Geochemical constraints for the origin of thermal waters from western Turkey

Size: px
Start display at page:

Download "Geochemical constraints for the origin of thermal waters from western Turkey"

Transcription

1 Applied Geochemistry 17 (2002) Geochemical constraints for the origin of thermal waters from western Turkey Avner Vengosh a, *, Cahit Helvacı b,ismail H. Karamanderesi c a Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, PO Box 653, Beer Sheva 84105, Israel b Dokuz Eylu l U niversitesi, Mu hendislik Faku ltesi, Jeoloji Mu hendisligˇ Bo lu mu, Bornova-I. zmir, Turkey c MTA Ege Bo lge Mu du rlu gˇ, Bornova-I. zmir, Turkey Received 14 February 2000; accepted 14 February 2001 Editorial handling by R.L. Bassett Abstract The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water rock interaction. Four types of thermal water are present: (1) a Na Cl of marine origin; (2) a Na HCO 3 type with high CO 2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na SO 4 type that is also associated with metamorphic rocks of the Menderes Massif with H 2 S addition; and (4) a Ca Mg HCO 3 SO 4 type that results from interactions with carbonate rocks at shallow depths. The Na Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from C anakkale Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water rock interactions; (2) intensification of reactions due to high dissolved CO 2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (d 11 B=2.3% to 18.7%; n=6) can indicate either leaching of B from the rocks, or B(OH) 3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the waterrock mechanism. 87 Sr/ 86 Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks ( 87 Sr/ 86 Sr ratio as high as ) and carbonate rocks (low 87 Sr/ 86 Sr ratio of ). # 2002 Elsevier Science Ltd. All rights reserved. 1. Introduction The chemistry of thermal waters has attracted the attention of numerous studies, in particular investigations of the influence of water rock interactions and the large diversity of the ionic composition of fluids that are found in geothermal systems (e.g. Mahon, 1970; Tonani, 1970; White, 1970; Fournier and Truesdell 1973; Ellis and Mahon, 1977; Fournier, 1979; Giggenbach et al., 1983; Giggenbach, 1988). The chemical and environmental isotope compositions were used to determine the * Corresponding author. address: (A. Vengosh). origin of geothermal waters, in particular to distinguish between meteoric and sea water (e.g. Davisson et al., 1994). The geothermal fields of western Turkey provide a unique setting of extremely high enthalpy combined with a large variation in chemical composition. The distribution of the thermal systems follows the tectonic patterns of Turkey. The presence of active structural systems that characterizes western Anatolia is associated with young acidic volcanic activity, block faulting (grabens), hydrothermal alteration, fumaroles, and more than 600 hot springs with temperatures up to 100 C (C aǧlar, 1961; Ercan et al., 1985; 1997). The major high-enthalpy geothermal fields of Turkey are Kızıldere ( C), /02/$ - see front matter # 2002 Elsevier Science Ltd. All rights reserved. PII: S (01)

2 164 A. Vengosh et al. / Applied Geochemistry 17 (2002) O merbeyli Germencik (232 C), C anakkale Tuzla (174 C), Simav Ku tahya (165 C), and İzmir Seferihisar (232 C) (S ims ek and Gu leç, 1994; Go kgo z, 1998; Fig. 1). The geothermal energy potential of western Turkey is used for electricity production. During 1998, Turkey produced enough geothermal heat for 50,000 houses and greenhouses of 200,000 m 2 with350mwt,aswellas190 hot springs with 285 Mwt (Go kgo z, 1998). However, the high concentrations of dissolved constituents, in particular high dissolved B in geothermal effluent, presents a serious environmental problem. For example, effluents from the power plant in Denizli Kızıldere that have B concentrations of more than 20 mg/l are released into adjacent creeks and endanger natural biota that are sensitive to B. In addition, natural underground discharge of geothermal waters into overlying aquifers results in B contamination in the associated aquifers in western Anatolia (Filiz and Tarcan, 1995). Previous studies have investigated different aspects of the chemical and isotopic composition of geothermal waters in western Turkey (Filiz, 1984; Gülec, 1988; Tarcan and Filiz, 1990; Ercan, 1993; Conrad et al., 1995; Mützenberg, 1997; Balderer, 1997; Gökgo z, 1998; O zgu r et al., 1998). This study presents the chemical and B ( 11 B/ 10 B) and Sr ( 87 Sr/ 86 Sr) isotopic compositions of major geothermal fluids from western Turkey. The aim is to provide an overall assessment on the origin of the thermal fluids, in particular the origin of the elevated B dissolved in the geothermal waters. 2. General geology of western Turkey and Menderes Massif Turkey is located within the Alpine Himalayan orogenic belt. The distribution of seismicity and active regimes are concentrated along high strain zones, many of which are major strike-slip faults, such as the North Anatolian fault (Ketin, 1956, 1968), East Anatolian transform fault (Dewey and S engo r, 1979) and graben zones (e.g. Bu yu k Menderes graben, Ku c u k Menderes graben, Gediz graben, Simav, Manyas, Kızılcahamam) (Angelier et al., 1981; S engo r, et al., 1985). The broad tectonic framework of the Aegean region and the eastern Mediterranean region is dominated by the rapid westward motion of the Anatolian plate relative to the Black Sea (Eurasia) plate, and west to south-westward motion relative to the African plate (McKenzie, 1972, Dewey and S engo r, 1979). The Anatolian plate is considered a floating continental plate being pushed westward from the intercontinental Bitlis suture zone (the southern edge of the Arabian Eurasian convergent strain zone), where its motion relative to Africa, is characterized by subduction at the Hellenic Trench (Dewey and S engo r, 1979). The Anatolian region consists of a mosaic of fragments of continental crust originally scattered over Tethys. These fragments have been assembled as intervening oceanic crust has been eliminated by a series of subduction episodes during the past 200 ma (Crampin and Evans, 1986). The differential plate motions are responsible for the young, east and west Anatolian volcanic activities. Block faulting and North Anatolian transform movements apparently began in the mid-miocene. The movement on the North Anatolian fault is right lateral strike-slip on an E W fault, or normal to the movement between the major plates. The explanation of this remarkable observation is that the North Anatolian fault does not form a plate boundary between Eurasia and Africa, but the northern boundary of a small plate. The small plate is situated on central and western Turkey, and is rapidly moving westward, at about 40 mm/a (McKenzie and Yılmaz, 1991; Yılmaz, 1997). The motion in western Turkey yields a velocity of 70 mm/a in the front of the arc and an uplift of 2.4 cm/a between the Aegean and the Eurasian plates. The western Anatolian region is undergoing extension at some of the highest rates ever documented. Eyidogˇ an (1988) reported extension rates of 13.5 mm/a over the last 40 years. The Menderes Massif (Fig. 1) is one of the largest metamorphic massifs in Turkey, with a lengths of about 200 km N S between the Simav and Go kova grabens, and about 150 km E W between Denizli and Turgutlu in western Anatolia (Ketin, 1983). Philippson (1910) described the Menderes Massif as a dome-like structure, broken by faulting during the Alpine orogeny whereas Dixon and Pereira (1974) regard the Menderes Massif as one of a number of zwischengebirge, essentially microcontinental blocks, made up of pre-mesozoic basement rocks having some of the characteristics of the cratons but displaying evidence of Alpine tectonic and magmatic involvement (Blumental, 1951; Bas arir, 1970; İzdar, 1971; Du rr et al., 1978; O ztu rk and Koc yigit, 1983). The crystalline Menderes Massif is divided into two major units: the core and the cover series. The core series consists of Precambrian to Cambrian high-grade schist, metavolcanic gneisses, augen gneiss, metagranites, migmatites and metagabbros. The cover series is composed of Ordovician to Paleocene micaschists, phyllites, metaquartzites, meta leucogranites, chloritoid kyanite schists, metacarbonates and a metaolistostrom. In many places, metabauxites, probably upper Jurassic to Cretaceous in age occur in the upper levels of the metacarbonate sequence (Dora et al., 1987, 1995; Candan et al. (1992) observed that high-grade metamorphic rocks are located along tectonic contacts within the schist, phyllite and marble series, which is enveloping the core. This is supported by the field data and drilling data from the Germencik O merbeyli geothermal system (S imsek et al., 1983; Karamanderesi and O zgu ler, 1988; Karamanderesi et al., 1988). On a large scale, the post-metamorphic compressional phase conjugated with the paleotectonic evolution of

3 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 1. General map of western Turkey and location of investigated geothermal systems.

4 166 A. Vengosh et al. / Applied Geochemistry 17 (2002) western Anatolia is in a N S direction; and as a result it is pushed in a northward direction. This compressional force has given rise an extreme cataclastic structure. The post metamorphic granite plutons in Early Miocene have been strongly subjected to this compressional tectonics, and the allochtonous units are cut across by the graben systems of the neo-tectonic phase started in the Tortonian. It seems that the effective compressional tectonism in the Menderes Massif was during the Early Middle Miocene period. Neogene sediments overlie the allochthonous and autochthonous groups of rocks with angular unconformity in the south of the study area. The neotectonic period of the Menderes Massif and surrounding areas has been the subject of regional research for many years (Ketin, 1966; McKenzie, 1972; Dumont et al., 1979; Angelier et al., 1981; Satir and Friedrichsen, 1986). 3. Background on the investigated geothermal fields Extensive tectonic activity and formation of E W grabens have formed the shape of western Anatolia (Fig. 1). Of these, the Bu yu k Menderes and Gediz grabens host the main and most important geothermal fields of Turkey. The distribution of geothermal fields in Turkey closely follows the tectonic patterns. All of the hot springs with temperatures above C in eastern and western Anatolia are clearly related to young volcanic activity and block faulting. The post-collosional volcanic activities, lasting from the upper Miocene to modern time have been responsible for heating up the geothermal fields (Demirel and S entu rk, 1996). The high thermal activities is reflected in the forms of widespread acidic volcanic activity with much hydrothermal alteration, fumaroles, and more than 600 hot springs with temperatures up to 100 C(C aǧlar, 1961). Table 1 summarizes the basic geological, temperature, water types, total dissolved salts, and lithological data of the investigated geothermal systems. Below the geological background of the investigated geothermal fields are described (Fig. 1 and Table 1). The Seferihisar geothermal field (samples HVK-1, HVK-2) is located on the Aegean coast of Turkey, 40 km SW of İzmir close to the Aegean Sea within the C ubukludagˇ graben. The stratigraphic series of the Seferihisar area consist of Paleozoic metamorphic rocks of the Menderes Massif, Upper Cretaceous İzmir flysch, which are all metamorphosed to greenschist facies and include schists, phyllites, spilites, and metasandstone, and Neogene units of alternations of conglomerate, sandstone, and claystone. Six research wells were drilled to a maximum depth of 1417 m and indicated that the fluid-bearing formation, composed of sandstone and conglomerate, has a thickness of m (Demirel and S entu rk, 1996). Sample HVK-1 was collected from well CM-1 that was drilled down to a depth of 1417 m with temperature up to C. Sample HVK-2 was collected from Dog anbey hot springs which have high temperature (71 77 C) and moderate salinity. The springs are located on the contact of the İzmir flysch within the overlying Yeniko y formation, along the southern boundary of the Karakoç Dog anbey horst in the SW of the Seferihisar geothermal area (Es der and S ims ek, 1975). The Germencik O merbeyli geothermal field (HVK-3, HVK-4), one of the geothermal areas with high enthalpy, is located in the western part of Menderes graben (Fig. 1). The geological strata are composed of Paleozoic metamorphic rocks of sedimentary origin and Miocene to Quaternary detrital and alluvial deposits. The metamorphism has produced marble, calcschist, graphitic schist and some quartzite. The Miocene sediments also include lignite or coal-bearing horizons, interbedded mainly with conglomerate, sandstone, silts and claystone. The thermal water is derived from two major sources: a sedimentary shallow and a deep basement reservoir (Karamanderesi et al. 1985; Gu ner et al. 1986). Samples HVK-3 and HVK-4 were sampled from deep wells (O B-9 and O B-3, respectively) from depth intervals of and m, respectively. The Aydın Ilıcabas ıimamko y field (HVK-5, HVK-6) is composed of Paleozoic mica-schist, gneiss blocks, locally quartzite and marble, and Pliocene sediments. The later consist of cobblestone, sandstone, siltstone and claystone, and alluvial sediments on top of these units. Samples HVK-5 and HVK-6 were collected from wells AY-1 and AY-2, respectively at depth intervals of and m. It should be noted that the water samples were collected from Pliocene sediments. The Aydın Salavatlı geothermal field (HVK-7) is located in the middle part of the Bu yu k Menderes graben, and is characterized by a normal fault structure. The stratigraphic sequence is composed of metamorphic rocks of the Menderes Massif and sedimentary rocks deposited during the Menderes Miocene rifting period. Field data suggests that there is a connection between tectonic development and periods of hydrothermal alteration. Several deep wells were drilled (AS-1, 1510 m and AS-2, 962m) revealing low resistivity zones (Karamanderesi, 1997). Kızıldere geothermal field (HVK-8, HVK-9) is located on the eastern part of Bu yu k Menderes graben, which extends for about 150 km in length with an E W trend. The field was the first to produce electrical energy in Turkey. Metamorphic basement rocks which compose the stratigraphy, cover 4 sedimentary formations. The basement rocks are composed of Paleozoic Menderes metamorphic units that are characterized by alterations of marble, calcschist, quartzite, schist, and gneiss (the İgˇ decik formation; S ims ek, 1985). Pliocene sediments overlie the basement and are divided into 4 lithological units (S ims ek, 1985). (1) Lower Pliocene

