be provided, and the degree of additional consulting required. The Configurator ROI team obtained the process map for the proposal development process (fourteen 11 x17 pages) and used it to identify the process flow directly affected by configurator usage. The elements of the proposal development process specific to configurator usage were extracted into the process map of Figure 2. The process shown in Figure 3 branches depending on the number of personnel required for developing a proposal. The top branch is taken when a Account Manager develops a proposal without assistance. When Sales Cost Consultants are used, Engineering and Installation (E&I) services may or may not be proposed. When E&I are not being proposed, a Cost Team may or may not be required. If E&I services are being proposed, other services may or may not be required. In addition to the branches shown in Figure 3, the simulation had to account for various proposal sizes. Three proposal sizes were distinguished: small (< $100K), medium ($100K to $1M), and large (>$1M). A Monte Carlo approach to simulation was chosen for two reasons. First, the feedback loops in the process map are only around single or paired steps in series. This suggests that the combination of process and feedback loop can be simplified to only the process steps by treating the duration of each process step as an aggregate duration rather than discrete multiple durations. Secondly, the process steps of interest lie on independent paths. The lack of path dependencies means the process has no timing requirements and a simulation of it does not require a calendar. A simple Monte Carlo approach to simulating this process requires only two types of random variables: discretely distributed branching for proposal size, and continuously distributed effort applied in each process step simulated. Although the Configurator ROI team had access to simulation tools, other groups interested in the method and results do not. Accessibility to Monte Carlo simulation examples is highly desirable in the Industry Solutions business because simulation is not widely used for modeling business and development processes, but its value is recognized by the Six Sigma organization. Taking advantage of the simplicity of this simulation problem, Microsoft Excel, which is standard for desktops in the division, was chosen as the simulation vehicle. The additional effort required for programming the simulation in Excel rather than in a simulation program was justified by its accessibility to other teams and its usefulness for teaching simulation in Six Sigma courses.

4 SALES PURSUIT AM Only or Use SCC? AM Only AM prepares proposal using TPC/eBOB to obtain standard TPS hardware and software model numbers and list pricing. AM provides the TPS prj file / e.bob index number to SCCA for placement in job file and on server. Use SSC. of jobs. of jobs Is all required info included? SCC finalizes TPC and/or e.bob, creates block drawings, researches new products and secures other cost items. SCC obtains Honeywell hardware costs through HIET Data Report for TPS hardware or e.bob for PlantScape hardware. Modify proposal?. of jobs. of jobs Is this an E&I opportunity? Is Costing Team required? SCC reviews and completes TPC/eBOB file and saves the following reports: Bill of Material, Calculated Values, Service Data, HIET Data.. of jobs Other services required? SCC finalizes initial TPC/e.BOB file submitted by TPAM, creates block drawings, researches new products and generates other costing information. Modify proposal? Add'l SCC resources required?. of jobs Customer clarifications? Finish AM = Acount Manager SCC = Sales Cost Consultant E&I = Engineering & Installation Fig. 3. System Proposal Process Map for Configurator Usage 5. Data Collection Data had to be collected for two configurators: TPC and ebob. TPC was used for configuring TPS systems and ebob was used for configuring PlantScape systems. The project sought to eliminate one of the configurators and consolidate support for both TPS and PlantScape in the other. By the time the simulation was being developed, TPC appeared to be the better configurator for upgrading, and the decision was made to estimate the productivity savings and ROI for this choice. Data for the simulation was produced from three sources (Table 2), a proposal manager questionnaire, a survey of estimators, and the 2001 PlantScape order entry data. Because proposal size is a significant factor in the effort required to produce a proposal, the simulation model had to provide branches for proposal size and the probability of branching was based on the Table 2. Sources of Model Data TPS Proposals PlantScape Proposals. of Proposals in 2001 Proposal Manager Questionnaire 2001 PlantScape Order Entry Data As-Is Effort Estimator Survey: TPC data Estimator Survey: ebob data To-Be Effort Estimator Survey: TPC data Estimator Survey: TPC data

5 Table 3. Number of TPS Proposals (last 12 months) Job Size Personnel Involved Small Medium Large AM only AM+SCC, n-e&i AM+SCC+CT, n-e&i AM+SCC+OS All fraction of each proposal size produced in For TPS proposals, these fractions were calculated from the numbers of TPS proposals of each size passing through each configurator usage path (Figure 3), as provided by the proposal group manager in response to a questionnaire (Table 3). Because PlantScape is a much smaller system, proposals for it are entered by many people, so the 2001 PlantScape Order Entry datafile was used to determine the number of PlantScape proposals of each size. The process map of Figure 3 was validated after the results of the proposal manager questionnaire were received. It was found that the Account Manager-only branch was used very infrequently and only for small proposals. Therefore, this branch could be eliminated from the simulation model with an insignificant effect on the results. The validation exercise also revealed that, despite what the proposal process map indicated, the use of a Costing Team made no difference with regard to configurator usage effort. Therefore, the numbers of proposals for these two paths were merged. These simplifications left only three steps to be simulated for each proposal size. Table 4. Estimator Data Form for As-Is Effort Job Size Process Step Configurator Small Medium Large SCC finalizes TPC and/or ebob, creates block drawings, researches new products, secures other cost items, and saves the following reports: Bill of Material, Calculated Values, Service Data, HIET Data. TPC ebob SCC obtains Honeywell hardware costs through HIET Data Report for TPS hardware or ebob for PlantScape hardware. TPC ebob SCC finalizes initial TPC/eBOB file submitted by TPAM, creates block drawings, researches new products and generates other costing information. TPC ebob Table 5. Estimator Data Form for To-Be Effort Job Size Process Step Small Medium Large SCC finalizes TPC, creates block drawings, researches new products, secures other cost items, and saves the following reports: Bill of Material, Calculated Values, Service Data, HIET Data. SCC obtains Honeywell hardware costs through HIET Data Report for TPS or PlantScape hardware. SCC finalizes initial TPC file submitted by TPAM, creates block drawings, researches new products and generates other costing information.

