Global Seasonal Phase Lag between Solar Heating and Surface Temperature
|
|
- Leslie Lawrence
- 5 years ago
- Views:
Transcription
1 Global Seasonal Phase Lag between Solar Heating and Surface Temperature Summer REU Program Professor Tom Witten By Abstract There is a seasonal phase lag between solar heating from the sun and the surface temperature across the globe. The time of year at which the amount of solar heating is maximal and minimal lag the maximal and minimal surface temperatures by several weeks. We have determined this phase lag precisely using historical data from 74 data stations compiled from the NOAA Database. Our measured phase lag of days is observed to be similar for many locations around the globe. Here we explore a possible explanation for this phase lag through a thermal conduction model. This model however gives much larger than the measured values. We show the failure of the thermal conduction model and that there is a significant correlation of phase lag with latitude. For certain latitudes there appears to be a minimum phase of about 0.06 a yearly cycle. 1 Introduction Seasons As the Earth travels in its orbit around the sun the relative angle of the sun at different latitudes with respect to the surface changes. This is what gives rise to the seasons we experience. As this relative angle goes to a minimum or maximum the amount of solar heating becomes minimal and maximal as well. These times of the year are known as solstices and the times of the year at which these angles are equal are known as equinoxes. For mid-range latitudes in the northern and southern hemispheres solar heating goes through one cycle per year. This means that there is one time per year with a maximum or minimum angle. We know these dates in the northern hemisphere as the summer and winter solstices, June 21 st and December 22 nd. For latitudes closer to the equator solar heating goes through two cycles per year. The angle of the sun relative to latitudes in the equator range is minimal at the spring and fall Equinox and maximal at the summer and winter solstice. Based on these observations, one can infer, in addition to solar heating having dominating first and second harmonic behavior, the temperature will have dominating first and second harmonic behavior as well. A glass of liquid As a starting point we would like to discuss a simple example involving heating of a glass of liquid via an oscillating heat source. The heat source is turning on and off at some constant driving frequency ω. For small w the temperature of the cup and incoming heat radiation are in phase and for large ω the temperature and heating are exactly π/2 out of phase. For the intermediate range of driving frequencies the phase is between 0 and π/2. Thus, there are a range of possible phase lags that one can observe the cup of liquid to have based solely on the driving frequency of the heat source. Additionally this system has a characteristic frequency ω 0 that governs the systems intrinsic response to driving. This characteristic frequency is equal to 1/
2 (Relaxation time). Thus the characteristic frequency is a feature dependent upon the property of the liquid or material being heated. To conclude this simple example, it is known that, in general, any system that has a relaxation time displays a range of phase lags dependent upon the driving frequency of the system and has a preferred frequency at which the intrinsic resonant response is maximal. In addition the phase lags are appreciable only if the driving frequency is within an order of magnitude of the relaxation rate. [1] If we were to use this model to explain the earth s phase lag between temperature and heating we would expect the relaxation time of the earth to match the period of its orbit or driving frequency of one year. If the earth could be isolated from its orbit around the sun and all heat radiation, it would only take a year to cool off. This seems to be an implausible conclusion. The typical explanation of phase lags from linear response theory fails and we are thus led to look for a broader explanation of this phenomenon, which brings us to the thermal conduction model. Thermal Conduction Model The thermal conduction model treats the surface of the earth as a thick and infinite uniform conducting slab of material with thermal diffusivity ζ. [1] In this case we will assume the slab to be z>0 and the periodic heat to be coming from z. When we inject the slab with periodically varying heat we obtain a temperature profile T(z,t) of the form: The heat diffuses into material obeying the diffusion equation. Assuming the above temperature profile the diffusion equation can be solved for the phase lag in the following way; The diffusion equation reads, and can be rewritten as when the assumed arbitrary sinusoidal temperature profile is used. This yields the following result for q, In order for the response to decay as one penetrates further into the medium the positive square root must be used. Finally at the surface we know the heat flux is proportional to the temperature gradient. We obtain the following by substituting exponential forms for -1, i and q. The heat flux and temperature phase vectors, which are rotating clockwise in time, have a phase lag between them of π/4 radians, 1/8 or 12.5% of a year. The result is independent of the driving frequency and the thermal diffusivity of the material and does not require the same tuning as the glass of liquid model, thus providing a broad and nice explanation of this phenomenon.