5 Table 1 General data on the investigated geothermal systems from western Turkey Sample number Location name Production zone rocks Thermal source (springs or well) Well deep temp. or springs temp. TDS Lithology References HVK-1 Seferihisar-Cumalı field İzmir flysch and Tertiary sediments. Rhyolite 12.5 m a HVK-2 Seferihisar Doǧanbey İzmir flysch and Tertiary sediments. Rhyolite 12.5 m a HVK-3 Germencik Ömerbeyli Menderes massif metamorphics, marble Dacite, 13.1 m a HVK-4 Germencik Ömerbeyli Menderes massif metamorphics, marble Well m 140 C Schists, phyllites, spillites and metasandstones Well m spring Well number m Well number m HVK-5 Aydın Illıcabaşi Tertiary sediments Well Ayter m HVK-6 Aydın Illıcabaşı Tertiary sediments Well Ayter m HVK-7 Aydın Salavatlı Menderes massif Well AS-1 metamorphics, marble 1510 m HVK-8 Denzili Kızıldere Menderes massif metamorphics HVK-9 Denizli Kızıldere Menderes massif metamorphics HVK-10 Manisa Urganlı Mesozoic serpantinite and limestone HVK-11 Manisa Salihli Sart. Menderes massif metamorphics HVK-12 Manisa Salihli Menderes massif Kurşunlu metamorphics and Tertiary sediments HVK-13 HVK-14 Manisa Salihli Kurşunlu mineral water Manisa Salihli MTA well Menderes massif metamorphics and Tertiary sediments 78 C 62.5 C Schists, phyllites, spillites and metasandstones 224 C 5200 Menderes massif metamorphics and Tertiary sediments 232 C 3700 Menderes massif metamorphics and Tertiary sediments 84.5 C 7000 Tertiary and Quaternary sediments C 4600 Tertiary and Quaternary sediments 167 C 4600 Menderes massif metamorphics and Tertiary sediments 201 C 4200 Menderes massif metamorphcs, marble 212 C 4600 Menderes massif metamorphics, marble Well KD m Well KD m Spring 82 C 2100 Mesozoic serpantinite, limestone Spring 50 C 1200 Menderes massif metamorphics, marble Spring 94 C 1650 Menderes massif metamorphics, marble Spring 39.5 C 1200 Menderes massif metamorphics, marble Tertiary sediments Well MTA-1 94 C Menderes massif metamorphics, marble Es der and S ims ek, 1975 Williamson, 1982 Es der and S ims ek, 1975 Williamson, 1982 Demange et al., 1989 Williamson, 1982 a Demange et al., 1989 Karamanderesi et al., 1990 Karamanderesi et al., 1990 Karamanderesi et al., 1988 S ims ek, 1985 S ims ek, 1985 Erentu z and Ternek, 1968 Karamanderesi, 1972 Erentu z and Ternek, 1968 Yenal et al., 1976 Erentu z and Ternek, 1968 (continued on next page) A. Vengosh et al. / Applied Geochemistry 17 (2002)

6 Table 1 (continued) Sample number Location name Production zone rocks Thermal source (springs or well) Well deep temp. or springs temp TDS Lithology References HVK-15 Manisa Alas ehir Tertiary sediments Well 33 m 17 C Tertiary sediments Karamanderesi, 1998 Fish farm HVK-16 Manisa Alas ehir Tertiary sediments Well 92 m 24 C 1800 Tertiary sediments Karamenderesi, 1998 Fish farm HVK-17 Manisa Alas ehir hot spring Menderes massif Spring 31 C 700 Menderes massif Karamenderesi, 1998 metamorphics, Tertiary sediments metamorphics HVK-18 Manisa Alas ehir Sarıkız Menderes massif Spring 18 C 2300 Erentu z and Ternek, 1968 mineral water metamorphics HVK-19 Denizli Karahayit Mesozoic limestone Spring 55 C 1500 Mesozoic limestones HVK-20 Denizli Pamukkale Mesozoic limestone Spring 34.5 C 1300 Mesozoic limestone HVK-21 C anakkale Tuzla Magmatic and volcanic rocks. Granodiorite Ignimbrite 17.1 a Spring 102 C Trachyandesite, trachyte. Ignimbrite Karamanderesi, 1986 Borsi et al Fytikas et al., 1976 a HVK-22 C anakkale Tuzla Magmatic and volcanic Well T-1 rocks. Granodiorite a 814 m HVK-23 Edremit Gu re Karakaya formation, Tertiary sediments. Granodiorite 23.5 m a HVK-24 Edremit Havran Karakaya formation, granite, Tertiary sediments. Granodiorite 23.5 m a HVK-25 Dikili kaynarca Volcanic rocks and Tertiary sediments. Yunt dağ volcanics, 14.1 m a Well Gu re m 174 C Trachyandesite, trachyte, Ignimbrite Karamanderesi, 1986 Mu tzenberg, 1997 Borsi et al., 1972 a Fytikas et al., 1976 a 55 C 1000 Tertiary sediments Bürku t, 1996 a Well 33 m 70 C 800 Tertiary sediments Bürku t, 1966 a Well 29 m 100 C 1000 Quaternary alluvium Spring 33 C Laminated cherty JICA, 1987 a HVK-26 İzmir Balc ova İzmir flysch and Tertiary Well BD C 1400 İzmir flysch sediments. Dacite, 19.2 m a 564 m Borsi et al., 1972 a HVK-27 İzmir Balc ova İzmir flysch and Tertiary Spring 62. C 850 I zmir flysch and Tertiary sediments. Dacite, 19.2 m a sediments Borsi et al., 1972 a HVK-28 Bodrum Karaada Limestone. Monzodiorite, Bas kan and Canik, m a limestone Pis kin et al., 1983 a 168 A. Vengosh et al. / Applied Geochemistry 17 (2002) a 19.2 m a and Borsi et al. a (production zone rocks and related magmatic and volcanic rocks and age datermined by).

7 A. Vengosh et al. / Applied Geochemistry 17 (2002) Kızılburun formation-alternating red and brown conglomerates, sandstone, claystone, and lignite seams, up to 200 m; (2) Lower Pliocene Sazak formation-intercalated grey limestone, marls and siltstone, 100 to 250 m; (3) Lower Pliocene Kolonkaya formation- alternating layers of sandstone, claystone and clayey limestone, 500 m; and (4) The Plio-Quaternary Tosunlar formation- poorly consolidated conglomerates, sandstone, and mudstone with fossiliferous claystone, up to 500 m. The thermal water in the Kızıldere field is derived from two major sources: a shallow Pliocene sedimentary (Sazak Formation) reservoir with a temperature of 198 C and a deep Menderes metamorphic reservoir (Iğdecik formation) with a temperature of 212 C. The Tekkehamam Pamukkale Karahayıt geothermal fields (HVK-19, HVK-20) are located in the topographic lows east of Kızıldere in the Tekkehamam area. Several fumerols are found on the mountain slopes of the area and hot springs with temperatures ranging between 30 and 100 C. The hot springs issue at the point where faults cut the valley. These springs deposit travertine and alteration minerals along the fault lines and in the vicinity of the springs. The hot springs of Pamukkale are located at the intersection of the Bu yu k Menderes and Gediz grabens. In this area the thickness of travertine reaches 85 m. The Pamukkale springs deposit snow-white travertine, whereas the Kızılleg en springs deposit red travertine due to high Fe concentrations in the fluid. Pamukkale and Karahayıt are tourist attractions, visited by 1.5 million tourists every year. The Manisa Urganlı geothermal field (HVK-10) is located in the western part of the Gediz graben, and is characterized by normal fault structures. The stratigraphic sequence of the Urganlı geothermal field are composed of Paleozoic schist and marble that form the basement of the to Menderes Massif. Mesozoic limestone serpentinite and ophiolitic mêlange overlie the basement units. The sequence continues with Pliocene conglomerate, sandstone, siltstone and limestone. Travertine and alluvium are the youngest sediments in the area. The general fault trends are W E, NE SW and also NW SE. Also, a thrust zone is observed between the Mesozoic ophiolitic meˆ lange and limestone in the NW of the area. The potential reservoir rocks are Paleozoic marbles, occasionally schist and Mesozoic limestone cut by fault zones in the region (). The Manisa Salihli geothermal field (HVK-11, HVK- 12, HVK-13, and HVK-14) is located along the southern boundary fault of the Gediz graben. Salihli is known for its Hg mineralization of hydrothermal origin. The field is currently under reconsideration as a prospect for epithermal Au Sb mineralization (Larson and Erler, 1993). The stratigraphic succession in the field includes the Paleozoic metamorphic of the Menderes Massif, Miocene and Pliocene conglomerate, sandstone, siltstone, limestone, clay, tuff and lignite layers, and Quaternary travertine and alluvium unconformably overlay the metamorphic units. The major faults in the field trend dominantly E W and NW SW while N S and NE SW trending faults also exist on a smaller scale. In the Salihli geothermal field hot springs are concentrated in the Kurs unlu and Sart areas. A total of 6 wells were drilled in the field. The highest temperature (150 C) was measured in the deep drill well, SC-1. The flow rate of this well reaches 2 l/s (Karamanderesi et al., 1995; ). The Alas ehir and Kavaklıdere geothermal field (HVK-15, HVK-16, HVK-17, HVK-18) is located in the Gediz graben. Drilling to a depth of 750 m revealed temperatures of up to 116 C and production of natural gas with 15% CH 4 and 85% CO 2 and thermal water (Karamanderesi et al. 1998). Alas ehir fish farm is a local shallow well with a depth of 92 m and temperature of 24 o C into alluvium deposits. Alas ehir mineral water has a temperature of 31 o C (Erentu z and Ternek, 1968). The C anakkale Tuzla geothermal field (HVK-21, HVK-22) is located 80 km SW of C anakkale, 5 km from the Aegean coast. The Tuzla field is a volcanic area. The stratigraphy of the field is composed of Permian metamorphic basement rocks, granodiorite intrusive rocks, Miocene volcanic rocks, including rhyodacitic, ignimbrite, trachyte and trachyandesite lavas, monzonite, and Quaternary and recent alluvium sediments (Karamanderesi, 1986; S ims ek, 1997). Thermal water is derived from a shallow volcanic reservoir at a depth of m and a deep granite reservoir at a depth of 1020 m. The thermal water of Tuzla is unique due to the extremely high dissolved salt content, up to 63 g/l. Samples were collected from hot spring and well T-1 at a depth of 814 m (HVK- 21 and HVK-22, respectively). The Edremit Gu re and Havran geothermal fields (HVK-23, HVK-24) are located at the Edremit bay in the southern part of the Kazdăg massif. The geological sequence includes the Paleozoic Kazdaǧ formation (composed of gneiss, amphibolite, and marble and crystallized limestone), Triassic conglomerate, arkose, siltstone, Permian and Carboniferous limestone and marble blocks, and Upper Miocene Bayramic formation that consists of conglomerate, sandstone, claystone, shale and marl. Dikili-Bergama Kaynarca geothermal field (HVK-25) is located in Western Anatolia, 90 km north of İzmir and includes more than 20 hot springs. Compressional fields that formed during late Miocene to early Pliocene control the geological structure. As a result, the area became a site of N S oriented tensional stress fields. In an area between Dikili and Bergama, there are many hot springs whose distribution is controlled by fracture patterns. The geology of the Dikili Bergama area comprises various rocks such as sedimentary and metamorphic rocks (Paleozoic to recent), Kozak granodiorite (Eocene to Oligocene), Yuntdagˇ Volcanics (Late Miocene to Pliocene), and Dededağ Basalt (Pleistocene). A deep well that was drilled by MTA (K-1) yielded temperatures of up to

8 170 A. Vengosh et al. / Applied Geochemistry 17 (2002) C. Since the volcanic activity and tectonic movements in the Dikili Bergama area are very intense, it is assumed that the heat source of geothermal activity derives from both tectonism and volcanism (MTA and JICA, 1987) The İzmir Balc ova geothermal field (HVK-26, HVK- 27) is located approximately 10 km SW of İzmir. The geological section includes Upper Cretaceous İzmir flysch composed of metasandstone, phyllite, limestone, serpentinite and diabase, the Miocene Yeniko y formation composed of conglomerates, sandstone and siltstone, and Pliocene Cumaovası volcanics, which includes andesite, agglomerate, tuff, and rhyolites. The geothermal systems are fed by the main NE SW, NW SE and E W trending fault (Yılmazer et al., 1989). The Bodrum geothermal field (HVK-28) is located south west of İzmir on the Agean coast. Hydrothermal mineral deposits and some mineral water exposures suggest a large geothermal potential of that field (Karamanderesi, 1998). The prospect covers the contact zone of the Menderes Massif and Taurus Belt (Ercan et al., 1984; Robert, 1995; O zc içek and O zçic ek, 1977; Pis kin, 1980). 4. Analytical procedures During the fall of 1995, 26 representative hydrothermal samples were collected from major thermal systems in western Turkey. Analyses of major ions were performed at the Analytical Laboratory of the Hydrological Service in Jerusalem. Lithium concentrations were measured by ICP MS (Element, Finnigan) at the University of California Santa Cruz. Lithium intensities were normalized to the internal standard of Be. Spike-free samples were scanned before the analyses and no detectable levels of Be were found in the original samples. Bromine was determined by flow injection ion analyzer (QuickChem 8000) at the Hydrological Service laboratory in Jerusalem (Vengosh and Pankratov, 1998). Boron isotopes were measured by a negative thermal ionization mass spectrometry technique (NITIMS; Vengosh et al., 1989, 1994). Samples were analyzed by a direct loading procedure, in which B-free sea water and natural solutions were loaded directly onto Re filaments and measured in a reverse polarity NBS-style 12 solidsource mass spectrometer at the University of California Santa Cruz. A standard deviation of less than 1.5 % was determined by repeat analysis of NIST SRM-951 standard ( 11 B/ 10 B= ). Isotope ratios are reported as p11 B values, where h d 11 B ¼ 11 B= 10 B sample = 11 B= 10 1 i B 1000 NBS 951 Strontium was separated by cation-exchange chromatography using standard techniques at the Department of Geology, Hebrew University of Jerusalem. Isotope ratios were determined using third generation Faraday detectors in static mode on a VG-54WARP mass spectrometer at the University of California Santa Cruz. Zone refined Re filaments were used. All measured 87 Sr/ 86 Sr results were corrected to a 87 Sr/ 86 Sr ratio of using an exponential correction law. Correction for 87 Rb was negligible for all samples. Using this procedure, NBS Sr/ 86 Sr yielded a ratio of ( ; n=5) during the period in which the unknowns were run. 5. Results and discussion The locations (Fig. 1), geological structure, source, temperature, salinity, water types, and lithology of the investigated thermal systems are presented in Table 1. Chemical and isotopic results are presented in Tables 2 and 3, respectively. The chemical composition (Fig. 2) suggests several water types with different distribution of the major ion composition. The different proportions of Cl, HCO 3 and SO 4 ions (i.e. their ratios to total dissolved constituents in meq/l, or the Cl SO 4 HCO 3 diagram; Giggenbach, 1991) are used to determine 4 basic water types (Table 1; Fig. 2): (1) Na Cl (in thermal waters of Cumalı Seferihisar, Bodrum Karaada island and Tuzla C anakkale); (2) Na HCO 3 (Aydın Ilıcabas ı, Salavatlı, Denizli-Kızıldere, Urganlı, Salihli); (3) Na SO 4 (Dikili Kaynarca Bergama, Edremit Gu re, Edremit Havran); and (4) Ca Mg HCO 3 SO 4 (Karahayıt, Pamukkale). Some systems have mixed compositions like Na Cl HCO 3 (Germencik O merbeyli, İzmir Balc ova). The variation of dissolved ions as normalized to Cl and evaporation-dilution of modern sea water are illustrated in Fig. 3. Most ions show enrichment relative to sea water with similar salinity. The temperature ion concentration relationships are presented in Fig. 4. The 11 B values and 87 Sr/ 86 Sr ratios of the thermal water vary from 2.3 to 18.7% (n=6) and to (n=5), respectively Marine vs. non-marine sources In the following discussion the authors distinguish between soluble ions (e.g. Cl, Br, B) and rock-forming elements (e.g. Na, Ca, HCO 3 ) in order to evaluate the origin of the geothermal water. Fig. 3 shows two distinctive correlation lines between Cl and other ions, particularly for the Cl Na coordination. It is argued that high salinity, Na Cl water composition, and the low (Na/Cl<1) of thermal fluids from Cumalı Seferihisar and Tuzla C anakkale suggest that most dissolved salts, in particular Cl and Na, are derived from a marine origin. On the other hand, all other thermal waters with significantly lower Cl concentrations and typically Na/ Cl>1 are non-marine, and thus most of the dissolved

9 Table 2 Chemical data of geothermal waters from western Turkey Water type ID Name Source Date Ca Mg Na KSr Li Cl HCO 3 SO 4 Br B F TDS Na/Cl Br/Cl (10 3 ) B/Cl 1 Cumalı Seferihisar Well CM-1 5/10/ Cumalı Seferihisar Dogˇ anbey Kaplıcası hot spring 5/10/ Germencik O merbeyli Well OB-9 5/10/ Germencik O merbeyli Well OB-3 5/10/ Aydın Ilıcabas ı Well AY-1 5/10/ Aydın Ilıcabas ı Well AY-2 5/10/ Aydın Salavantlı Well AS-1 5/10/ Denizli Kızıldere Power plant well number 13 5/10/ Denizli Kızıldere Power plant well number 16 5/10/ Urganli Hot spring 6/10/ Salihli Sart hot spring 6/10/ Salihi Kurs unlu hot spring 6/10/ Salihli Kurs unlu mineral water 6/10/ Alas ehir fish farm Well 6/10/ Alas ehir fish farm Well 6/10/ Alas ehir hot spring Alas ehir hot spring 6/10/ Karahayıt hot spring Karahayıt hot spring 6/10/ Parmukkale Pamukkale hot spring 6/10/ C anakkale Tuzla Tuzla hot spring 7/10/ C anakkale Tuzla Tuzla well T-3 7/10/ Edremit Gu re Well near Gu re 7/10/ Edremit Havran Well Havran Kaplıcaları 7/10/ Dikili Kaynarca Bergama Well 1 7/10/ İzmir Balc ova Balc ova deep well 7/10/ İzmir Balc ova Balc ova hot spring 8/10/ Bodrum Karaada island Black island hot spring 9/10/ A. Vengosh et al. / Applied Geochemistry 17 (2002)

10 172 A. Vengosh et al. / Applied Geochemistry 17 (2002) Table 3 Isotopic data of geothermal waters from western Turkey ID Name Source Date 87 Sr/ 86 Sr d 11 B 1 Cumalı Seferihisar Well CM-1 5/10/ Germencik Ömerbeyli Well ÖB-9 5/10/ Aydın Ilıcabaşi Well AY-1 5/10/ Denizli Kızıldere Power plant well number 16 5/10/ Pamukkale Pamukkale hot spring 6/10/ C anakkale Tuzla Tuzla well T-3 7/10/ constituents are derived from water-rock interactions. The Br/Cl ratios of the thermal waters can also be used to distinguish marine from non marine sources, as all of the Cl-enriched marine water has typically Br/Cl ratio4 sea water (Fig. 3). The different potential marine sources are deep circulation of modern seawater, fossil seawater, and dissolution of marine evaporites. Assuming that deep circulation of seawater was the source of the dissolved salts, one would expect to have seawater composition, particularly for conservative elements such as Cl and Br that are less affected by water-rock interactions. Karamanderesi and Helvacı (1994) measured the Br concentrations in different rock types in the Menderes massif and found negligible Br levels (<1 ppm). Thus, modern Mediterranean seawater would have a chloride content of <22,000 mg/l (i.e. lower concentrations can be derived from dilution with meteoric water) and a Br/ Cl ratio of The only water sources that have similar chemical characteristics are the saline water from Cumalı Seferihisar (with Cl content of 10,926 mg/l) and Bodrum Karaada island (21,097 mg/l) with marine Na/ Cl and Br/Cl ratios. The other geochemical features (i.e. the B/Cl, Li/Cl, F/Cl, Ca/Cl, Mg/Cl, and SO 4 /Cl ratios, d 11 B value of 2.3%), however, are different from those of seawater and suggest that the original seawater was modified by intensive water-rock interactions. The depletion of Mg and enrichment of Ca, B, Li, and F, as well as the depletion of 11 B are typical of oceanic hydrothermal water (Spivack et al., 1987; You et al., 1994). This conclusion is consistent with the chemical and 18 O data reported by Conrad et al. (1995) who showed that Seferihisar thermal water originated from a mixture of sea water and local ground water. In contrast, the thermal water of the Tuzla system has a Cl concentration of 39,500 mg/l and a Br/Cl ratio of , which are higher and lower than those of seawater, respectively. In addition, the Tuzla brines are characterized by a d 11 B value of 18.7%, 87 Sr/ 86 Sr ratio of (Table 3), and d 34 Sof12% (Mu tzenberg, 1997). Balderer (1997) and Mu tzenberg (1997) suggested that the Tuzla brines were derived from lateral migration of fossil Miocene brines that were trapped in the Miocene sediments. The fossil brines could have originated from relics of evaporated sea water trapped in the sediments (e.g. Vengosh and Starinsky, 1993; Vengosh et al., 1994, 1998) or, alternatively, from dissolution of Messinian evaporites. Several lines of evidence suggest that the Tuzla thermal water could not be derived from evaporated sea water. First, relics of evaporated sea water or diagenetically modified sea water (e.g. Dead Sea) would have high d 11 B values (d 11 B >39%) as demonstrated recently by the composition of pore water from the Mediterranean with d 11 B values of up to 66% (Vengosh et al., 2000). In contrast, salts derived from evaporite dissolution would have lower d 11 B values (<39% Vengosh et al., 1992; 1998). In high-temperature environments, however, a large fraction of the dissolved B is also derived from leaching of the rocks. Thus, the original isotopic composition could be modified. This is clearly demonstrated in the case of thermal water from Cumalı Seferihisar where marine Na/Cl and Br/Cl ratios are associated with non-marine low 11 B values (2.3%) and high B/Cl ratios. The d 11 B values of the hypersaline Tuzla thermal water is 18.7% which is significantly higher than the values expected for leached B from local igneous rocks (granodiorite, trachyandesite, trachyte, rhyodacite, ignimbrite) with d 11 B 0%. The relatively high d 11 B can be interpreted as a reflection of modified high d 11 B evaporated sea water that was modified towards lower d 11 B values due to water rock interaction. Alternatively, the relative lower d 11 B value may indicate dissolution of late-stage evaporites with d 11 B<39%. Second, the Na/Cl and Br/Cl ratios of the Tuzla water are not consistent with the ratios expected for evaporation of sea water. During >10-fold evaporation beyond the halite saturation stage, the residual evaporated sea water has Na/Cl<0.86 and Br/Cl> (McCaffrey et al., 1987). Fig. 5 illustrates the evolution of evaporated seawater compared to the composition of thermal water from the Tuzla and Seferihisar thermal waters. The data points are not consistent with the evaporation line (i.e. low Br/Cl ratios below the seawater ratio) and thus rule out the relic sea water model.