6 The second survey solicited data from thirteen estimators about the amount of effort actually spent on each of the three steps for proposals (Table 4) and about the amount of effort that could be expected after the TPC upgrades described in the survey (Table 5). The proposed upgrades included enhancements for facilitating the use of TPC, as well as providing support for systems other than TPS, such as PlantScape. Continuous distributions were derived from the effort data obtained in the estimator survey using an input analyzer. Distributions having closed form inverse transforms were used: discrete, triangular, Weibull, exponential, and uniform. Excel formulas were written for inverse transforms of the effort distributions. 6. Random Number Generation Using Excel introduced a special problem for simulation because the quality of Excel s random number generator (RNG) is debatable [1]. However, the quality of any RNG s random number streams may be highly dependent on the choice of seeds. Use of seeds is desirable not only for common random numbers in reducing variance when comparing scenarios [2], but for choosing those seeds that produce the best pseudorandom streams. The Excel RNG was tested with 10,000 seeds using empirical tests for both uniformity (Chi-square and serial tests in two and three dimensions) and independence (runs-up) on streams of three different lengths, 600, 6000, and numbers. These stream lengths were chosen based on the stream lengths needed for the simulation model. The best seeds were selected using composite rankings for the tests across the four empirical tests and across the three stream lengths. Seed Rank = R ij R ij = rank for the i th empirical test and the j th stream length Each selected seed produced the three different streams for which each empirical test null hypothesis could not be rejected α=.05. A different random number stream was employed for each random variable because a high number of simulation runs was expected, making independent streams desirable. Since Excel s RNG lacks the capacity to sample multiple random number streams alternatively, streams were generated by a Visual Basic script and stored, one stream per spreadsheet. Fully synchronized common random numbers were used to reduce variance in the difference between the two cases, allowing calculation of variance from the difference of each pair of As-Is and To-Be runs. 7. Simulation Model An Excel worksheet was allocated for each of the four simulation models: TPC As-Is, TPC To-Be, ebob As-Is, and ebob To-Be. The first two columns of Table 6 are an excerpt from TPC As-Is, showing how the model works for a single process step and one proposal. The Description column in Table 6 explains the numbers in the second column. Table 6. Sample of Simulation Model: As-Is Proposal 1 in the AM & SCC <& OS>, E&I Path Path: AM & SCC <& OS>, E&I Description Proposal. 1 Row contains consecutive numbers. Fraction medium proposals (FracMed).186 Constant for this row. Fraction large proposals (FracLar).814 Constant for this row. Random number for branching proposal size (RN6) VB script reads a stored random number stream and enters this number. Step 3: configuration Random Number for proposal prep effort (RN7) VB script reads a stored random number Effort distributions by proposal size stream and enters this number. Medium 0 =IF(RN6<FracMed, InverseTransformForMedium(RN7), 0) Large =IF(RN6>=FracMed, InverseTransformForLarge(RN7), 0) Total Effort for All Proposals on this Path 4692 Sum values in Medium and Large rows. Total Effort for all paths Sum of Total Effort values for all paths.

7 Proposals are numbered sequentially in the Proposal. row. The number of proposals for a path is number of proposals reported for that path by the proposal manager. The fraction of each size proposal (FracMed and FracLar in Table 6) is also calculated from the proposal manager s report (this path did not have any small proposals). For each process step, two random numbers were used: one for branching on proposal size and the other for calculating the effort in the process step. A row is allocated for the effort distribution corresponding to each process step in the path. The path shown in Table 6 had medium and large proposals, so a row was allocated for each of the effort distributions, one for medium proposals and one for large proposals. The branching pseudorandom number determines which of the effort distributions is used. Subject to this condition, the proposal effort is calculated using the effort pseudorandom number in an inverse transform. The effort figures for each path are summed and the effort sums across paths are totaled. The simulation is run by a Visual Basic (VB) script. The script populates each model, calculates the worksheet, and stores the total effort on a Results worksheet. Each year represents all the proposals for The scripts produce 1000 runs on each of the four models. 8. Results The As-Is and To-Be runs for TPC were paired through the use of synchronized common random numbers, so the difference between each pair of runs was taken to obtain the expected savings in the To-Be scenario due to TPC enhancements that would facilitate its use. The same was done with the As-Is and To-Be runs for ebob, however the To-Be ebob runs used TPC effort distributions since ebob would be upgraded to support PlantScape proposals. The outputs and savings are normally distributed. Figure 4 shows the normal probability plots for TPS proposals made in TPC and Figure 5 shows the PlantScape proposals produce now in ebob and later in TPC. 99 Savings Percent To-Be As-Is Person-Hours Annually Fig. 5. rmal Probability Plots for TPC (TPS Proposals) Effort: As-Is, To-Be, and Savings