3 2 The Data Figure 2: A map of weather data points from the National Climatic Data Center Online. Figure 1: Map of available Weather Stations To analyze the yearly phase lag one needs to obtain daily temperature records over a period of many years. We chose 74 stations with approximately 50 or more years of data. Data was acquired from the National Climatic Data Center [2]. The above map in Figure 1 shows all of the available weather stations across the globe. The data we used in our analysis was the Daily Minimum Temperature; this is the lowest measured temperature at a given location on a given day. The weather stations typically record the temperature every hour, so this statistic is the lowest of those over a 24 hour period. The locations we chose were typically away from major cities to avoid man made affects on the temperatures. Most of the stations we chose to use were US weather stations. This is simply because the weather data from other places around the globe was not sufficiently long enough to provide reliable analysis. We tried to choose weather stations with at least 60 years of data from a variety of different geographies. One of the more important parts of this project was developing an algorithm using Mathematica that could take the many years of data and analyze the daily average. Once this algorithm was complete more important data could be developed including computation of phase lags and detailed error analysis.
4 3 Results and Discussion Summer REU Program Average Temperature Data Figure 3: A plot of Daily Average Low Temperature vs. Day of Year The graphs in Figure 2 show the average temperature data for all of the locations we chose to analyze. Each color represents a different station. As expected the graphs all have minimum and maximum values at about the same time of year; and are fairly independent of the geography of the location. It is important to note that some of the data does appear to be affected by location, an early sign that phase lags might have some dependence on geography. The graphs are scaled on the x-axis from 0-1, 0 being the beginning of the year and 1 being the last day of the year. The locations towards the top of the graph that do not fluctuate much at all are locations that are closer to the equator. Notice the obvious presence of a second harmonic in some of the data. The average temperatures for the locations closer to the equator reach a maximum and minimum twice per year whereas the mid-range latitudes go through only one cycle of maximum and minimum temperatures. Also notice the one location that appears flipped relative to the others; this is a location in Antarctica. As we expect summer and winter in the Southern Hemisphere occur at times opposite that of the northern hemisphere. The next part of the data analysis was acquiring fitted models for all of the average data so we could calculate the phase lags.
5 Fitted Models Figure 4: All Average Temps graphs superimposed with fitted models. In order to obtain proper fits for the average data we used a cosine model with two harmonics. As we can see in Figure 3 the fits strongly agree with the above datasets. Notice even for the data sets that have slightly strange peaks, clear signs of geographic effects, that the models still fit the data very well. The fits were found using the following form: This can be rewritten as: From these two equations the phase lag φ for the first harmonic term could be found by using the following equation:
6 Phase Lags Figure 5: Phase Lags with Error Bars For several locations we were able to reproduce the results for phase lags that were obtained by a previous REU student a few summers ago. The phase lags were 4-6% less than what the thermal conduction model predicts it would be. The phase lags were calculated to be nearly the same for all the locations across a variety of geographic variables but all still considerably less than the value of 12.5% of a yearly cycle that the thermal conduction model predicts. The graph in Figure 4 shows the results for the phase lags for each of the 74 Weather Stations we chose to analyze. As we can see the error bars are generally very small compared to the phase lags. One of the important things we noticed here was that there is a station to station discrepancy between the phase lag values. The error bars for some of the data points however are clearly out of the range of the others which supports our notion that there are geographic variables affecting the phase lag values. Some of the geographic variables which might be suspect in altering these values include some of the locations being islands, latitudes of the locations and elevations of the landlocked locations. Latitude seems to be the most important factor for the phase lags as we will see in the next section.