11 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 2. Pie diagrams of the chemical composition (in meq l 1 ) of selected geothermal fields from western Turkey.

12 174 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 3. Log chloride vs. log dissolved salts concentrations in geothermal waters from western Turkey. Third, the 87 Sr/ 86 Sr ratio of and d 34 S value of 12% are respectively higher and lower relative to the expected Miocene fossil evaporated sea water ( 87 Sr/ 86 Sr ; d 34 S 20%). Consequently, it is suggested that the hypersaline thermal water of Tuzla is derived from dissolution of salt deposits. The high Na (20,000 mg/l), Ca (3000 mg/ l), K(2000 mg/l), and B (29 mg/l) concentrations reflect the mineralogical composition of these deposits with a possible mineral assemblage of gypsum and Ca- and Na-borates. This mineral composition is typical for many Neogene salt-deposits in western Turkey (Helvacı, 1994, 1995; Palmer and Helvacı, 1977) The impact of water rock interactions and origin of boron Following the Ellis and Mahon (1977) classification, HCO 3 waters are considered to occur in volcanic geothermal areas where steam containing CO 2 condenses into the liquid phase. Bicarbonate water can also reflect interaction of CO 2 charged fluids at lower temperatures and migration path as well as mixing with local ground water (Giggenbach, 1991). Sodium HCO 3 waters are common in geothermal systems associated with metamorphic rocks which is consistent with the general lithology of the Menderes Massif (Table 1) and the high

13 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 4. Source temperatures (as measured in the investigated thermal systems) vs. different dissolved ions (mg/l) in geothermal waters from western Turkey. CO 2 content that is typical of the thermal water of western Turkey (Filiz, 1984; Ercan et al., 1994). The origin of the high dissolved CO 2 according to d 13 C and He isotopic data is magmatic (Filiz, 1984; Ercan et al., 1994). The Na HCO 3 chemical composition is therefore a combination of high CO 2 flux and extensive waterrock interactions with metamorphic rocks. Similarly, the Na SO 4 water type can be derived from H 2 S condensing

14 176 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 5. Na/Cl vs. Br/Cl ratios of evaporated sea water as compared to those from thermal water from Tuzla and Seferihisar. into the liquid phase as well as from interaction with sulfate minerals (e.g. Ellis and Mahon, 1977). The dependence of the ion composition on temperature is demonstrated by the correlations between different ion concentrations and temperatures measured in the thermal sources (Fig. 4), particularly for Na, K, Mg (reverse correlation), B and F. These positive correlations clearly indicate that much of the dissolved salts of the non-marine thermal waters are derived from water rock interactions. The chloride temperature relationship may also reflect an absorption of HCl gas into the liquid phase as well as extraction of Cl from the rocks. It seems that only in the Germencik O merbeyli system is Cl derived from such sources with significantly high Cl/ TDI ratio (0.3). It should be emphasized that mixing with local ground water also controls the chemical composition of the hydrothermal water. Thus, the linear correlations of most dissolved ions with chloride (Fig. 3) reflect both the original source of the thermal systems and mixing (i.e. dilution) with local cold ground water. Go kgo z (1998) showed that geothermometry temperatures calculated by applications of Na Kand Na K Ca geothermometers of geothermal water from Kızıldere area vary between 188 and 245 C which is consistent with actual temperatures measured at the bottom of research wells in that area. While the HCO 3 ion can be derived also from mixing with cold shallow groundwater, it seems that the HCO 3 / TDI ratio, which would be less affected by dilution, can be a useful tracer for delineating the sources of the salts. Positive correlation between the HCO 3 /TDI ratio and Na/Cl, K/Cl, and B/Cl ratios (Fig. 6) probably reflects the role of CO 2 in water rock interactions. Similarly, the correlation between Cl and other dissolved salts (Fig. 3) may also derive from the influence of HCl gas. The CO 2 and HCl gases can thus be considered as the triggers for the intensified water rock interactions and enhance leaching of dissolved ions in the thermal water. The Br/Cl ratio of most of the non-marine thermal water is higher than that of sea water (Fig. 3). The relative enrichment of Br can be explained by extraction of Br from organic matter in the Tertiary sediments, or, from preferential degassing of Br gases from deep sources. The high linear correlation between Cl and Br that characterizes the thermal water favors the second possibility. Thermal waters from western Turkey have typically high B content, which also causes environmental and operational problems. The association of high B and high CO 2 levels led Tarcan (1995) to suggest that B is also derived from a deep mantle source. Demirel and S entu rk (1996) also suggested that high B, NH 4, and CO 2 concentrations in thermal water from the Kızıldere geothermal field reflect ascent of magmatic emanations from depth although there is no evidence of recent volcanic activity in the area. Based on 3 He/ 4 He ratios, Gu leç (1988) argued that the involvement of mantlederived He, in the Kızıldere geothermal field does not exceed 30%. Two models should therefore be considered for the origin of B in the thermal water: (1) dissolved Cl, HCO 3, and B are derived from deep mantle flux of HCl, CO 2 and B(OH) 3 gasses; or (2), water-rock interactions leach B to the liquid phase. Next, these two conflicting models will be evaluated. Karamanderesi and Helvacı (1994) and Karamanderesi (1997) measured REE and other elements extracted from well cuttings and core rock samples from different geothermal fields (Fig. 7) and surface rock samples in the Menderes Massif. Their data showed that: 1. Different rock units from the Salavatlı geothermal field have high concentrations of B (range of 800 to 1600 ppm) relative to those (independent of lithology) of the O merbeyli field (O B-7, a range of ppm). The difference in the B content of the rocks is also reflected in relatively higher B/Cl ratio in the associated thermal waters from these two systems (0.7 relative to 0.1), whereas the absolute B concentrations are similar. 2. Boron is unevenly distributed among different rock types. Boron is particularly enriched in (decreasing order) quartz vein, tourmaline gneiss, illite chlorite feldspar zone, and quartz chlorite schist zone. Boron is relatively depleted in marble and gabbro. 3. The vertical distribution of B (and Li) with depth is not uniform and is heavily dependent on the lithology. Boron is depleted in the marble zone in the O merbeyli field (50 ppm B at depth of 1400 m) relative to the albite-amphibolite schist zone (200 ppm, 1400 m).

15 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 6. HCO 3 /TDI ratio vs. Na/Cl, K/Cl, and B/Cl ratios of non-marine water from western Turkey. If indeed all of the B was derived from deep mantle flux as argued by Tarcan (1995) one would expect to have uniform B composition with similar B/Cl ratios in all of the thermal systems (i.e. the B/Cl ratio is used to eliminate the dilution factor). Moreover, one would not expect to have any relationships between B contents in local rocks and thermal waters, and yet the Salavatlı geothermal field is significantly enriched in B relatively to the O merbeyli field. Boron is easily leached from rocks and remains in its volatile form even at lower temperatures relative to the HCl that is converted to less volatile NaCl. The B/Cl ratio can thus be used to assess the maturity of the thermal system. Fluids from older systems are expected to be depleted in B relative to young systems (Go kgo z, 1998). The large difference between the Salavatlı and O merbeyli fields may be related to this factor. Consequently, it seems that B is mainly derived from local water-rock interactions and the source rocks strongly control the B, concentration in the water (e.g. quartz vein or tourmaline gneiss versus marble). Nevertheless, the overall B budget of a geothermal system can also be controlled by the original B concentrations in the rock or original parent magma fluids, as well as the degree of maturation in which water-rock interactions can contribute B to the thermal system. Since the lower mantle reservoir is enriched in primordial 3 He with respect to shallow MORB and radiogenic 4 He is generated by the decay of unstable isotopes of U and Th and radiogenic 3 H in the crust, the 3 He/ 4 He ratio can be a sensitive tracer to detect the presence of mantle helium in thermal water (Gu lec, 1988; Hoke et al., 2000). The 3 He/ 4 He ratio is normalized to atmospheric He (R/Ra=1) and consequently deep manlederived He would have high R/Ra values (>30) whereas crustal He production has a low ratio (R/Ra values of a typical continental crust are to 0.02). While springs from the vicinity of Germencik O merbeyli yielded R/Ra values of 0.2 to 0.8 (n=3), which is typical of a crustal source, a spring from the Denizli

16 178 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 7. Variations of B concentrations in rocks with depths in OB-7 and AS-1 drill holes (data from Karamanderesi and Helvacı, 1994 and Karamanderesi, 1997). area had a significantly higher value of 2.5 (Gu leç, 1988). Consequently, the available 3 He/ 4 He data in springs from western Turkey does not exlusively indicate on the origin of He, which in turn cannot support any evidence for the origin of B. Moreover, in the Germencik area thermal water has a low 3 He/ 4 He ratio that indicates a crustal source, while the B content is the highest among the investigated thermal waters. Previously, special attention has been given to the B isotope composition of hydrothermal fluids from a marine setting. The B isotope composition of hydrothermal fluids such as those venting from mid-ocean ridge crests (d 11 B ¼26.7 to 36.8%) suggests a mixture between seawater B and MORB-derived B leached from the basalt without resolvable isotopic fractionation (Spivack and Edmond, 1987). Hydrothermal fluids from a sediment-starved back-arc spreading center (Mariana Trough; d 11 B ¼22.5 to 29.8%; Palmer 1991) and from a classic sediment-hosted basin (Guaymas Basin and Escanaba Trough; d 11 B=10.1 to 23.2%; Spivack et al., 1987; Palmer, 1991) are characterized by lower d 11 B values and higher B concentrations, reflecting interactions with the hosted rocks. Thermal fluids from continental geothermal fields are characterized by even lower d 11 B values (Salton Sea, California, d 11 B ¼ 2.6 to 1.1%; Yellowstone National Park, d 11 B ¼ 9.3 to 4.4%; Palmer and Sturchio, 1990), reflecting the isotopic compositions of the source rocks. The influence of seawater B in geothermal systems has been traced in central Japan (d 11 B ¼ 5.8 to 27.1%; Musashi et al., 1988) and Iceland (d 11 B ¼ 6.7 to 30.7%; Aggarwal et al.,1992). The B isotopic composition cannot be used to distinguish between mantle flux and rock leaching processes due to the overlap in the isotopic composition of these two sources. The d 11 B range of the Na-HCO 3 waters is 2.3 to 1.8% (Table 3; n=3) and can thus reflect both leaching of igneous rocks and flux of mantle B (e.g. Spivack and Edmond, 1987). The B-isotope fractionation is controlled by the B species as B with tetrahedral coordination is isotopically depleted (low d 11 B) relative to B with trigonal coordination. Selective formation and

17 A. Vengosh et al. / Applied Geochemistry 17 (2002) Fig. 8. Schematic illustration of different geothermal water types from western Turkey. removal of B(OH) 3 species may cause a relative depletion of d 11 B in the residual fluid. Nevertheless, it seems that the magnitude and thus the effect of this isotopic fractionation is negligible in high-temperature environments Distribution of the water types The thermal systems of western Turkey exhibit a wide range of chemical composition that reflect the complex nature and different sources of thermal waters (Table 1). As shown above, the authors distinguish between 4 major groups that reflect different origin and mechanism of water-rock interactions. The Na Cl type originated from deep circulation and water rock interactions of modern sea water in the case of Seferihisar and Bodrum systems and from deep fossil brines originated from dissolution of Miocene evaporites in the case of Tuzla geothermal waters. The Na HCO 3 type characterized thermal waters from the systems of Aydın Ilıcabas ı, Salavatlı, Urganlı, Alasehir, Denizli Kızıldere and Salihli. Thermal waters

18 180 A. Vengosh et al. / Applied Geochemistry 17 (2002) from Germencik O merbeyli and İzmir Balc ova have a mixed Na Cl HCO 3 water composition. d 18 O dd data (Filiz, 1984; Ercan et al., 1994) suggest that the origin of these waters is meteoric whereas the temperature ion concentrations relationships suggest that most of the dissolved constituents (Fig. 4) were derived from extensive water rock interactions. As shown above, the high CO 2 content that characterizes these waters, presumably derived from a mantle source (Filiz, 1984; Ercan et al., 1994), enhances water rock interaction. In most cases the local bedrocks of the geothermal systems are the metamorphic of the Menderes Massif (Germencik O merbeyli, Aydın Ilıcabas ı, Salavatlı, Urganlı and Salihli). Yet in other systems, where the local rocks are composed of other rock units (e.g. Manisa Urganlı serpantinite and limestone) the associated thermal waters also have a Na HCO 3 composition. The 87 Sr/ 86 Sr ratio of Na HCO 3 type thermal water ( in Germencik O merbeyli and in Aydın Ilıcabası) reflect leaching of Sr from a highradiogenic source, which suggests that the source rock has a high Rb/Sr ratio). The system of Denizli-Kızıldere is one of the highest enthalpy geothermal field and most producing field in Turkey. The d 18 O dd data indicates that the origin of the water is meteoric, modified by intensive water-rock interactions. In addition, Go kgo z (1998) showed that calculated temperatures based on chemical geothermometers are similar to measured temperatures of up to 245 C. The high 87 Sr/ 86 Sr ratio ( ) of the geothermal water from Kızıldere system suggests that the deep aquifer units (schist and quartzite) are the predominant rock sources of Sr while the shallow limestone unit has negligible effects on the dissolved Sr budget in the thermal waters. The Na SO 4 type characterizes thermal waters from Edremit Gu re and Havran and Dikili Kaynarca geothermal fields, which are located at the Edremit bay in the southern part of the Kazdag massif. Sulfate can be derived from hydrogen sulfide condensing into the liquid phase as well as dissolution of sulfate minerals (e.g. Ellis and Mahon, 1977). Since the local geology (see above) is not different from other thermal systems in the Menderes Massif with a Na HCO 3 composition, it seems that the second explanation can be ruled out. The Ca Mg SO 4 HCO 3 type characterizes geothermal systems from Karahayıt and Pamukkale. It seems that this composition reflect shallow sources and interaction with shallow carbonate rocks. The Pamukkale hot spring has a 87 Sr/ 86 Sr ratio of that is distinctively low relative to the other non-marine thermal systems. This low 87 Sr/ 86 Sr signature reflects interaction with carbonate rocks of the Pliocene Sazak formation that consists of intercalated limestone, marls and siltstone, or the Pliocene Kolonkaya formation composed of alternating layers of sandstone, claystone and clayey limestone. The low 87 Sr/ 86 Sr ratio rules out interaction with the underlying Paleozoic Menderes metamorphic, which is consistent with the chemical composition of this water type. 6. Conclusions The chemical data, combined with isotopic data for B and Sr of thermal waters from western Turkey reveal 4 types of water, which originate from marine and nonmarine sources. The marine source has a Na Cl composition and Na/Cl ratio<1 whereas the non-marine waters typically have Na/Cl>1 (Fig. 8). The Br/Cl ratio is used to distinguish between direct penetration of sea water or recycled marine salts in the form of evaporite dissolution. The non-marine water shows 3 types of chemical compositions, reflecting different source rocks and depth of circulation. Na HCO 3 and Na SO 4 compositions reflect deep circulation and interactions with metamorphic rocks and gneiss while Ca Mg SO 4 HCO 3 composition is associated with shallow circulation in carbonate rocks and mixing with cold ground water. The 87 Sr/ 86 Sr ratio further constrains the nature of the source rocks (i.e. igneous and metamorphic versus carbonate rocks). Systematic changes in Na, K, Ca, and Mg with temperature (Fig. 4) show that concentrations of these dissolved constituents are largely dependent on the temperature and depth of circulation. Water rock interaction results in high concentrations of dissolved constituents such as Na, K, and B. The data suggest that B is derived from water rock interaction rather then deep mantle flux of B(OH) 3 gas. The high B concentration in the thermal water is typical of many non-marine geothermal fields, worldwide, and thus can be used as a sensitive tracer to monitor advection and mixing of underlying geothermal fluids with shallow groundwater. Acknowledgements We thank Irena Pankratov (Hydrological Service, Jerusalem) for her dedicated laboratory work. We thank Jim Gill (University of California at Santa Cruz) for his generous hospitality and allowing A.V. to use his laboratory. We are especially grateful to MTA and the managers for their generosity during fieldwork in Turkey. We appreciate and thank Randy L. Bassett, George Swihart and an anonymous reviewer for their thorough review of the earlier version of the manuscript. References Aggarwal, J.K., Palmer, M.R. Ragnarsdottir, K.V., Boron isotope composition of Iceland hydrothermal system. In 7th Internat. Symp. Water-Rock Interaction WRI-7, Park City, Vol. 2,

19 A. Vengosh et al. / Applied Geochemistry 17 (2002) Angelier, J., Dumont, J.F., Karamanderesi, I.H., Poisson, A., Simsek, S., Uysal, S., Analyses of fault mechanisms and expansion of Southwestern Anatolia since the Late Miocene. Tectonophys. 75, T1 T9. Balderer, W., Mechanisms and processes of groundwater circulation in tectonically active areas. In: Schindler, C., Pfister, M (Eds.), Active Tectonics of Northwestern Anatolia- The Marmara Poly-Project. vdf Hochschulverlag AG an der ETH, Zurich, pp Başarır, E., The petrology and geology of the eastern flank of the Menderes Massif on the east of Lake Bafa: Scientific Report of the Faculty of Science, Ege University, No: 102. Bas kan, M.E., Canik, B AIH map of mineral and thermal waters of Turkey Aegean region, No:189. MTA Genel Mu du rlu u Yayını. Blumenthal, M., Batı Toroslarda Alanya Ard U lkesinde Jeolojik Aras tırmalar, M.T.A. Enst. yayını, Seri D, No. 5, 134 sayfa. Borsi, S., Ferrara, G., Innocenti, F., Mazzuoli, R., Geochronology and petrology of recent volcanics in the Eastern Aegean Sea (West Anatolia and Lesvos Island). Bull. Volcanol. 36, Bu rküt, Y., Kuzeybatı Anadolu da yer alan plu tonların mukayeseli jenetik etüdu : Doktora Tezi. ITU Maden Fakültesi. Istanbul, 272 s. C aǧlar, K.Ö., Tu rkiye maden suları ve kaplıcaları MTA Enstitu su Yayını, No: 107, Fasikü, 106l. l 4, Ankara. Candan, O., Dora, O.Ö., Kun, N., Akal, C., ve Koralay, E Aydın Daǧları (Menderes Masifi) Gu ney kesimindeki allokton metamorfik birimler. TPJD Bu lteni. Cilt. 4, Sayı: 1 Sahife: Conrad, M.A., Hipfel, B., Satır, M., Chemical and stable isotopic characteristics of thermal waters from C es me Seferihisar Area, İzmir (W. Turkey). Int. Earth Science Coll. on the Aegean Region, 1995, program and abstracts, 669. Crampin, S., Evans, R., Neotectonics of the Marmara Sea region of Turkey. J. Geol. Soc. London 143, Davisson, M.L., Presser, T.S., Criss, R.E., Geochemistry of tectonically expelled fluids from the northern Coast ranges, Rumsey Hills, California, USA. Geochim. Cosmochim. Acta 58, Demirel, Z. S entu rk, N., Geology and hydrogeology of deep thermal aquifers in Turkey. In: Al-Beiruti, S.N. and Bino, M.J. (Eds.), Integration of Information Between Oil Drilling and Hydrogeology of Deep Aquifers, The Inter-Islamic Network of Water Resources Development and Management. Royal Scientific Society Printing Press, Amman, Jordan. Demange, J., Gauthier, P., Puvilland, P., Germencik geothermal field feasibility report. Part one geothermal model. 89 CFG 50, France. Dewey, J.F., S engör, A.M.C., Aegean and surrounding regions: Complex multiplate and continium tectonics in a convergent zone. Geol. Soc. Am. Bull. 90, Dixon, C.J., Pereira, J., Plate tectonics and mineralization in the Tethyan Region: Mineral. Deposita 9, Dora, O.Ö., Candan, O., Dürr, St., Oberhanslı., New evidence concerning the geotectonic evolution of the Menderes Massif. IESCA 1995 Abstracts, pp Dumont, J.F., Uysal, S., S ims ek, S., Karamanderesi, İ.H., Letouzey, J., Formation of the grabens in southwestern Anatolia. Bull. Min. Res. Explo. Instit., Turkey 92, Du rr, St., Atherr, R., Keller, J., Okkursch, M., Seidel, E., The Median Aegean crystalline Belt. Stratigraphy, structure, metamorphism, magmatism: Alps, Apennins, Hellenids: Inter-Union Commission on Geodynamics, Scientific Report, no. 38, Ellis, A.J., and Mahon, W.A.J., Chemistry and Geothermal Systems. Academic Press. Ercan, T., Interpretation of geochemical, radiometric and isotopic data on Kula volcanics (Manisa, western Anatolia) Tu rkiye Jeol. Bu lteni. 36/1, Ercan, T., Gu nay, E., Türkecan, A., Bodrum yarımadasının jeolojisi. Maden Tetkik ve Arama Enstitüsu dergisi. 97/98, Ankara. Ercan, T., Satır, M., Kreuzer, H., Tu rkecan, A., Gu nay, E., C evikbaş, A., Ates, M., Can, B., Batı Anadolu Senozoyik volkanitlerine ait yeni kimyasal, izotopik ve radyometrik verilerin yorumu. Bull. Geo. Soc. of Turkey V.28, Ercan, T., Ölmez, E., Matsudo, I. Wagao, K., Kıta, I., Kuzey ve Batı Anadolu da sıcak ve mineralize sular ile içerdikleri gazların kimyasal ve izotopik değerleri. Tu rkiye Enerji Bu lteni. Cilt: 1. Sayı: 2. TMMOB Jeoloji Mu h. Odası yayını Ercan, T., Satır, M., Sevin, D., Tu rkecan, A., Batı Anadolu daki Tersiyer ve Kuvaterner yaşlı volkanik kayaçlarda yeni yapılan radyometrik yas to lçu mlerinin yorumu. MTA Dergisi. Sayı:119. Sayfa: Erentu z, C., Ternek, Z Tu rkiye de termomineral kaynaklar ve jeotermik enerji etu dleri. MTA Enstitu su Dergisi, Sayı, 70. Es der, T., S ims ek, S., Geology of İzmir-Seferihisar Geothermal area, Western Anatolia of Turkey; Determination of reservoirs by means of gradient drilling. Proceedings. 2. U.N. Symposium on the Development and Use of Geoth. Resour. San Francisco. California Eyidoǧan, H., Rates of crustal deformation in western Turkey as deduced from major earthquakes. Tectonophys 108, Filiz, S., Investigation of the important geothermal areas by using C, H, O, isotopes. Seminar on the utilization of Geothermal Energy for Electric Power Generation and Space Heating, May 1984, Florance, Italy. Seminar ref. No: EP/SEM. 9/R.3. Filiz, S., Tarcan, G., High boron content in the aquifer systems of the Gediz Basin. Int. Earth Science Coll. On the Aegean Region. 1995, program and abstracts, p Fournier, R.O., Truesdell, A.H., An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 37, Fournier, R.O., A revised equation for Na-Kgeothermometer. Geoth. Res. Council, Transactions 3, Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G., Mazzuoli, R., Geochronological data on recent magmatism of the Aegean Sea. Tectonophys. 31, Giggenbach, W.F., Geothermal solute equilibria. Derivation of Na K Mg Ca geoindicators. Geochim. Cosmochim. Acta 52, Giggenbach, W.F., Chemical techniques in geothermal exploration. In: D Amore, F. (Coordinator), Application of geochemistry in geothermal reservoir development. UNI- TAR/UNDP publication, Rome,

20 182 A. Vengosh et al. / Applied Geochemistry 17 (2002) Giggenbach, W.F., Gonfiantini, R., Jangi, B.L., Truesdell, A.H., Isotopic and chemical composition of Parbati valley geothermal discharges, NW-Himalaya, India. Geothermics 12, Go kgöz, A., Geochemistry of the Kızıldere Tekkehamam Buldan Pamukkale geothermal fields, Turkey. In: Georgsson, L.S. (Ed.), Geothermal Training in Iceland 1998, United Nations University Geothermal Training Programme, Reykjavik, Iceland, Gu leç, N., The distribution of helium-3 in Western Turkey. Mineral Res. Expl. Bull. 108, Helvacı, C., Mineral assemblages and formation of Kestelek and Sultanc ayırı borate deposits. Proc. 29th Int. Geol. Congr., Part A Helvacı, C., Stratigraphy. mineralogy, and genesis of the Bigadiç borate deposits, Western Turkey. Econ. Geol. 90, Hoke, L., Poreda, R., Ready, A., Weaver, S.D., The subcontinental mantle beneath southern New Zealand, characterised by helium isotopes in intraplate basalts and gas-rich springs. Geochim. Cosmochim. Acta 64, İzdar, E., Introduction to geology and metamorphism of the Menderes Massif of Western Turkey. Geology and history of Turkey, Petroleum Explor. Soc. of Libya, Tripoli, JICA, The pre-feasibility study on the Dikili Bergama geothermal development project in the republic of Turkey. Progress report II. MTA Ankara. Karamanderesi, İ.H., Aydın Nazilli C ubukdağ arası bo lgenin jeolojisi ve jeotermal enerji potansiyeli. MTA Derleme Rapor no Karamanderesi, İ.H., Hydrothermal alteration in well Tuzla T-2, C anakkale, Turkey. UNU Geothermal Training Prog. Report, 3, 36. Reykjavik. Karamanderesi, İ.H., Geology of and hydrothermal alteration processes of the Salavatlı-Aydın geothermal field. Ph thesis. Dokuz Eylu l U niv., İzmir. Karamanderesi İ.H Bodrum (Mugla) yarımadası jeotermal enerji arama fikir projesi. (Editörler: Filibeli A. Bayram A. Do lgen D. Elbir T.) Bodrum Yarımadası c evre sorunları sempozyumu S ubat Cilt: 1 Sayfa: İzmir. Karamanderesi, İ.H., Özgu ler, M.E., Menderes ve Gediz graben sahalarında jeotermal enerji alanlarının olus um mekanizması. Akdeniz U niversitesi Isparta Mu hendislik Faku ltesi Dergisi. 4, (in Turkish with English abstract). Karamanderesi, İ.H., Durgun, H., Ertürk, İ., Gedik, A., The geology of the Kavaklıdere (Manisa-Alas ehir) geothermal field and natural gas field anticipating its future economic aspects. Cumhuriyetin 75. Yıldo nu mu yerbilimleri ve madencilik kongresi bildiri o zleri kitabı. Sayfa, Karamanderesi, İ.H., Helvacı, C., 1994, Geology and hydrothermal alteration of the Aydın Salavatlı geothermal field. Western Anatolia, Turkey. IAVCEI, 1994 Ankara, Abstract. Theme-9 Experimental Petrology. Karamanderesi, İ.H., Ölçeno lu, K., Pekatan, R., Is ık, E., C ağlav, F., Yıldırım, N., Ayter A.S. adına açımıs olan Ayter-1 ve Ayter-2 sıcaksu arama kuyuları (Aydın Ilıcabatlı) bitirme raporu. MTA Derleme raporu no Karamanderesi, İ.H., Özgüler, M.E., C içekli, K., U stu n, Z., Yakabağı, A., C ağlav, F., The modeling studies of Aydın-Salavatlı geothermal field by hydrothermal alteration periods. UN Seminar on New Development in Geothermal Energy, EP/SEM.14/R.11, Ankara, Turkey. Karamanderesi, İ.H., Yılmazer, S., Yıldırım, T., Yakabaǧı, A., C içekli, K., Gevrek, A.İ., Demir, A., Yıldırım, N., Manisa Turgutlu Salihli Alaşehir arası Gediz vadisi jeotermal enerji aramaları etu d ve sondaj (SC-1 derin sondajı) verileri sonuç raporu. MTA Derleme raporu. Ketin, İ., U ber einige messbare U berschiebungen in Anatolien. Berg-und Hu ttenm. Monatsh , Ketin, İ., Tectonic units of Anatolia (Asia Minor). Bull. Min. Res. Expl. Inst. Turkey 66, Ketin, İ., Relation between general tectonic features and the main earthquake regions of Turkey. Bull. Min. Res. Explo. Inst. Turkey 71, Ketin, İ., Tu rkiye jeolojisine giris. İstanbul Teknik U niversitesi yayını, no. 32. Larsen, L.T., Erler, Y.A., The epithermal lithogeochemical signature a persistent characterization of precious metal mineralization at Kurşunlu and Örencik, Two prospects of very different geology in western Turkey. J. Geochem. Expl. 47, Mahon, W.A.J., Chemistry in the exploration and exploitation of hydrothermal systems. Geohermics, Sp. Issue 2-2, McCaffrey, M.A., Lazr, B., Holland, H.D., The evaporation path of sea water and the coprecipitation of Br and Kwith halite. J. Sediment. Petrol. 57, McKenzie, D.P., Yılmaz, Y., Deformation and volcanism in western Turkey and the Aegean. Bull. Tech. Univ. Istanbul. 14, McKenzie, D.P., Active tectonic of the Mediterranean region: Royal Astronomical Soc. Geophys. J. 30, MTA and JICA, The pre-feasibility study on the Dikili Bergama geothermal development project in the republic of Turkey. Progress report. January, Geothermal Inventory of Turkey. (Eds. Eris en, B., Akkuş, I., Uygur, N., Koçak, A.). Printing office of MTA, Ankara. Musashi, M., Nomura, M., Okamoto, M., Ossaka, T., Oi, T., Kakihana, H., Regional variation on the boron isotopic composition of hot spring waters from cental Japan. Geochem. J. 22, Mu tzenberg, S., Nature and origine of the thermal springs in the Tuzla area, Western Anatolia, Turkey (Ed. Schindler, C., Pfister, M. Active tectonics of Northwestern Anatolia The Marmara Poly Project) Zu rich, Özçic ek, H., ve Özçic ek, B., Mugla Bodrum Karatoprak dolayının Cu Pb Zn cevherleşmesi ve ayrıntılı jeoloji etüdu. Maden Tetkik ve Arama Ens. Der., Rap. No: 6541 (Yayınlanmamıs). Özgu r, N., Vogel, M., Pekdeǧer, A., Halback, P., Sakala, W Geochemical, hydrochemical, and isotopic geochemical signatures of thermal fields in Kızıldere in the continental rift zone of the Büyu k Menderes, western Anatolia, Turkey. 3rd International Turkish Geology Symp., Anakara, abstr. 31, 144. Öztu rk, A., Koçyigit, A., A structural approach to the basement covers relationship of Menderes group rocks. (Selimiye-Mugla) Bull. Geol. Soc. Turkey 2,

Active geothermal systems in the rift zone of the Büyük Menderes, Western Anatolia, Turkey

Active geothermal systems in the rift zone of the Büyük Menderes, Western Anatolia, Turkey Active geothermal systems in the rift zone of the Büyük Menderes, Western Anatolia, Turkey Nevzat Özgür Süleyman Demirel Üniversitesi, Research and Application Center for Geothermal Energy, Groundwater

More information

Some geological and hydrogeochemical characteristics of geothermal fields of Turkey

Some geological and hydrogeochemical characteristics of geothermal fields of Turkey Scientific Research and Essays Vol. 5(20), pp. 3147-3151, 18 October, 2010 Available online at http://www.academicjournals.org/sre ISSN 1992-2248 2010 Academic Journals Full Length Research Paper Some

More information

Minerals and Rocks C) D)

Minerals and Rocks C) D) Minerals and Rocks Name 1. Base your answer to the following question on the map and cross section below. The shaded areas on the map represent regions of the United States that have evaporite rock layers

More information

Metamorphism and metamorphic rocks

Metamorphism and metamorphic rocks Metamorphism and metamorphic rocks Rocks created by heat, pressure and/or chemically reactive fluids Metamorphic rocks are produced from Igneous rocks Sedimentary rocks Other metamorphic rocks Metamorphism

More information

Pre/Co- Requisite Challenge for Field Courses

Pre/Co- Requisite Challenge for Field Courses Pre/Co- Requisite Challenge for Field Courses In order to register for any field course through Earth and Planetary Sciences, a student must satisfy one of the following requirements: 1) Be currently enrolled

More information

Metamorphism and Metamorphic Rocks Earth, 10e Chapter 8

Metamorphism and Metamorphic Rocks Earth, 10e Chapter 8 Metamorphism and Metamorphic Rocks Earth, 10e Chapter 8 Metamorphism Transition of one rock into another by temperatures and/or pressures unlike those in which it formed Metamorphic rocks are produced

More information

Metamorphism and Metamorphic Rocks Earth - Chapter Pearson Education, Inc.

Metamorphism and Metamorphic Rocks Earth - Chapter Pearson Education, Inc. Metamorphism and Metamorphic Rocks Earth - Chapter 8 Metamorphism Transition of one rock into another by temperatures and/or pressures unlike those in which it formed Metamorphic rocks are produced from:

More information

UNIT 7: Metamorphic Rocks

UNIT 7: Metamorphic Rocks UNIT 7: Metamorphic Rocks Chapter Summary Metamorphism is the transformation of one rock type into another. Metamorphic rocks form from preexisting rocks (either igneous, sedimentary, or other metamorphic

More information

"When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka

When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphosis "When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka One of the oldest rocks in the world. A gneiss

More information

Chapter 7: Metamorphism and Metamorphic Rocks. Fig. 7.21

Chapter 7: Metamorphism and Metamorphic Rocks. Fig. 7.21 Chapter 7: Metamorphism and Metamorphic Rocks Fig. 7.21 OBJECTIVES Restate how metamorphic rocks relate to the two other rock groups (sedimentary and igneous). Describe how metamorphic rocks are produced

More information

Convergent Boundaries

Convergent Boundaries Convergent Boundaries Zones where lithospheric plates collide Three major types Ocean - Ocean Ocean - Continent Continent Continent Convergent Boundaries Convergent boundaries may form subduction zones

More information

Metamorphism & Metamorphic Rocks

Metamorphism & Metamorphic Rocks 1 2 4 5 6 7 8 9 10 & Metamorphic Rocks Earth 9 th edition, Chapter 8 Geology 100 Key Concepts and the agents that drive it. Metamorphic textures... Metamorphic zones and metamorphic grade. and plate tectonics.

More information

Geochemistry of geothermal waters in the La Selva, NE Spain modeling - Danijela Ljepoja Geochemistry 428/628 December,2014

Geochemistry of geothermal waters in the La Selva, NE Spain modeling - Danijela Ljepoja Geochemistry 428/628 December,2014 Geochemistry of geothermal waters in the La Selva, NE Spain modeling - Danijela Ljepoja Geochemistry 428/628 December,2014 Map of Study Area (Navarro,2011) Study area The La Selva geothermal system, located

More information

Metamorphism. Igneous rocks Sedimentary rocks Other metamorphic rocks

Metamorphism. Igneous rocks Sedimentary rocks Other metamorphic rocks Metamorphic Rocks Metamorphism The transition of one rock into another by temperatures and/or pressures unlike those in which it formed Metamorphic rocks are produced from Igneous rocks Sedimentary rocks

More information

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate 1. Of the Earth's more than 2,000 identified minerals, only a small number are commonly found in rocks. This fact indicates that most 1) minerals weather before they can be identified 2) minerals have

More information

Geology 200 Getting Started...

Geology 200 Getting Started... Geology 200 Getting Started... Name This handout should be completed and become a part of your Notebook for this course. This handout is intended to be a review of some important ideas from your introductory

More information

Rock Cycle. Metamorphism, Metamorphic Rocks, Hydrothermal Rocks. Metamorphism. Equilibrium. Interrelationships between:

Rock Cycle. Metamorphism, Metamorphic Rocks, Hydrothermal Rocks. Metamorphism. Equilibrium. Interrelationships between: Rock Cycle Equilibrium Interrelationships between: igneous rocks sediment sedimentary rocks metamorphic rocks weathering and erosion Metamorphism, Metamorphic Rocks, Hydrothermal Rocks Metamorphism solid

More information

Summary of Basalt-Seawater Interaction

Summary of Basalt-Seawater Interaction Summary of Basalt-Seawater Interaction Mg 2+ is taken up from seawater into clay minerals, chlorite, and amphiboles, in exchange for Ca 2+, which is leached from silicates into solution. K + is taken up

More information

The Good, The Bad, The Ugly Fluids. Santiago de Chile, May 2014

The Good, The Bad, The Ugly Fluids. Santiago de Chile, May 2014 The Good, The Bad, The Ugly Fluids The Geothermal Institute University of Auckland Bridget Lynne Santiago de Chile, 26-29 May 2014 Bridget Y. Lynne FLUIDS Common fluid types in geothermal systems Alkali

More information

The Aegean: plate tectonic evolution in Mediterranean

The Aegean: plate tectonic evolution in Mediterranean The Aegean: plate tectonic evolution in Mediterranean Written by: Martin Reith Field course Naxos in September 2014, Group B Abstract The Mediterranean Sea, as known today, resulted from various geological

More information

California Geologic History

California Geologic History California Geologic History Why do Sierra Nevada look this way? Alabama Hills Introduction California s geologic history is very complex, most of the state did not exist as a coherent piece of the earth

More information

1. The diagram below shows a cross section of sedimentary rock layers.

1. The diagram below shows a cross section of sedimentary rock layers. 1. The diagram below shows a cross section of sedimentary rock layers. Which statement about the deposition of the sediments best explains why these layers have the curved shape shown? 1) Sediments were

More information

Metamorphic Rocks Transformation at Work

Metamorphic Rocks Transformation at Work Learning Series: Basic Rockhound Knowledge Metamorphic Rocks Transformation at Work Metamorphic rocks are one of the three types of rock classifications, the other two being igneous and sedimentary. Rocks

More information

Field Geology Course (Geology summer field camp)

Field Geology Course (Geology summer field camp) Field Geology Course (Geology summer field camp) Overview Geology Field Camp is the capstone experience in many undergraduate Geology programs, and it integrates and applies material learned in almost

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Shows the interrelationships

More information

METAMORPHIC ROCKS. Smith and Pun, Chapter 6 WHERE DO METAMORPHIC ROCKS OCCUR? 1. Widely exposed in actively forming mountain ranges

METAMORPHIC ROCKS. Smith and Pun, Chapter 6 WHERE DO METAMORPHIC ROCKS OCCUR? 1. Widely exposed in actively forming mountain ranges METAMORPHIC ROCKS Smith and Pun, Chapter 6 WHERE DO METAMORPHIC ROCKS OCCUR? Metamorphic rocks are: 1. Widely exposed in actively forming mountain ranges 2. Always found in eroded ancient mountain belts

More information

How Did These Ocean Features and Continental Margins Form?

How Did These Ocean Features and Continental Margins Form? 298 10.14 INVESTIGATION How Did These Ocean Features and Continental Margins Form? The terrain below contains various features on the seafloor, as well as parts of three continents. Some general observations

More information

CHAPTER 7: ROCKS AND MINERALS. Self-Reflection Survey: Section 7.1, p. 175 Answers will vary

CHAPTER 7: ROCKS AND MINERALS. Self-Reflection Survey: Section 7.1, p. 175 Answers will vary CHAPTER 7: ROCKS AND MINERALS Self-Reflection Survey: Section 7.1, p. 175 Answers will vary Checkpoint 7.1, p. 177 Examine the atomic models below and answer the question that follows. The filled black

More information

Metamorphism and Metamorphic Rocks

Metamorphism and Metamorphic Rocks Metamorphism and Metamorphic Rocks REMEMBER.. Metamorphic rocks NEVER melt If a rock melts it s an IGNEOUS rock! Factors Controlling Characteristics Composition of parent rock (protolith) Heat Pressure

More information

Exam #3 - All numbered questions are given equal weight in the multiple choice part.

Exam #3 - All numbered questions are given equal weight in the multiple choice part. Exam #3 - All numbered questions are given equal weight in the multiple choice part. Multiple Choice Mark only one answer for each question. 1) On a global map of earthquakes, the locations of the earthquakes

More information

Regents Questions: Plate Tectonics

Regents Questions: Plate Tectonics Earth Science Regents Questions: Plate Tectonics Name: Date: Period: August 2013 Due Date: 17 Compared to the oceanic crust, the continental crust is (1) less dense and more basaltic (3) more dense and

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e and Metamorphic Rocks Chapter 7 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer Cole Northeastern

More information

Metamorphism. Protoliths undergo pronounced changes in Texture. Mineralogy.

Metamorphism. Protoliths undergo pronounced changes in Texture. Mineralogy. Metamorphism Metamorphic Changed from an original parent. Meta = Change. Morph = Form or shape. Parent rocks are called protoliths. Metamorphism can occur to any protolith. Metamorphism Protoliths undergo

More information

Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids.

Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids. Protolith or parent rock is

More information

Marine Geology, Review Questions for Final Exam. Part I

Marine Geology, Review Questions for Final Exam. Part I Marine Geology, 2015 Review Questions for Final Exam Part I Note: Part I covers topics from Origin of the Earth, Ocean, and Atmosphere to Features on Ocean Floor & Continental Margins Tectonic Perspective

More information

1. Elements of rheology

1. Elements of rheology 9 1. Elements of rheology The kinds of structures that develop in rocks during deformation depend on: 1) the orientation and intensity of the forces applied to the rocks; 2) the physical conditions (mainly

More information

Deep Geothermal energy and groundwater in

Deep Geothermal energy and groundwater in Deep Geothermal energy and groundwater in the UK Jon Busby Deep Geothermal energy and groundwater in the UK Outline 1. UK geothermal 2. Deep saline aquifers 3. Engineered geothermal systems 4. Fractured

More information

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire UNIT 3 EXAM ROCKS AND MINERALS NAME: BLOCK: DATE: 1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire FRANCONIA, N.H. Crowds

More information

Lab 9: Metamorphic Processes and Rock Identification

Lab 9: Metamorphic Processes and Rock Identification Name: Lab 9: Metamorphic Processes and Rock Identification Metamorphism is the change in the form of crustal rocks exposed to heat, pressure, hydrothermal fluids, or a combination of these agents in the

More information

Metamorphism and Metamorphic Rocks Earth, 10e - Chapter 8 Hernan Santos University of Puerto Rico Mayagüez Campus

Metamorphism and Metamorphic Rocks Earth, 10e - Chapter 8 Hernan Santos University of Puerto Rico Mayagüez Campus Metamorphism and Metamorphic Rocks Earth, 10e - Chapter 8 Hernan Santos University of Puerto Rico Mayagüez Campus Metamorphism Transition of one rock into another by temperatures and/or pressures unlike

More information

Plate Tectonics Review

Plate Tectonics Review 1. Recent volcanic activity in different parts of the world supports the inference that volcanoes are located mainly in 1) the centers of landscape regions 2) the central regions of the continents 3) zones

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

Metamorphism and Deformation

Metamorphism and Deformation Metamorphism and Deformation Metamorphism takes place at temperatures and pressures that fall between those in which sediments are lithified and those in which rocks begin to melt and form magmas. Types

More information

HARTAI ÉVA, GEOLOGY 9

HARTAI ÉVA, GEOLOGY 9 HARTAI ÉVA, GEOLOgY 9 IX. CONVERgENT AND TRANSFORM FAULT PLATE MARgINS 1. CONVERgENT PLATE MARgINS Convergent (in other terms destructive) plate margins are formed when two lithosphere plates move toward

More information

Time and Geology Chapter 8

Time and Geology Chapter 8 Time and Geology Chapter 8 Where would you hike to find the oldest rocks in this area? (hint : you would use the principle of superposition) Tasks 1. Read about relative ages on pages 179-190 (skip the

More information

Lecture Outlines PowerPoint. Chapter 3 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 3 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 3 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Lab 10: Geologic Time

Lab 10: Geologic Time Name: Lab 10: Geologic Time Much of geology is focused on understanding Earth's history. The physical characteristics of rocks and minerals offer clues to the processes and conditions on and within Earth

More information

Earth Materials: Intro to rocks & Igneous rocks. The three major categories of rocks Fig 3.1 Understanding Earth

Earth Materials: Intro to rocks & Igneous rocks. The three major categories of rocks Fig 3.1 Understanding Earth Earth Materials: 1 The three major categories of rocks Fig 3.1 Understanding Earth 2 Intro to rocks & Igneous rocks Three main categories of rocks: Igneous Sedimentary Metamorphic The most common minerals

More information

Convergent Boundaries

Convergent Boundaries Question 13 a. Long columns of hot, less dense rock, rising from deep in the mantle which are responsible for the volcanism at mid-ocean ridge spreading zones such as the Mid-Atlantic Ridge b. Long columns

More information

IDS 102 Plate Tectonics Questions

IDS 102 Plate Tectonics Questions IDS 102 Plate Tectonics Questions Part I: Observations- Four maps of world are positioned around the room. Answer the questions associated with each map and record your general observations about the maps.

More information

foliation or nonfoliated: : Rock containing minerals that recrystallized during metamorphism, but which has no layering has appeared.

foliation or nonfoliated: : Rock containing minerals that recrystallized during metamorphism, but which has no layering has appeared. 08_00.jpg metamorphism: : The process by which one kind of rock transforms into a different kind of rock. metamorphic rocks: a rock that forms from the modification of another rock. protolith: : preexisting

More information

What are the controls for calcium carbonate distribution in marine sediments?

What are the controls for calcium carbonate distribution in marine sediments? Lecture 14 Marine Sediments (1) The CCD is: (a) the depth at which no carbonate secreting organisms can live (b) the depth at which seawater is supersaturated with respect to calcite (c) the depth at which

More information

Geologic History. 5. Which radioactive isotope disintegrates to lead (Pb 206 )? A) C 14 B) K 40 C) Rb 87 D) U 238

Geologic History. 5. Which radioactive isotope disintegrates to lead (Pb 206 )? A) C 14 B) K 40 C) Rb 87 D) U 238 1. Which event occurred earliest in geologic history? A) appearance of the earliest grasses B) appearance of the earliest birds C) the Grenville Orogeny D) the intrusion of the Palisades Sill 2. When did

More information

Metamorphism: A Process of Change

Metamorphism: A Process of Change Metamorphism: A Process of Change Introduction Metamorphic Changed from an original parent. Meta = Change. Morph = Form or shape. Parent rocks are called protoliths. Metamorphism can occur to any protolith.

More information

Plate Tectonics Lab II

Plate Tectonics Lab II Plate Tectonics Lab II This lab is modified from a UW ESS101 Lab created by Mike Harrell Note: Hand in only the Answer Sheet at the back of this guide to your Instructor Introduction One of the more fundamental

More information

Fig Sources of metamorphic change

Fig Sources of metamorphic change Metamorphic Rocks Rocks that recrystallize without melting (solid state) at high temps and pressures Caused by changes in T, P or pore fluids New environment often = new minerals Growing minerals create

More information

Rocks and Rock-Forming Processes

Rocks and Rock-Forming Processes Rocks and Rock-Forming Processes 3.4 How are the rock classes related to one another? The Rock Cycle Smith & Pun, Chapter 3 Processes link types Plate tectonics is driving force If we look closely we see

More information

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on:

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Plate Tectonics and Continental Drift Continental Drift Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Similarities in shorelines

More information

Chapter 9: Plates and Plate Boundaries. Fig. 9.11

Chapter 9: Plates and Plate Boundaries. Fig. 9.11 Chapter 9: Plates and Plate Boundaries Fig. 9.11 OBJECTIVES Identify the physical and chemical divisions in Earth s outer layers. Understand that the lithospheric plates are buoyant and that this buoyancy

More information

The Archean Eon (4000 ma ma)

The Archean Eon (4000 ma ma) The Archean Eon (4000 ma - 2500 ma) December November October September August July June May April March February January 0 Ma Phanerozoic 540 Ma Proterozoic 2500 Ma Archean 4000 Ma Hadean 4600 Ma C M

More information

Present status and future development possibilities of Aydın-Denizli Geothermal Province

Present status and future development possibilities of Aydın-Denizli Geothermal Province Present status and future development possibilities of Aydın-Denizli Geothermal Province Sakir Simsek Prof. Dr. Hacettepe University, Engineering Faculty, Geological Engineering Department 06532 Beytepe,

More information

SCIENCE 10 Unit 4: Earth Science Review

SCIENCE 10 Unit 4: Earth Science Review SCIENCE 10 Unit 4: Earth Science Review Use the following diagram to answer questions 1 and 2. 1. Which location has the youngest crust? A. A B. B C. C D. D 2. Which location is associated with subduction?

More information

metamorphism and metamorphic rocks

metamorphism and metamorphic rocks metamorphism and metamorphic rocks the rock cycle metamorphism high enough temperature & pressure to change rocks "but not high enough to melt rocks " " changes to rocks occur in the solid-state hot, reactive

More information

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE Instructions: Read each question carefully before selecting the BEST answer Provide specific and detailed

More information

Objective: Identify the types of plate boundaries and the land features and geologic events that each feature makes.

Objective: Identify the types of plate boundaries and the land features and geologic events that each feature makes. Objective: Identify the types of plate boundaries and the land features and geologic events that each feature makes. Transform boundaries exist where two plates slide past each other. No lithosphere is

More information

PLATE TECTONICS. The Basic Premise of Plate Tectonics

PLATE TECTONICS. The Basic Premise of Plate Tectonics PLATE TECTONICS The Basic Premise of Plate Tectonics The lithosphere is divided into plates that move relative to one another, and relative to the earth s asthenosphere. Movement occurs at very slow (cm/yr)

More information

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas 1 Igneous Geochemistry What is magma phases, compositions, properties Major igneous processes Making magma how and where Major-element variations Classification using a whole-rock analysis Fractional crystallization

More information

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE

Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 305 INTRODUCTION TO ROCKS AND THE ROCK CYCLE Instructions: Read each question carefully before selecting the BEST answer Provide specific and detailed

More information

Page 1. Name:

Page 1. Name: Name: 1) According to the Earth Science Reference Tables, which sedimentary rock would be formed by the compaction and cementation of particles 1.5 centimeters in diameter? A) shale B) conglomerate C)

More information

Geologic History Review

Geologic History Review 1. The climate that existed in an area during the early Paleozoic Era can best be determined by studying (1) the present climate of the area (2) recorded climate data of the area since 1700 (3) present

More information

SEDIMENTARY AND METAMORPHIC ROCKS

SEDIMENTARY AND METAMORPHIC ROCKS Date Period Name SEDIMENTARY AND METAMORPHIC ROCKS SECTION.1 Formation of Sedimentary Rocks In your textbook, read about the processes that form sedimentary rocks. Use each of the terms below to complete

More information

There are numerous seams on the surface of the Earth

There are numerous seams on the surface of the Earth Plate Tectonics and Continental Drift There are numerous seams on the surface of the Earth Questions and Topics 1. What are the theories of Plate Tectonics and Continental Drift? 2. What is the evidence

More information

Hello. Here are the instructions to complete your second blizzard bag lesson: 1. Read the nonfiction text on the rock cycle

Hello. Here are the instructions to complete your second blizzard bag lesson: 1. Read the nonfiction text on the rock cycle Hello Here are the instructions to complete your second blizzard bag lesson: 1. Read the nonfiction text on the rock cycle 2. Watch the two videos listed here (just click on the link): http://www.youtube.com/watch?v=jpge74vltdc

More information

Section: The Rock Cycle

Section: The Rock Cycle Skills Worksheet Chapter 2 section 1 Inside the Restless Earth /29 Section: The Rock Cycle 1. A naturally occurring solid mixture of one or more minerals or organic matter is called a. an element. b. a

More information

Plate tectonics, Earthquakes and Volcanoes. Key words: lithosphere, continental and oceanic plates, convective movements, plate boundary

Plate tectonics, Earthquakes and Volcanoes. Key words: lithosphere, continental and oceanic plates, convective movements, plate boundary S c i e n c e s Plate tectonics, Earthquakes and Volcanoes Key words: lithosphere, continental and oceanic plates, convective movements, plate boundary The Structure of the Earth The Earth s engine: Convective

More information

Earth and Space Science. Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle.

Earth and Space Science. Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle. Earth and Space Science Semester 2 Exam Review Part 1 Convection -A form of heat transfer. - Convection currents circulate in the Asthenosphere located in the Upper Mantle. - Source of heat is from the

More information

Chesapeake Bay Governor School for Marine and Environmental Science

Chesapeake Bay Governor School for Marine and Environmental Science Choose the best answer and write on the answer sheet provided. 1. Which of the following is LEAST likely to be an effect of global warming? (a) Loss of fertile delta regions for agriculture (b) Change

More information

Tectonic processes. 2.1 Where do earthquakes and volcanoes occur?

Tectonic processes. 2.1 Where do earthquakes and volcanoes occur? 2 Tectonic processes In this chapter you will study: how the Earth s crust is broken into different types of tectonic s what type of tectonic activity occurs at the boundaries what can happen during earthquakes

More information

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed?

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed? CHAPTER 4 1 The Rock Cycle SECTION Rocks: Mineral Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a rock? How are rocks classified? What does

More information

Rocks and Plate Tectonics

Rocks and Plate Tectonics Name: Class: _ Date: _ Rocks and Plate Tectonics Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is a naturally occurring, solid mass of mineral or

More information

Earth s Crust and Interior

Earth s Crust and Interior Student: Date received: Handout 6 of 14 (Topic 2.1) Earth s Crust and Interior Seafloor topography around Iceland in the North Atlantic Ocean (http://en.wikipedia.org/wiki/image:n-atlantic-topo.png). Iceland

More information

Pacific NW Rocks & Minerals Mid Term I: KEY

Pacific NW Rocks & Minerals Mid Term I: KEY Name: Date: (1) 2 pts. Compared to the age of the Earth accepted as correct today, how did seventeenth and eighteenth century proponents of catastrophism envision the Earth's age? A) They believed Earth

More information

1. Notice that there are two predominate colors on this map. What are the elevations represented by these two primary colors on this map?

1. Notice that there are two predominate colors on this map. What are the elevations represented by these two primary colors on this map? Geology 101 Plate Tectonics Study Guide Addendum Part I: Observations- Four maps of world are positioned around the room. Answer the questions associated with each map and record your general observations

More information

Mountain Building at a Convergent Plate Tectonic Boundary: The Southern Adelaide Fold Belt

Mountain Building at a Convergent Plate Tectonic Boundary: The Southern Adelaide Fold Belt CASE STUDY 1.005 Mountain Building at a Convergent Plate Tectonic Boundary: The Southern Adelaide Fold Belt Introduction Author: Steve Abbott* Mountain belts are zones of lithosphere thickening along the

More information

Earth s Layered Structure, Earth s Internal Structure, Plate Tectonics

Earth s Layered Structure, Earth s Internal Structure, Plate Tectonics Earth s Layered Structure, Earth s Internal Structure, Plate Tectonics Chs.1&2 Earth s Layered Structure High-velocity impact of debris + radioactive decay => increase in T => Fe & Ni melt & sink => Inner

More information

World Beneath Our Feet

World Beneath Our Feet World Beneath Our Feet Lesson Plan 2: Rock Identification Learning Objective Time required Learning Outcomes Materials (provided) Materials (Teacher supplied) background Suggested Procedure Students will

More information

TECTONICS ASSESSMENT

TECTONICS ASSESSMENT Tectonics Assessment / 1 TECTONICS ASSESSMENT 1. Movement along plate boundaries produces A. tides. B. fronts. C. hurricanes. D. earthquakes. 2. Which of the following is TRUE about the movement of continents?

More information

Name Rock and Mineral Review E-Science Date Midterm Review Science Department

Name Rock and Mineral Review E-Science Date Midterm Review Science Department Name Rock and Mineral Review E-Science Date Midterm Review Science Department 1 Base your answer to the following question on the drawings of six sedimentary rocks labeled A through F. Most of the rocks

More information

Liz LaRosa Images from Geology.com unless otherwise noted

Liz LaRosa Images from Geology.com unless otherwise noted Liz LaRosa http://www.middleschoolscience.com 2010 Images from Geology.com unless otherwise noted A rock is a naturally occurring solid mixture of one or more minerals, or organic matter Rocks are classified

More information

Plate Tectonics. An outgrowth of the old theory of "continental drift," supported by much data from many areas of geology.

Plate Tectonics. An outgrowth of the old theory of continental drift, supported by much data from many areas of geology. Plate Tectonics Plate Tectonic theory was proposed in late 1960s and early 1970s. It is a unifying theory showing how a large number of diverse, seemingly-unrelated geologic facts are interrelated. An

More information

Heat Flow. The decay of short-lived radioactive elements (such as aluminum-26) generated heat energy in the early stages of the Earth s formation.

Heat Flow. The decay of short-lived radioactive elements (such as aluminum-26) generated heat energy in the early stages of the Earth s formation. Heat Flow Heat from Earth s Interior Earth s interior heat comes from a combination of the following factors: Original heat from the formation and gravitational compression of the Earth from the solar

More information

Key topics today: How do we know about the Earth s interior structure? Earth s layering: By composition

Key topics today: How do we know about the Earth s interior structure? Earth s layering: By composition Solid-earth geology: Plate tectonics, earthquakes, and volcanoes Explain shape and structure of the ocean basins Explain cycle of oceanic opening and closing Explain many aspects of basic marine geology

More information

Carbon Dioxide (CO 2 ) Survey at Makaroyen Village in Kotamobagu Geothermal Field, North Sulawesi, Indonesia

Carbon Dioxide (CO 2 ) Survey at Makaroyen Village in Kotamobagu Geothermal Field, North Sulawesi, Indonesia PROCEEDINGS, 41st Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 22-24, 2016 SGP-TR-209 Carbon Dioxide (CO 2 ) Survey at Makaroyen Village in Kotamobagu

More information

Introduction to Plate Tectonics Plate tectonics

Introduction to Plate Tectonics Plate tectonics Quizlet Magnetic stripes along the seafloor are evidence for a) Earth s magnetic reversals b) Seafloor spreading c) Convection currents in the mantle d) Magnetite's ability to orient with a magnetic field

More information

GEOLOGY 12 NOTES KEY CHAPTER 7 METAMORPHIC ROCKS. Major Concepts

GEOLOGY 12 NOTES KEY CHAPTER 7 METAMORPHIC ROCKS. Major Concepts GEOLOGY 12 NOTES KEY CHAPTER 7 METAMORPHIC ROCKS Major Concepts 1. Metamorphic rocks form when increases in heat and/or pressure change the physical and chemical conditions of an existing rock. a. Metamorphic

More information

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II 4. Which of the following statements about paleomagnetism at spreading ridges is FALSE? A. there is a clear pattern of paleomagnetic

More information

Metamorphic Rocks. Any Questions?

Metamorphic Rocks. Any Questions? Any Questions? 1 Metamorphic Rocks 2 3 Metamorphic Rocks Rocks that have been subjected to either enough heat or pressure to cause the minerals in that rock to undergo solid state chemical changes. Metamorphic

More information

SCALING PREDICTION MODELLING

SCALING PREDICTION MODELLING Presented at Short Course on Geothermal Development and Geothermal Wells, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, March 11-17, 2012. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V.

More information

Review of Groundwater Vulnerability Assessment Methods Unsaturated Zone. Dept. of Earth Sciences University of the Western Cape

Review of Groundwater Vulnerability Assessment Methods Unsaturated Zone. Dept. of Earth Sciences University of the Western Cape Review of Groundwater Vulnerability Assessment Methods Unsaturated Zone Dept. of Earth Sciences University of the Western Cape Background Sililo et al. (2001) Groundwater contamination depends on: Intrinsic

More information

O.Jagoutz. We know from ~ 20.000 borehole measurements that the Earth continuously emits ~ 44TW

O.Jagoutz. We know from ~ 20.000 borehole measurements that the Earth continuously emits ~ 44TW Lecture Notes 12.001 Metamorphic rocks O.Jagoutz Metamorphism Metamorphism describes the changes a rock undergoes with changing P, T and composition (X). For simplistic reasons we will focus here in the

More information