8 Percent Savings To-Be As-Is Person-Hours Annually Fig. 6. rmal Probability Plots for ebob (PlantScape Proposals) Effort: As-Is, To-Be, and Savings Taking the two savings together TPC upgrades to facilitate its use and upgrades to support PlantScape proposals the mean projected savings is 6600 person-hours annually with a standard deviation of 757 person-hours. Five of the proposed upgrades would save one to two person-years of effort in producing product proposals (95% confidence interval on range). The cost of the upgrades would be reclaimed in 1.3 to 2.0 years due only to increased proposal productivity. In addition, variation in the configuration effort required for proposals would be decreased 65% (indicated by the slope of the plots). References [1] B.D. McCullough and B. Wilson, On the accuracy of statistical procedures in Microsoft Excel 97, Computational Statistics and Data Analysis, 31 (1999), pp [2] Averill M. Law and W. David Kelton, Simulation Modeling and Analysis, 2 nd ed. McGraw-Hill, New York, Conclusions and Next Steps Simulation of software system usage, based on data elicited from regular system users, provided a sound, quantitative basis for estimating productivity increases and justifying upgrade investments. The next stage of the project calls for measurement of actual savings and use of a control plan for monitoring variation in improved steps of the process.

Unit 1: Introduction to Six Sigma I

Unit 1: Introduction to Six Sigma I Unit 1: Introduction to Six Sigma I Six Sigma & its Goals Six Sigma as a Performance Measure, Problem Solving Tool, & Management Philosophy Problem Solving Tools Used in Six Sigma & its Evolution Variation

More information

Unit 1: Introduction to Quality Management

Unit 1: Introduction to Quality Management Unit 1: Introduction to Quality Management Definition & Dimensions of Quality Quality Control vs Quality Assurance Small-Q vs Big-Q & Evolution of Quality Movement Total Quality Management (TQM) & its

More information

WebSphere Business Modeler

WebSphere Business Modeler Discovering the Value of SOA WebSphere Process Integration WebSphere Business Modeler Workshop SOA on your terms and our expertise Soudabeh Javadi Consulting Technical Sales Support WebSphere Process Integration

More information

Learning Objectives Lean Six Sigma Black Belt Course

Learning Objectives Lean Six Sigma Black Belt Course Learning Objectives Lean Six Sigma Black Belt Course The overarching learning objective of this course is to develop a comprehensive set of skills that will allow you to function effectively as a Six Sigma

More information

Course Overview Lean Six Sigma Green Belt

Course Overview Lean Six Sigma Green Belt Course Overview Lean Six Sigma Green Belt Summary and Objectives This Six Sigma Green Belt course is comprised of 11 separate sessions. Each session is a collection of related lessons and includes an interactive

More information

Best Practices Statement Project Management. Best Practices for Managing State Information Technology Projects

Best Practices Statement Project Management. Best Practices for Managing State Information Technology Projects State of Arkansas Office of Information Technology 124 W. Capitol Ave. Suite 990 Little Rock, AR 72201 501.682.4300 Voice 501.682.4020 Fax http://www.cio.arkansas.gov/techarch Best Practices Statement

More information

Performance Testing Process A Whitepaper

Performance Testing Process A Whitepaper Process A Whitepaper Copyright 2006. Technologies Pvt. Ltd. All Rights Reserved. is a registered trademark of, Inc. All other trademarks are owned by the respective owners. Proprietary Table of Contents

More information

Simulation and Lean Six Sigma

Simulation and Lean Six Sigma Hilary Emmett, 22 August 2007 Improve the quality of your critical business decisions Agenda Simulation and Lean Six Sigma What is Monte Carlo Simulation? Loan Process Example Inventory Optimization Example

More information

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

More information

Information Technology Project Oversight Framework

Information Technology Project Oversight Framework i This Page Intentionally Left Blank i Table of Contents SECTION 1: INTRODUCTION AND OVERVIEW...1 SECTION 2: PROJECT CLASSIFICATION FOR OVERSIGHT...7 SECTION 3: DEPARTMENT PROJECT MANAGEMENT REQUIREMENTS...11

More information

Lean Six Sigma Black Belt Body of Knowledge

Lean Six Sigma Black Belt Body of Knowledge General Lean Six Sigma Defined UN Describe Nature and purpose of Lean Six Sigma Integration of Lean and Six Sigma UN Compare and contrast focus and approaches (Process Velocity and Quality) Y=f(X) Input

More information

Lean Six Sigma Training/Certification Book: Volume 1

Lean Six Sigma Training/Certification Book: Volume 1 Lean Six Sigma Training/Certification Book: Volume 1 Six Sigma Quality: Concepts & Cases Volume I (Statistical Tools in Six Sigma DMAIC process with MINITAB Applications Chapter 1 Introduction to Six Sigma,

More information

Business Process Optimization w/ Innovative Results

Business Process Optimization w/ Innovative Results Business Process Optimization w/ Innovative Results Sam DiSalvatore Introduction The principle of continuous process improvement is based on the belief that even excellent products and services can be

More information

Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

Six Sigma: Green Belt Training/Certification

Six Sigma: Green Belt Training/Certification Six Sigma Green Belt Training/Certification Course with Practice Exams and Project Execution Steps Objectives Use Six Sigma to quantify the critical quality issues in your company. Integrate the principles

More information

CA Clarity PPM. Portfolio Management User Guide. v13.0.00

CA Clarity PPM. Portfolio Management User Guide. v13.0.00 CA Clarity PPM Portfolio Management User Guide v13.0.00 This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as the Documentation

More information

Lean Six Sigma Black Belt-EngineRoom

Lean Six Sigma Black Belt-EngineRoom Lean Six Sigma Black Belt-EngineRoom Course Content and Outline Total Estimated Hours: 140.65 *Course includes choice of software: EngineRoom (included for free), Minitab (must purchase separately) or

More information

Quantitative Methods for Finance

Quantitative Methods for Finance Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain

More information

White Paper from Global Process Innovation. Fourteen Metrics for a BPM Program

White Paper from Global Process Innovation. Fourteen Metrics for a BPM Program White Paper from Global Process Innovation by Jim Boots Fourteen Metrics for a BPM Program This white paper presents 14 metrics which may be useful for monitoring progress on a BPM program or initiative.

More information

CA Clarity PPM. Project Management User Guide. v13.0.00

CA Clarity PPM. Project Management User Guide. v13.0.00 CA Clarity PPM Project Management User Guide v13.0.00 This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as the Documentation )

More information

BODY OF KNOWLEDGE CERTIFIED SIX SIGMA YELLOW BELT

BODY OF KNOWLEDGE CERTIFIED SIX SIGMA YELLOW BELT BODY OF KNOWLEDGE CERTIFIED SIX SIGMA YELLOW BELT The topics in this Body of Knowledge include additional detail in the form of subtext explanations and the cognitive level at which test questions will

More information

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

More information

Quantitative Risk Analysis with Microsoft Project

Quantitative Risk Analysis with Microsoft Project Copyright Notice: Materials published by Intaver Institute Inc. may not be published elsewhere without prior written consent of Intaver Institute Inc. Requests for permission to reproduce published materials

More information

PBS Professional Job Scheduler at TCS: Six Sigma- Level Delivery Process and Its Features

PBS Professional Job Scheduler at TCS: Six Sigma- Level Delivery Process and Its Features PBS Professional Job Scheduler at TCS: Six Sigma- Bhadraiah Karnam Analyst Tata Consultancy Services Whitefield Road Bangalore 560066 Level Delivery Process and Its Features Hari Krishna Thotakura Analyst

More information

The Total Economic Impact Of SAS Customer Intelligence Solutions Intelligent Advertising For Publishers

The Total Economic Impact Of SAS Customer Intelligence Solutions Intelligent Advertising For Publishers A Forrester Total Economic Impact Study Commissioned By SAS Project Director: Dean Davison February 2014 The Total Economic Impact Of SAS Customer Intelligence Solutions Intelligent Advertising For Publishers

More information

IBM SPSS Statistics 20 Part 4: Chi-Square and ANOVA

IBM SPSS Statistics 20 Part 4: Chi-Square and ANOVA CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES IBM SPSS Statistics 20 Part 4: Chi-Square and ANOVA Summer 2013, Version 2.0 Table of Contents Introduction...2 Downloading the

More information

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

More information

Risk Workshop Overview. MOX Safety Fuels the Future

Risk Workshop Overview. MOX Safety Fuels the Future Risk Workshop Overview RISK MANAGEMENT PROGRAM SUMMARY CONTENTS: Control Account Element Definition ESUA Form Basis of Estimate Uncertainty Calculation Management Reserve 1. Overview 2. ESUA Qualification

More information

Body of Knowledge for Six Sigma Green Belt

Body of Knowledge for Six Sigma Green Belt Body of Knowledge for Six Sigma Green Belt What to Prepare For: The following is the Six Sigma Green Belt Certification Body of Knowledge that the exam will cover. We strongly encourage you to study and

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

T i. An Integrated Workbench For Optimizing Business Processes MODELING SIMULATION ANALYSIS OPTIMIZATION

T i. An Integrated Workbench For Optimizing Business Processes MODELING SIMULATION ANALYSIS OPTIMIZATION O P T i M An Integrated Workbench For Optimizing Business Processes MODELING SIMULATION ANALYSIS OPTIMIZATION O P T i M MODEL SIMULATE ANALYZE OPTIMIZE Integrated process modeler with import/export functionality

More information

44-76 mix 2. Exam Code:MB5-705. Exam Name: Managing Microsoft Dynamics Implementations Exam

44-76 mix 2. Exam Code:MB5-705. Exam Name: Managing Microsoft Dynamics Implementations Exam 44-76 mix 2 Number: MB5-705 Passing Score: 800 Time Limit: 120 min File Version: 22.5 http://www.gratisexam.com/ Exam Code:MB5-705 Exam Name: Managing Microsoft Dynamics Implementations Exam Exam A QUESTION

More information

SCHEDULE 10.1A PRICING FORMAT REQUIREMENTS SCHEDULE 10.1.A

SCHEDULE 10.1A PRICING FORMAT REQUIREMENTS SCHEDULE 10.1.A SCHEDULE 10.1.A APRIL 25, 2005 Table of Contents 1.0 General Financial Requirements...1 1.1 Pricing Structure and Fees...1 1.2 Transition Services and Fees...2 1.3 Annual Fees...3 1.4 Resource Usage Fees...3

More information

Monte Carlo Simulation (General Simulation Models)

Monte Carlo Simulation (General Simulation Models) Monte Carlo Simulation (General Simulation Models) STATGRAPHICS Rev. 9/16/2013 Summary... 1 Example #1... 1 Example #2... 8 Summary Monte Carlo simulation is used to estimate the distribution of variables

More information

Microsoft Project Professional

Microsoft Project Professional Microsoft Project Professional A 100% practical workshop to master Microsoft Project, training the main features of the application for project management. Objective Insight into the functions required

More information

1 Define-Measure-Analyze- Improve-Control (DMAIC)

1 Define-Measure-Analyze- Improve-Control (DMAIC) 1 Define-Measure-Analyze- Improve-Control (DMAIC) Six Sigma s most common and well-known methodology is its problem-solving DMAIC approach. This section overviews the methodology and its high-level requirements,

More information

Performance Workload Design

Performance Workload Design Performance Workload Design The goal of this paper is to show the basic principles involved in designing a workload for performance and scalability testing. We will understand how to achieve these principles

More information

Recommendations for Performance Benchmarking

Recommendations for Performance Benchmarking Recommendations for Performance Benchmarking Shikhar Puri Abstract Performance benchmarking of applications is increasingly becoming essential before deployment. This paper covers recommendations and best

More information

The Storage Capacity Design Dilemma

The Storage Capacity Design Dilemma The Storage Capacity Design Dilemma an ITIL approach LeRoy Budnik Knowledge Transfer SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA and portions are subject to other

More information

TAGUCHI APPROACH TO DESIGN OPTIMIZATION FOR QUALITY AND COST: AN OVERVIEW. Resit Unal. Edwin B. Dean

TAGUCHI APPROACH TO DESIGN OPTIMIZATION FOR QUALITY AND COST: AN OVERVIEW. Resit Unal. Edwin B. Dean TAGUCHI APPROACH TO DESIGN OPTIMIZATION FOR QUALITY AND COST: AN OVERVIEW Resit Unal Edwin B. Dean INTRODUCTION Calibrations to existing cost of doing business in space indicate that to establish human

More information

Six Sigma in Project Management for Software Companies

Six Sigma in Project Management for Software Companies Six Sigma in Project Management for Software Companies Yogesh Chauhan Total Quality Engineering & Management PEC University of Technology, Chandigarh, India Dr. R M Belokar PEC University of Technology,

More information

Six Sigma. Breakthrough Strategy or Your Worse Nightmare? Jeffrey T. Gotro, Ph.D. Director of Research & Development Ablestik Laboratories

Six Sigma. Breakthrough Strategy or Your Worse Nightmare? Jeffrey T. Gotro, Ph.D. Director of Research & Development Ablestik Laboratories Six Sigma Breakthrough Strategy or Your Worse Nightmare? Jeffrey T. Gotro, Ph.D. Director of Research & Development Ablestik Laboratories Agenda What is Six Sigma? What are the challenges? What are the

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Configuring budget planning for Microsoft Dynamics AX 2012 R2

Configuring budget planning for Microsoft Dynamics AX 2012 R2 Microsoft Dynamics AX 2012 R2 Configuring budget planning for Microsoft Dynamics AX 2012 R2 White Paper This document describes configuration considerations for implementing budget planning. October 2012

More information

Lean Six Sigma Green Belt

Lean Six Sigma Green Belt Course Description Lean Six Sigma Green Belt This 2-week hands-on workshop provides participants with the detailed methodology and tools of Lean Six Sigma to lead their organization toward World Class

More information

Reliability Block Diagram RBD

Reliability Block Diagram RBD Information Technology Solutions Reliability Block Diagram RBD Assess the level of failure tolerance achieved RELIABIL ITY OPTIMIZATION System reliability analysis for sophisticated and large scale systems.

More information

Comparison of EngineRoom (6.0) with Minitab (16) and Quality Companion (3)

Comparison of EngineRoom (6.0) with Minitab (16) and Quality Companion (3) Comparison of EngineRoom (6.0) with Minitab (16) and Quality Companion (3) What is EngineRoom? A Microsoft Excel add in A suite of powerful, simple to use Lean and Six Sigma data analysis tools Built for

More information

The Six Sigma Handbook

The Six Sigma Handbook The Six Sigma Handbook A Complete Guide for Green Belts, Black Belts, and Managers at All Levels Thomas Pyzdek Paul A. Keller Third Edition Me Graw Hill New York Chicago San Francisco Lisbon London Madrid

More information

PROJECT MANAGEMENT PLAN CHECKLIST

PROJECT MANAGEMENT PLAN CHECKLIST PROJECT MANAGEMENT PLAN CHECKLIST The project management plan is a comprehensive document that defines each area of your project. The final document will contain all the required plans you need to manage,

More information

DELL. Virtual Desktop Infrastructure Study END-TO-END COMPUTING. Dell Enterprise Solutions Engineering

DELL. Virtual Desktop Infrastructure Study END-TO-END COMPUTING. Dell Enterprise Solutions Engineering DELL Virtual Desktop Infrastructure Study END-TO-END COMPUTING Dell Enterprise Solutions Engineering 1 THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL

More information

Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools. Tools for Summarizing Data Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

More information

I. Enterprise-wide Planning and Deployment (25 questions)

I. Enterprise-wide Planning and Deployment (25 questions) ASQ Certified Master Black Belt (MBB) Body of Knowledge Multiple-Choice Section 100 Questions 2 ½ hours The topics in this Body of Knowledge (BOK) include descriptive details (subtext) that will be used

More information

Process simulation. Enn Õunapuu enn.ounapuu@ttu.ee

Process simulation. Enn Õunapuu enn.ounapuu@ttu.ee Process simulation Enn Õunapuu enn.ounapuu@ttu.ee Content Problem How? Example Simulation Definition Modeling and simulation functionality allows for preexecution what-if modeling and simulation. Postexecution

More information

IST 301. Class Exercise: Simulating Business Processes

IST 301. Class Exercise: Simulating Business Processes IST 301 Class Exercise: Simulating Business Processes Learning Objectives: To use simulation to analyze and design business processes. To implement scenario and sensitivity analysis As-Is Process The As-Is

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

Directions for VMware Ready Testing for Application Software

Directions for VMware Ready Testing for Application Software Directions for VMware Ready Testing for Application Software Introduction To be awarded the VMware ready logo for your product requires a modest amount of engineering work, assuming that the pre-requisites

More information

POLAR IT SERVICES. Business Intelligence Project Methodology

POLAR IT SERVICES. Business Intelligence Project Methodology POLAR IT SERVICES Business Intelligence Project Methodology Table of Contents 1. Overview... 2 2. Visualize... 3 3. Planning and Architecture... 4 3.1 Define Requirements... 4 3.1.1 Define Attributes...

More information

3-Step Competency Prioritization Sequence

3-Step Competency Prioritization Sequence 3-Step Competency Prioritization Sequence The Core Competencies for Public Health Professionals (Core Competencies), a consensus set of competencies developed by the Council on Linkages Between Academia

More information

Measurement Information Model

Measurement Information Model mcgarry02.qxd 9/7/01 1:27 PM Page 13 2 Information Model This chapter describes one of the fundamental measurement concepts of Practical Software, the Information Model. The Information Model provides

More information

Lean Certification Program Blended Learning Program Cost: $5500. Course Description

Lean Certification Program Blended Learning Program Cost: $5500. Course Description Lean Certification Program Blended Learning Program Cost: $5500 Course Description Lean Certification Program is a disciplined process improvement approach focused on reducing waste, increasing customer

More information

Position Paper for Cognition and Collaboration Workshop: Analyzing Distributed Community Practices for Design

Position Paper for Cognition and Collaboration Workshop: Analyzing Distributed Community Practices for Design Position Paper for Cognition and Collaboration Workshop: Analyzing Distributed Community Practices for Design Jean Scholtz, Michelle Steves, and Emile Morse National Institute of Standards and Technology

More information

Brillig Systems Making Projects Successful

Brillig Systems Making Projects Successful Metrics for Successful Automation Project Management Most automation engineers spend their days controlling manufacturing processes, but spend little or no time controlling their project schedule and budget.

More information

The Power of Two: Combining Lean Six Sigma and BPM

The Power of Two: Combining Lean Six Sigma and BPM : Combining Lean Six Sigma and BPM Lance Gibbs and Tom Shea Lean Six Sigma (LSS) and Business Process Management (BPM) have much to contribute to each other. Unfortunately, most companies have not integrated

More information

Education & Training Plan Accounting Math Professional Certificate Program with Externship

Education & Training Plan Accounting Math Professional Certificate Program with Externship University of Texas at El Paso Professional and Public Programs 500 W. University Kelly Hall Ste. 212 & 214 El Paso, TX 79968 http://www.ppp.utep.edu/ Contact: Sylvia Monsisvais 915-747-7578 samonsisvais@utep.edu

More information

Arena 9.0 Basic Modules based on Arena Online Help

Arena 9.0 Basic Modules based on Arena Online Help Arena 9.0 Basic Modules based on Arena Online Help Create This module is intended as the starting point for entities in a simulation model. Entities are created using a schedule or based on a time between

More information

Six sigma project management

Six sigma project management Six sigma project management Bizagi Suite Six sigma project management 1 Table of Contents Six Sigma Project Management... 3 Process Elements... 9 Project Charter... 9 Define... 11 Measure...12 Analyze...12

More information

System Development and Life-Cycle Management (SDLCM) Methodology. Approval CISSCO Program Director

System Development and Life-Cycle Management (SDLCM) Methodology. Approval CISSCO Program Director System Development and Life-Cycle Management (SDLCM) Methodology Subject Type Standard Approval CISSCO Program Director A. PURPOSE This standard specifies content and format requirements for a Physical

More information

A Six Sigma Approach for Software Process Improvements and its Implementation

A Six Sigma Approach for Software Process Improvements and its Implementation A Six Sigma Approach for Software Process Improvements and its Implementation Punitha Jayaraman, Kamalanathan Kannabiran, and S.A.Vasantha Kumar. Abstract Six Sigma is a data-driven leadership approach

More information

Education & Training Plan. Accounting Math Professional Certificate Program with Externship

Education & Training Plan. Accounting Math Professional Certificate Program with Externship Office of Professional & Continuing Education 301 OD Smith Hall Auburn, AL 36849 http://www.auburn.edu/mycaa Contact: Shavon Williams 334-844-3108; szw0063@auburn.edu Auburn University is an equal opportunity

More information

Live Event Count Issue

Live Event Count Issue Appendix 3 Live Event Document Version 1.0 Table of Contents 1 Introduction and High Level Summary... 3 2 Details of the Issue... 4 3 Timeline of Technical Activities... 6 4 Investigation on Count Day

More information

IMPROVEMENT MATERIAL INVENTORY TRACKING FOR MAINTENANCE AND PROJECT THROUGH LEAN SIGMA METHODOLOGY

IMPROVEMENT MATERIAL INVENTORY TRACKING FOR MAINTENANCE AND PROJECT THROUGH LEAN SIGMA METHODOLOGY IMPROVEMENT MATERIAL INVENTORY TRACKING FOR MAINTENANCE AND PROJECT THROUGH LEAN SIGMA METHODOLOGY Sotarduga Manurung, School of Business & Management, Bandung Institute of Technology (ITB), J1. Ganesha

More information

INTUITIVE AND USABLE RISK-BASED COST CONTINGENCY ESTIMATION MODEL FOR GENERAL CONTRACTING FIRMS

INTUITIVE AND USABLE RISK-BASED COST CONTINGENCY ESTIMATION MODEL FOR GENERAL CONTRACTING FIRMS INTUITIVE AND USABLE RISK-BASED COST CONTINGENCY ESTIMATION MODEL FOR GENERAL CONTRACTING FIRMS Javier Ordóñez 1 and Borinara Park 2 * 1 @RISK, Palisade Corporation, Ithaca, USA 2 Construction Management

More information

STATISTICAL ANALYSIS WITH EXCEL COURSE OUTLINE

STATISTICAL ANALYSIS WITH EXCEL COURSE OUTLINE STATISTICAL ANALYSIS WITH EXCEL COURSE OUTLINE Perhaps Microsoft has taken pains to hide some of the most powerful tools in Excel. These add-ins tools work on top of Excel, extending its power and abilities

More information

EQUELLA Whitepaper. Performance Testing. Carl Hoffmann Senior Technical Consultant

EQUELLA Whitepaper. Performance Testing. Carl Hoffmann Senior Technical Consultant EQUELLA Whitepaper Performance Testing Carl Hoffmann Senior Technical Consultant Contents 1 EQUELLA Performance Testing 3 1.1 Introduction 3 1.2 Overview of performance testing 3 2 Why do performance testing?

More information

4 Testing General and Automated Controls

4 Testing General and Automated Controls 4 Testing General and Automated Controls Learning Objectives To understand the reasons for testing; To have an idea about Audit Planning and Testing; To discuss testing critical control points; To learn

More information

Certified Six Sigma Yellow Belt

Certified Six Sigma Yellow Belt Certified Six Sigma Yellow Belt Quality excellence to enhance your career and boost your organization s bottom line asq.org/cert The Global Voice of Quality TM Certification from ASQ is considered a mark

More information

Process Solutions. Uniformance Process History Database (PHD) Product Information Note

Process Solutions. Uniformance Process History Database (PHD) Product Information Note Process Solutions Product Information Note Uniformance Process History Database (PHD) Uniformance PHD enables you to make sense of all the data in your plant to help you make the right decision and optimize

More information

ITRM Guideline CPM 110-01 Date: January 23, 2006 SECTION 4 - PROJECT EXECUTION AND CONTROL PHASE

ITRM Guideline CPM 110-01 Date: January 23, 2006 SECTION 4 - PROJECT EXECUTION AND CONTROL PHASE PROJECT MANAGEMENT GUIDELINE SECTION 4 - PROJECT EXECUTION AND CONTROL PHASE Table of Contents Introduction... 3 Project Execution and Control Phase Overview... 3 Activities and Documents in the Execution

More information

MANUFACTURING EXECUTION SYSTEMS INTEGRATED WITH ERP & SIX SIGMA FOR PROCESS IMPROVEMENTS

MANUFACTURING EXECUTION SYSTEMS INTEGRATED WITH ERP & SIX SIGMA FOR PROCESS IMPROVEMENTS MANUFACTURING EXECUTION SYSTEMS INTEGRATED WITH ERP & SIX SIGMA FOR PROCESS IMPROVEMENTS Name: Sumanth Pandith Surendra Institution: Wichita State University Status: Current Full time graduate in Industrial

More information

An Integrated Methodology for Implementing ERP Systems

An Integrated Methodology for Implementing ERP Systems APDSI 2000 Full Paper (July, 2000) An Integrated Methodology for Implementing ERP Systems Su-Yeon Kim 1), Eui-Ho Suh 2), Hyun-Seok Hwang 3) 1) Department of Industrial Engineering, POSTECH, Korea (tomi@postech.edu)

More information

White Paper: Application and network performance alignment to IT best practices

White Paper: Application and network performance alignment to IT best practices Unpublished White Paper: Application and network performance alignment to IT best practices This white paper briefly describes best practices; highlights IT best practices; and discusses in detail IT business

More information

Using Lean Six Sigma to Accelerate

Using Lean Six Sigma to Accelerate Using Lean Six Sigma to Accelerate CMMI Implementation Briefers: Diane A. Glaser Michael D. Barnett US Army LCMC SEC CMMI Coordinator Communication Software ASQ SSGB Engineering Support Division MTC Technologies,

More information

Risk Analysis and Quantification

Risk Analysis and Quantification Risk Analysis and Quantification 1 What is Risk Analysis? 2. Risk Analysis Methods 3. The Monte Carlo Method 4. Risk Model 5. What steps must be taken for the development of a Risk Model? 1.What is Risk

More information

Software Quality Management

Software Quality Management Software Lecture 9 Software Engineering CUGS Spring 2011 Kristian Sandahl Department of Computer and Information Science Linköping University, Sweden A Software Life-cycle Model Which part will we talk

More information

Randomized Block Analysis of Variance

Randomized Block Analysis of Variance Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of

More information

The Business Case for Visual Studio Quality Assurance and Testing Tools

The Business Case for Visual Studio Quality Assurance and Testing Tools The Business Case for Visual Studio Quality Assurance and Testing Tools May 2011 This document is property of Pique Solutions. Reproduction is forbidden unless authorized. Visit www.piquesolutions.com

More information

Introduction to Statistical Computing in Microsoft Excel By Hector D. Flores; hflores@rice.edu, and Dr. J.A. Dobelman

Introduction to Statistical Computing in Microsoft Excel By Hector D. Flores; hflores@rice.edu, and Dr. J.A. Dobelman Introduction to Statistical Computing in Microsoft Excel By Hector D. Flores; hflores@rice.edu, and Dr. J.A. Dobelman Statistics lab will be mainly focused on applying what you have learned in class with

More information

Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln. Log-Rank Test for More Than Two Groups

Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln. Log-Rank Test for More Than Two Groups Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln Log-Rank Test for More Than Two Groups Prepared by Harlan Sayles (SRAM) Revised by Julia Soulakova (Statistics)

More information

Bus u i s n i e n s e s s s Cas a e s, e, S o S l o u l t u io i n o n & A pp p r p oa o c a h

Bus u i s n i e n s e s s s Cas a e s, e, S o S l o u l t u io i n o n & A pp p r p oa o c a h Work Load Modeling and Work Load Modeler in Performance Testing Business Case, Solution & Approach Case An application is made ready to go-live in the next 2 months, but the application performance behavior

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

Data Analysis for Yield Improvement using TIBCO s Spotfire Data Analysis Software

Data Analysis for Yield Improvement using TIBCO s Spotfire Data Analysis Software Page 327 Data Analysis for Yield Improvement using TIBCO s Spotfire Data Analysis Software Andrew Choo, Thorsten Saeger TriQuint Semiconductor Corporation 2300 NE Brookwood Parkway, Hillsboro, OR 97124

More information

RapidResponse Training Catalog

RapidResponse Training Catalog RapidResponse Training Catalog Contents About RapidResponse Training... 4 RapidResponse Roles... 4 Consumers... 5 Contributors... 6 Contributors + RapidResponse Applications... 6 Authors... 8 Basic Authors...

More information

Optimizing IV&V Benefits Using Simulation

Optimizing IV&V Benefits Using Simulation Optimizing IV&V Benefits Using Simulation David M. Raffo, Ph.D. School of Business Administration Portland State University Motivation There is a critical need for cost effective IV&V Key Questions: What

More information

COMMUNICATING WITH MANAGEMENT ABOUT THE BENEFITS OF BUSINESS PROCESS SIMULATION

COMMUNICATING WITH MANAGEMENT ABOUT THE BENEFITS OF BUSINESS PROCESS SIMULATION Proceedings of the 2009 Winter Simulation Conference M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds. COMMUNICATING WITH MANAGEMENT ABOUT THE BENEFITS OF BUSINESS PROCESS SIMULATION

More information

Lean Six Sigma Tools for Internal Audit

Lean Six Sigma Tools for Internal Audit Lean Six Sigma Tools for Internal Audit The fundamental objective of the Six Sigma methodology is the implementation of a measurement-based strategy that focuses on process improvement and variation reduction.

More information

Normality Testing in Excel

Normality Testing in Excel Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

More information

Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

More information

Evaluating Trading Systems By John Ehlers and Ric Way

Evaluating Trading Systems By John Ehlers and Ric Way Evaluating Trading Systems By John Ehlers and Ric Way INTRODUCTION What is the best way to evaluate the performance of a trading system? Conventional wisdom holds that the best way is to examine the system

More information

Assignment 2: Microsoft Project Toolset. Eric Palmer & Mahindra Bheodari. Kennesaw State University. IS 8100 Spring 2015

Assignment 2: Microsoft Project Toolset. Eric Palmer & Mahindra Bheodari. Kennesaw State University. IS 8100 Spring 2015 Assignment 2: Microsoft Project Toolset 1 Assignment 2: Microsoft Project Toolset Eric Palmer & Mahindra Bheodari Kennesaw State University IS 8100 Spring 2015 Assignment 2: Microsoft Project Toolset 2

More information