7 Phase Lags vs. Latitude Figure 6: Values of Phase Lag vs. Latitude of Location The graph in Figure 5 shows the correlation between the latitude of each location and the phase lag value at that location. As we can see there seems to be a relationship between these two values with the exception of a few locations. As the latitude decreases in the Northern Hemisphere and gets closer towards the equator the phase lag decreases. Unfortunately we a lack of solid set of data for weather stations close to the equator and in the Southern Hemisphere. In order to confirm this relationship we need to obtain more data for these regions. Data for these regions proved to be hard, if not impossible to find because we were trying to use at least 50 years of data. Additionally the fluctuations in average temperature for locations close to equator have amplitudes of only 4 degrees in some cases. Temperature data is generally recorded to the nearest degree so for these low latitude locations this could severely affect the phase lag calculations. We are confident that there is strong correlation between latitude and phase lag, and that there is an explanation for this correlation in terms of some simple physics.
8 4 Conclusions In this study of phase lags between annual solar heating and the temperature cycle we have discovered a few new results and shown that a thermal conduction model is an insufficient theory for this phenomenon. We observe a very well defined response to the annual heating cycle for a given location over the period of a year. Additionally this response involves a phase lag that is systematically too small to be explained by the thermal diffusion model, thus showing the thermal conduction model is insufficient. The discrepancies between some of the values obtained are far outside of the error bars and shows there is dependence on geographic variables, of which the most dominating appears to be latitude of the location. This is a new result as it was previously thought that the phase lag values would be within the same range independent of locations. From what we observed this is not the case and provides a new interesting feature to this problem that was not previously known. We believe that from this correlation of phase and latitude we can find a simple theory in terms of geometry arguments or some other fundamental principles that sufficiently explains these phase lags. Resources: 1.) Tom Witten, University of Chicago, James Franck Institute. Paper on Phase Lag Problem, On the meaning of the Seasonal Phase Lag. 2.) National Climatic Data Center, Online Database:
Solar energy and the Earth s seasons
Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different
The following words and their definitions should be addressed before completion of the reading:
Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center
Noon Sun Angle = 90 Zenith Angle
Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd
Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the
Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the tropics, less at higher latitudes Ok, so if the Earth weren't
Sun Earth Relationships
1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation
Graphing Sea Ice Extent in the Arctic and Antarctic
Graphing Sea Ice Extent in the Arctic and Antarctic Summary: Students graph sea ice extent (area) in both polar regions (Arctic and Antarctic) over a three-year period to learn about seasonal variations
Full credit for this chapter to Prof. Leonard Bachman of the University of Houston
Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...
Heat Transfer. Energy from the Sun. Introduction
Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases
The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
Answers for the Study Guide: Sun, Earth and Moon Relationship Test
Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
Solar Angles and Latitude
Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate
Where on Earth are the daily solar altitudes higher and lower than Endicott?
Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time
Essential Question. Enduring Understanding
Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons
Renewable Energy. Solar Power. Courseware Sample 86352-F0
Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring
CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS
INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before
CHAPTER 3. The sun and the seasons. Locating the position of the sun
zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST
Geography affects climate.
KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you
An Analysis of the Rossby Wave Theory
An Analysis of the Rossby Wave Theory Morgan E. Brown, Elise V. Johnson, Stephen A. Kearney ABSTRACT Large-scale planetary waves are known as Rossby waves. The Rossby wave theory gives us an idealized
Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?
Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the
Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year
Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during
Tropical Horticulture: Lecture 2
Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of
Relationship Between the Earth, Moon and Sun
Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth
Earth-Sun Relationships. The Reasons for the Seasons
Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide
PHSC 3033: Meteorology Seasons
PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There
How Do Oceans Affect Weather and Climate?
How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.
Lab Activity on the Causes of the Seasons
Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you
For further information, and additional background on the American Meteorological Society s Education Program, please contact:
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents
Earth in the Solar System
Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with
Climate and Weather. This document explains where we obtain weather and climate data and how we incorporate it into metrics:
OVERVIEW Climate and Weather The climate of the area where your property is located and the annual fluctuations you experience in weather conditions can affect how much energy you need to operate your
Celestial Observations
Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)
CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault
CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris
Seasonal Temperature Variations
Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors
Experiment #1, Analyze Data using Excel, Calculator and Graphs.
Physics 182 - Fall 2014 - Experiment #1 1 Experiment #1, Analyze Data using Excel, Calculator and Graphs. 1 Purpose (5 Points, Including Title. Points apply to your lab report.) Before we start measuring
Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay
Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 2 Vibration Theory Lecture - 8 Forced Vibrations, Dynamic Magnification Factor Let
Shadows, Angles, and the Seasons
Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center
Study Guide: Sun, Earth and Moon Relationship Assessment
I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
Finding Equations of Sinusoidal Functions From Real-World Data
Finding Equations of Sinusoidal Functions From Real-World Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT
AS COMPETITION PAPER 2007 SOLUTIONS
AS COMPETITION PAPER 2007 Total Mark/50 SOLUTIONS Section A: Multiple Choice 1. C 2. D 3. B 4. B 5. B 6. A 7. A 8. C 1 Section B: Written Answer Question 9. A mass M is attached to the end of a horizontal
Which month has larger and smaller day time?
ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format
ASTRONOMY 161. Introduction to Solar System Astronomy
ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative
Siting of Active Solar Collectors and Photovoltaic Modules
SOLAR CENTER INFORMATION NCSU Box 7401 Raleigh, NC 27695 (919) 515-3480 Toll Free 1-800-33-NC SUN Siting of Active Solar Collectors and Photovoltaic Modules To install a solar energy system properly, it
APPENDIX D: SOLAR RADIATION
APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working
Tide - rhythmic oscillation of the ocean surface due to gravitational & centrifugal forces ( inertia ) between the Earth, Moon and Sun.
Chapter 4: The Changing Level of the Sea Tides Longer Scale Variations Influence on Beaches Tide - rhythmic oscillation of the ocean surface due to gravitational & centrifugal forces ( inertia ) between
8.5 Comparing Canadian Climates (Lab)
These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?
1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead
Tides and Water Levels
Tides and Water Levels What are Tides? Tides are one of the most reliable phenomena in the world. As the sun rises in the east and the stars come out at night, we are confident that the ocean waters will
Orbital-Scale Climate Change
Orbital-Scale Climate Change Climate Needed for Ice Age Warm winter and non-frozen oceans so lots of evaporation and snowfall Cool summer so that ice does not melt Ice Age Model When ice growing ocean
Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME
Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern
STUDY GUIDE: Earth Sun Moon
The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all
CARBON THROUGH THE SEASONS
DESCRIPTION In this lesson plan, students learn about the carbon cycle and understand how concentrations of carbon dioxide (CO 2 ) in the Earth s atmosphere vary as the seasons change. Students also learn
DEPLOSUN REFLECTORS. Carrer dels Vergós, 11 08017 Barcelona Spain Tel: (+34) 934.090.359 Fx: (+34) 934.090.358 info@espaciosolar.
DEPLOSUN REFLECTORS DEPLOSUN REFLECTORS DEPLOSUN REFLECTORS is an innovative reflector system which captures the sun rays in the upper part of the atria and redirects them downwards, increasing daylight
163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS
ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,
Bigger is Better: Sizing Solar Modules for Microinverters
Bigger is Better: Sizing Solar Modules for Microinverters Authors: David Briggs 1 ; Dave Williams 1 ; Preston Steele 1 ; Tefford Reed 1 ; 1 Enphase Energy, Inc. October 25, 2012 SUMMARY This study analyzed
Solar Heating Basics. 2007 Page 1. a lot on the shape, colour, and texture of the surrounding
2007 Page 1 Solar Heating Basics Reflected radiation is solar energy received by collectorsfrom adjacent surfaces of the building or ground. It depends a lot on the shape, colour, and texture of the surrounding
The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10
Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?
DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day?
Name Partner(s) Section Date DETERMINING SOLAR ALTITUDE USING THE GNOMON Does the Sun ever occur directly overhead in Maryland? If it does, how would you determine or know it was directly overhead? How
Earth, Sun and Moon. Table of Contents
Earth, Sun and Moon Table of Contents 0. Unit Challenge 1. Earth and Its Motion 2. Earth s Rotation and Revolution 3. Earth s Tilt and Seasons 4. Seasons 5. The Moon 6. The Lunar Cycle 7. Lunar Geography
The Reasons for the Seasons
The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model
Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques
Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques Robert Rohde Lead Scientist, Berkeley Earth Surface Temperature 1/15/2013 Abstract This document will provide a simple illustration
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015
EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University
Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar
Use WITH Investigation 4, Part 2, Step 2
INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors
Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC
Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered
The Observed Calendar of the Second Temple Dates For 2014
www.120jubilees.com The Observed Calendar of the Second Temple Dates For 2014 The Observed Calendar of the Second Temple Era was used by the official priests of the Second Temple from at least 520 BC to
Machu Pichu. Machu Pichu is located north east of Cusco, Chile in the district of Machu Picchu, province of Urubamba.
Machu Pichu 1 Sunlight plays an important role in understanding the design of this fabled Inca city. Incan architects designed practical homes for Machu's residents. They also marked in their creations,
RaysWeather.Com 2015-2016 Winter Fearless Forecast
Author: Dr. Ray Russell Founder and President of RaysWeather.Com Date: October 10, 2015 RaysWeather.Com 2015-2016 Winter Fearless Forecast Background It's that time of year--leaves change, temperatures
Chapter 3 Earth - Sun Relations
3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic
CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015
CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 *** Must See Event 2014 ***April 8 - Mars at Opposition. The red planet will be at its closest approach to Earth and its face will be fully illuminated
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Optimum Orientation of Solar Panels
Optimum Orientation of Solar Panels To get the most from solar panels, point them in the direction that captures the most sun. But there are a number of variables in figuring out the best direction. This
White Dwarf Properties and the Degenerate Electron Gas
White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................
Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti
Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking
NMR Techniques Applied to Mineral Oil, Water, and Ethanol
NMR Techniques Applied to Mineral Oil, Water, and Ethanol L. Bianchini and L. Coffey Physics Department, Brandeis University, MA, 02453 (Dated: February 24, 2010) Using a TeachSpin PS1-A pulsed NMR device,
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs
Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented
Photosynthesis. Grade-Level Expectations The exercises in these instructional tasks address content related to the following grade-level expectations:
GRADE 5 SCIENCE INSTRUCTIONAL TASKS Photosynthesis Grade-Level Expectations The exercises in these instructional tasks address content related to the following grade-level expectations: SI-M-A5 Use evidence
California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
Mario Guarracino. Regression
Regression Introduction In the last lesson, we saw how to aggregate data from different sources, identify measures and dimensions, to build data marts for business analysis. Some techniques were introduced
FACTSHEET Assessing the Feasibility of Using Solar-Thermal Systems for Your Agricultural or Agri-Food Operation
FACTSHEET Assessing the Feasibility of Using Solar-Thermal Systems for Your Agricultural or Agri-Food Operation Solar-thermal systems collect the sun's energy and convert it into heat. This energy can
Determining Measurement Uncertainty for Dimensional Measurements
Determining Measurement Uncertainty for Dimensional Measurements The purpose of any measurement activity is to determine or quantify the size, location or amount of an object, substance or physical parameter
Note S1: Eclipses & Predictions
The Moon's Orbit The first part of this note gives reference information and definitions about eclipses [14], much of which would have been familiar to ancient Greek astronomers, though not necessarily
Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
Seasons on Earth LESSON
LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly
Time of Year - Based onMeasurement by NASA
Solar Sun System: The sun changes its east-west orientation throughout the day. It also changes its north-south position throughout the year. The sun reaches its highest position in the sky at noon during
Physics 6C, Summer 2006 Homework 2 Solutions
Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing