IMPROVED PROXIMITY AWARE LOAD BALANCING FOR HETEROGENEOUS NODES
|
|
|
- Victor Dixon
- 10 years ago
- Views:
Transcription
1 International Journal Of Engineering And Computer Science ISSN: Volume 2 Issue 6 June, 2013 Page No IMPROVED PROXIMITY AWARE LOAD BALANCING FOR HETEROGENEOUS NODES Ms. Dalvi Yogita Ashokrao M.TECH.[C.S.E.] (Pursuing), IES College, RGPV University Bhopal [email protected] Abstract Conventional load balancing schemes are efficient at increasing the utilization of CPU, memory, and disk I/O resources in a Distributed environment. Most of the existing load-balancing schemes ignore network proximity and heterogeneity of nodes. Load balancing becomes more challenging as load variation is very large and the load on each server may change dramatically over time, by the time when a server is to make the load migration decision, the collected load status from other servers may no longer be valid. This will affect the accuracy, and hence the performance, of the load balancing algorithms. All the existing methods neglect the heterogeneity of nodes and contextual load balancing. In this seminar, context based load balancing and task allocation with network proximity of heterogeneous nodes will be studied. Introduction Advancement in computer networking technologies have led to increase interest in the use of large-scale parallel and distributed computing systems. Distributed systems are gaining popularity by one of its key feature: resource sharing. A Load balancing algorithm tries to balance the total systems load by transparently transferring the workload from heavily loaded nodes to lightly loaded nodes in an attempt to ensure good overall performance relative to some specific metric of system performance. Effective load balancing algorithms/techniques are used to distribute the processes/load of a parallel program on multiple Ms. Dalvi Yogita Ashokrao, IJECS Volume2 Issue6 June, 2013 Page No Page 1914
2 hosts to achieve goal(s) such as minimizing execution time, minimizing communication delays, maximizing resource utilization and maximizing throughputs. Distributed systems are characterized by resource multiplicity and system transparency. A variety of widely differing techniques and methodologies for scheduling processes of a distributed system have been proposed. These techniques are broadly classified into three types: task allocation approach, load balancing, load sharing. The main goal of load balancing is to equalize the workload among the nodes by minimizing execution time, minimizing communication delays, maximizing resource utilization and maximizing throughput. The main motivation for our study is to improve the efficiency and usability of networks and processing units in cluster computing environments considering the context information of nodes. Literature survey Generally, the performance of Load Balancing in contextual environment depends upon the selection of an agent based on nodes social or physical context [1]. On the other hand, using Distributed hash tables (DHTs) virtual server can be designed to find suitable resources on a node for load assignments and proximity aware load balancing [2]. In a practical scenario if a given node has all the resources available for task execution minimum load balancing overhead will incur otherwise the amount of load transfer will be more. From the P2P system perspective, efficiently is interpreted as striving to ensure fair load distribution among all peer nodes. Many solutions have been proposed to tackle the load balancing issue in DHT-based P2P systems [6]. However, existing load balancing approaches have some limitations; they either ignore the heterogeneity of node capabilities, or transfer loads between nodes without considering proximity relationships, or both. In distributed load balancing if all the resources are located at the same site; the load transfers may be negligible. However, for largescale, where the resources may be distributed across different heterogeneous nodes, the load transfers may no longer be neglected. As a result, when any node fall out of resources its load status to be declared and load migration decisions should be made accordingly. As the nodes are heterogeneous the load on each node may change continuously. This will affect the accuracy, and hence the performance, of the load balancing algorithms. All the existing methods neglect the heterogeneity of nodes and load assignments considering the proximity of nodes on the accuracy of the load balancing solutions. Hence a comparative study of different load balancing algorithms considering context aware is discussed. Features Ms. Dalvi Yogita Ashokrao, IJECS Volume2 Issue6 June, 2013 Page No Page 1915
3 Load Balancing: - The computing power of any distributed system can be realized by allowing its constituent computational elements (CEs), or nodes, to work cooperatively so that large loads are allocated among them in a fair and effective manner. Any strategy for load distribution among CEs is called load balancing (LB). An effective LB policy ensures optimal use of the distributed resources whereby no CE remains in an idle state while any other CE is being utilized. Effective utilization of parallel computer architecture requires the computational load to be distributed, more or less, evenly over the available CEs. Distribution of computational load across available resources is referred to as the load balancing problem. Context based load balancing: - The context of an agent can be simply regarded as the environment it is situated which includes the physical context and the social context (organizational one). The physical context is produced by the agent s physical environment, which can be regarded as the agent s physical location, and the physically nearby agents within the subsystem; the resources owned by the agents within its physical context are called the physically contextual resources. On the other hand, agents in the complex system should be organized within some social organizations, so the counterpart agents in the social organizations can be regarded as the agent s social context, and the resources of the agents in the social context are called socially contextual resource. Physical context If an agent lacks the necessary resources to implement the allocated task (we call such agent as initiator agent), it may negotiate with its physically contextual agents; if the physically contextual agents have the required resources (we call those agents that lend resources to the initiator agent as response agents), then the initiator agent and the response agents will cooperate together to implement such task. The negotiation relations from agent to other agents within its physical context form a directed acyclic graph with single source a, which is called the physically contextual resource negotiation topology (PCR-NT) of agent a. Social context In the social organizations, it is more likely that the near individuals may have more similarities and, being closer together in the organizational hierarchy, share more common interests than the remote individuals Therefore, in the social organizations of complex systems, each agent will negotiate with Ms. Dalvi Yogita Ashokrao, IJECS Volume2 Issue6 June, 2013 Page No Page 1916
4 other agents for the requested resources gradually from near places to remote places. Let a be an agent that will negotiate with other agents within its social context and the agents in the nth round of negotiation of agent a be called the social contexts with gradation n. Existing System: - All the existing context based algorithms are based on homogeneity of network but ignore distance between nodes. Proposed System: - The proposed algorithm will take care of the social context of nodes in the network at the time of making load balancing decision. All the nodes in the network are heterogeneous in the sense of their functionality and (or) resources. For this purpose, virtual server concept is used which is not actually present on nodes it is just a notion of load transfer between nodes in network. Virtual server is used in cluster environment. Virtual server is the notion of load transfer and it can transfer active jobs from one node to another. In case of agent based approaches administrative control is required which will guide load transfer. Using virtual machine we can handle security boundaries for job transfer. Rearranging the topology will reduce the load migration cost and bound the contextual similar nodes in one closure. Proposed Methodology/algorithm /* let a be the initiator agent, and the set of agents in a s social context be A, Tx: the subtree whose root is agent x in the hierarchical structure; Px: the parent node of x in the hierarchical structure. */ 1) set the tags for all agents in A to 0 initially; 2) b = 0; 3) At = {a}; /*the allocated agent set for task t*/ 4) R t a = Rt - Ra; /*The lacking resources of agent a to implement task t*/ 5) If R t a = = {}, then b= 1; /*Agent a can provide all resources to implement task t*/ 6) If (b == 0), then: 6.1) Negotiation (a, a); /*a negotiates with the agents within Ta using following steps Gather load balancing information (LBI) in the form of < L i, C i, L i, min > <total load on virtual server, capacity of a node i, minimum load of virtual server on node i> Classify nodes as L min A heavy node if L i > T i A light node if (T i - L i )>= A neutral node if 0 <= if (T i - L i )>= L min For Virtual server assignment a heavy node chooses a (say i) chooses a subset of its virtual servers {v i,1 ;... ; v i, m } (m >= 1) Upon receiving the paired VSA information the heavy node i will transfer the virtual server v i,r to the light node j. Ms. Dalvi Yogita Ashokrao, IJECS Volume2 Issue6 June, 2013 Page No Page 1917
5 7) If (b ==1), then Return (A t ) /*All resources for implementing t are satisfied*/ else return (False); 8) End. In the social organizations, it is more likely that the near individuals may have more similarities and, being closer together in the organizational hierarchy, share more common interests than the remote individuals Therefore, in the social organizations of complex systems, each agent will negotiate with other agents for the requested resources gradually from near places to remote places. Let a be an agent that will negotiate with other agents within its social context and the agents in the nth round of negotiation of agent a be called the social contexts with gradation n. In the hierarchical structures, each agent can interact directly only to its superiors and subordinates; thus, each agent will first negotiate with its superiors or subordinates for resources. Moreover, in the hierarchical organizations, resource negotiation always happens between pairs of agents that share the same immediate superior; and agents will always negotiate resources through the lowest common ancestor. Therefore, let there be an agent a that can negotiate with other agents within the hierarchical structure according to the following orders: 1. The subordinates of agent a in the hierarchical structure; 2. The immediate superior of agent a; 3. The sibling agents with the lowest common superiors. When CRM (context based task allocation model) is used, the allocated agents will always incline to be located within the near physical contexts or social contexts, so the communication time will be reduced; however, the allocated agents in SRM (self owned resource based task allocation model) will always be distributed through the system, so the communication time among agents will incline to be more than the one of CRM model. Therefore, the task execution time of CRM model is always less than the one of the SRM model and while the number of tasks increases, the communication time will also increase. Conclusion In this project we studied contextual load balancing techniques for distributed systems considering the homogeneous and heterogeneous environment of network. We come to following conclusions:- The task allocation and load balancing can be done based on contextual resource negotiation which outperforms the previous methods based on the self-owned resource distribution of agents. Relocation of nodes in network according to their social context is possible and Ms. Dalvi Yogita Ashokrao, IJECS Volume2 Issue6 June, 2013 Page No Page 1918
6 hence it reduces the resource migration cost within the social context. Virtual server can be used as a unit of load migration which can transfer active jobs from one node to other as per requirement. REFERENCES [1] Contextual Resource Negotiation based Task Allocation and Load balancing in complex software systems Yichuan Jiang and Jiuchuan Jiang, Senior Member, IEEE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MARCH 2009 [2] Efficient Lookup on Unstructured Topologies Ruggero Morselli, Bobby Bhattacharjee, Michael A. Marsh, and Aravind Srinivasan IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 1, JANUARY 2007 [3] Efficient Proximity Aware Load Balancing For DHT-Based P2p Systems Yingwa Zhu and Yiming Hu,. Senior Member IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005 Ms. Dalvi Yogita Ashokrao, IJECS Volume2 Issue6 June, 2013 Page No Page 1919
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 Load Balancing Heterogeneous Request in DHT-based P2P Systems Mrs. Yogita A. Dalvi Dr. R. Shankar Mr. Atesh
Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing
Research Inventy: International Journal Of Engineering And Science Vol.2, Issue 10 (April 2013), Pp 53-57 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com Fair Scheduling Algorithm with Dynamic
CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT
81 CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 5.1 INTRODUCTION Distributed Web servers on the Internet require high scalability and availability to provide efficient services to
Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.
Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Load Measurement
Comparison on Different Load Balancing Algorithms of Peer to Peer Networks
Comparison on Different Load Balancing Algorithms of Peer to Peer Networks K.N.Sirisha *, S.Bhagya Rekha M.Tech,Software Engineering Noble college of Engineering & Technology for Women Web Technologies
Load Balancing in Distributed Data Base and Distributed Computing System
Load Balancing in Distributed Data Base and Distributed Computing System Lovely Arya Research Scholar Dravidian University KUPPAM, ANDHRA PRADESH Abstract With a distributed system, data can be located
Distributed Dynamic Load Balancing for Iterative-Stencil Applications
Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,
A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters
A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters Abhijit A. Rajguru, S.S. Apte Abstract - A distributed system can be viewed as a collection
International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.
RESEARCH ARTICLE ISSN: 2321-7758 GLOBAL LOAD DISTRIBUTION USING SKIP GRAPH, BATON AND CHORD J.K.JEEVITHA, B.KARTHIKA* Information Technology,PSNA College of Engineering & Technology, Dindigul, India Article
AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING
AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING Gurpreet Singh M.Phil Research Scholar, Computer Science Dept. Punjabi University, Patiala [email protected] Abstract: Cloud Computing
Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at
Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at distributing load b. QUESTION: What is the context? i. How
LOAD BALANCING WITH PARTIAL KNOWLEDGE OF SYSTEM
LOAD BALANCING WITH PARTIAL KNOWLEDGE OF SYSTEM IN PEER TO PEER NETWORKS R. Vijayalakshmi and S. Muthu Kumarasamy Dept. of Computer Science & Engineering, S.A. Engineering College Anna University, Chennai,
Load Balancing for Improved Quality of Service in the Cloud
Load Balancing for Improved Quality of Service in the Cloud AMAL ZAOUCH Mathématique informatique et traitement de l information Faculté des Sciences Ben M SIK CASABLANCA, MORROCO FAOUZIA BENABBOU Mathématique
Group Based Load Balancing Algorithm in Cloud Computing Virtualization
Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information
Sla Aware Load Balancing Algorithm Using Join-Idle Queue for Virtual Machines in Cloud Computing
Sla Aware Load Balancing Using Join-Idle Queue for Virtual Machines in Cloud Computing Mehak Choudhary M.Tech Student [CSE], Dept. of CSE, SKIET, Kurukshetra University, Haryana, India ABSTRACT: Cloud
International Journal of Computer & Organization Trends Volume21 Number1 June 2015 A Study on Load Balancing in Cloud Computing
A Study on Load Balancing in Cloud Computing * Parveen Kumar * Er.Mandeep Kaur Guru kashi University,Talwandi Sabo Guru kashi University,Talwandi Sabo Abstract: Load Balancing is a computer networking
D1.1 Service Discovery system: Load balancing mechanisms
D1.1 Service Discovery system: Load balancing mechanisms VERSION 1.0 DATE 2011 EDITORIAL MANAGER Eddy Caron AUTHORS STAFF Eddy Caron, Cédric Tedeschi Copyright ANR SPADES. 08-ANR-SEGI-025. Contents Introduction
Various Schemes of Load Balancing in Distributed Systems- A Review
741 Various Schemes of Load Balancing in Distributed Systems- A Review Monika Kushwaha Pranveer Singh Institute of Technology Kanpur, U.P. (208020) U.P.T.U., Lucknow Saurabh Gupta Pranveer Singh Institute
A Survey on Load Balancing and Scheduling in Cloud Computing
IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 7 December 2014 ISSN (online): 2349-6010 A Survey on Load Balancing and Scheduling in Cloud Computing Niraj Patel
International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015
RESEARCH ARTICLE OPEN ACCESS Ensuring Reliability and High Availability in Cloud by Employing a Fault Tolerance Enabled Load Balancing Algorithm G.Gayathri [1], N.Prabakaran [2] Department of Computer
How To Balance In Cloud Computing
A Review on Load Balancing Algorithms in Cloud Hareesh M J Dept. of CSE, RSET, Kochi hareeshmjoseph@ gmail.com John P Martin Dept. of CSE, RSET, Kochi [email protected] Yedhu Sastri Dept. of IT, RSET,
A Scheme for Implementing Load Balancing of Web Server
Journal of Information & Computational Science 7: 3 (2010) 759 765 Available at http://www.joics.com A Scheme for Implementing Load Balancing of Web Server Jianwu Wu School of Politics and Law and Public
Kappa: A system for Linux P2P Load Balancing and Transparent Process Migration
Kappa: A system for Linux P2P Load Balancing and Transparent Process Migration Gaurav Mogre [email protected] Avinash Hanumanthappa [email protected] Alwyn Roshan Pais [email protected] Abstract
Back-End Forwarding Scheme in Server Load Balancing using Client Virtualization
Back-End Forwarding Scheme in Server Load Balancing using Client Virtualization Shreyansh Kumar School of Computing Science and Engineering VIT University Chennai Campus Parvathi.R, Ph.D Associate Professor-
A Content-Based Load Balancing Algorithm for Metadata Servers in Cluster File Systems*
A Content-Based Load Balancing Algorithm for Metadata Servers in Cluster File Systems* Junho Jang, Saeyoung Han, Sungyong Park, and Jihoon Yang Department of Computer Science and Interdisciplinary Program
CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING
Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING R.Kohila
On the Placement of Management and Control Functionality in Software Defined Networks
On the Placement of Management and Control Functionality in Software Defined Networks D.Tuncer et al. Department of Electronic & Electrical Engineering University College London, UK ManSDN/NfV 13 November
The Improved Job Scheduling Algorithm of Hadoop Platform
The Improved Job Scheduling Algorithm of Hadoop Platform Yingjie Guo a, Linzhi Wu b, Wei Yu c, Bin Wu d, Xiaotian Wang e a,b,c,d,e University of Chinese Academy of Sciences 100408, China b Email: [email protected]
IMPROVED LOAD BALANCING MODEL BASED ON PARTITIONING IN CLOUD COMPUTING
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IJCSMC, Vol. 3, Issue.
@IJMTER-2015, All rights Reserved 355
e-issn: 2349-9745 p-issn: 2393-8161 Scientific Journal Impact Factor (SJIF): 1.711 International Journal of Modern Trends in Engineering and Research www.ijmter.com A Model for load balancing for the Public
Performance Analysis of Load Balancing Algorithms in Distributed System
Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 1 (2014), pp. 59-66 Research India Publications http://www.ripublication.com/aeee.htm Performance Analysis of Load Balancing
CDBMS Physical Layer issue: Load Balancing
CDBMS Physical Layer issue: Load Balancing Shweta Mongia CSE, School of Engineering G D Goenka University, Sohna [email protected] Shipra Kataria CSE, School of Engineering G D Goenka University,
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network Chandrakant N Bangalore, India [email protected] Abstract Energy efficient load balancing in a Wireless Sensor
1. Comments on reviews a. Need to avoid just summarizing web page asks you for:
1. Comments on reviews a. Need to avoid just summarizing web page asks you for: i. A one or two sentence summary of the paper ii. A description of the problem they were trying to solve iii. A summary of
Method of Fault Detection in Cloud Computing Systems
, pp.205-212 http://dx.doi.org/10.14257/ijgdc.2014.7.3.21 Method of Fault Detection in Cloud Computing Systems Ying Jiang, Jie Huang, Jiaman Ding and Yingli Liu Yunnan Key Lab of Computer Technology Application,
Load Balancing in Structured Peer to Peer Systems
Load Balancing in Structured Peer to Peer Systems Dr.K.P.Kaliyamurthie 1, D.Parameswari 2 1.Professor and Head, Dept. of IT, Bharath University, Chennai-600 073. 2.Asst. Prof.(SG), Dept. of Computer Applications,
Efficient DNS based Load Balancing for Bursty Web Application Traffic
ISSN Volume 1, No.1, September October 2012 International Journal of Science the and Internet. Applied However, Information this trend leads Technology to sudden burst of Available Online at http://warse.org/pdfs/ijmcis01112012.pdf
Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing
Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004
Keywords Load balancing, Dispatcher, Distributed Cluster Server, Static Load balancing, Dynamic Load balancing.
Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Hybrid Algorithm
Analysis and Research of Cloud Computing System to Comparison of Several Cloud Computing Platforms
Volume 1, Issue 1 ISSN: 2320-5288 International Journal of Engineering Technology & Management Research Journal homepage: www.ijetmr.org Analysis and Research of Cloud Computing System to Comparison of
Varalakshmi.T #1, Arul Murugan.R #2 # Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam
A Survey on P2P File Sharing Systems Using Proximity-aware interest Clustering Varalakshmi.T #1, Arul Murugan.R #2 # Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam
Abstract. 1. Introduction
A REVIEW-LOAD BALANCING OF WEB SERVER SYSTEM USING SERVICE QUEUE LENGTH Brajendra Kumar, M.Tech (Scholor) LNCT,Bhopal 1; Dr. Vineet Richhariya, HOD(CSE)LNCT Bhopal 2 Abstract In this paper, we describe
An Energy Efficient Server Load Balancing Algorithm
An Energy Efficient Server Load Balancing Algorithm Rima M. Shah 1, Dr. Priti Srinivas Sajja 2 1 Assistant Professor in Master of Computer Application,ITM Universe,Vadodara, India 2 Professor at Post Graduate
A Review on Load Balancing In Cloud Computing 1
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12333-12339 A Review on Load Balancing In Cloud Computing 1 Peenaz Pathak, 2 Er.Kamna
PEER TO PEER FILE SHARING USING NETWORK CODING
PEER TO PEER FILE SHARING USING NETWORK CODING Ajay Choudhary 1, Nilesh Akhade 2, Aditya Narke 3, Ajit Deshmane 4 Department of Computer Engineering, University of Pune Imperial College of Engineering
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department
A SURVEY ON LOAD BALANCING ALGORITHMS FOR CLOUD COMPUTING
A SURVEY ON LOAD BALANCING ALGORITHMS FOR CLOUD COMPUTING Avtar Singh #1,Kamlesh Dutta #2, Himanshu Gupta #3 #1 Department of Computer Science and Engineering, Shoolini University, [email protected] #2
How To Compare Load Sharing And Job Scheduling In A Network Of Workstations
A COMPARISON OF LOAD SHARING AND JOB SCHEDULING IN A NETWORK OF WORKSTATIONS HELEN D. KARATZA Department of Informatics Aristotle University of Thessaloniki 546 Thessaloniki, GREECE Email: [email protected]
A PROXIMITY-AWARE INTEREST-CLUSTERED P2P FILE SHARING SYSTEM
A PROXIMITY-AWARE INTEREST-CLUSTERED P2P FILE SHARING SYSTEM Dr.S. DHANALAKSHMI 1, R. ANUPRIYA 2 1 Prof & Head, 2 Research Scholar Computer Science and Applications, Vivekanandha College of Arts and Sciences
The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com
THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Efficient Parallel Processing on Public Cloud Servers using Load Balancing Manjunath K. C. M.Tech IV Sem, Department of CSE, SEA College of Engineering
Resource Allocation Schemes for Gang Scheduling
Resource Allocation Schemes for Gang Scheduling B. B. Zhou School of Computing and Mathematics Deakin University Geelong, VIC 327, Australia D. Walsh R. P. Brent Department of Computer Science Australian
A Review on an Algorithm for Dynamic Load Balancing in Distributed Network with Multiple Supporting Nodes with Interrupt Service
A Review on an Algorithm for Dynamic Load Balancing in Distributed Network with Multiple Supporting Nodes with Interrupt Service Payal Malekar 1, Prof. Jagruti S. Wankhede 2 Student, Information Technology,
Load balancing in a heterogeneous computer system by self-organizing Kohonen network
Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.
Survey on Load Rebalancing for Distributed File System in Cloud
Survey on Load Rebalancing for Distributed File System in Cloud Prof. Pranalini S. Ketkar Ankita Bhimrao Patkure IT Department, DCOER, PG Scholar, Computer Department DCOER, Pune University Pune university
Efficient Load Balancing using VM Migration by QEMU-KVM
International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 49 ISSN 2047-3338 Efficient Load Balancing using VM Migration by QEMU-KVM Sharang Telkikar 1, Shreyas Talele
Scheduling using Optimization Decomposition in Wireless Network with Time Performance Analysis
Scheduling using Optimization Decomposition in Wireless Network with Time Performance Analysis Aparna.C 1, Kavitha.V.kakade 2 M.E Student, Department of Computer Science and Engineering, Sri Shakthi Institute
A Load Balancing Method in SiCo Hierarchical DHT-based P2P Network
1 Shuang Kai, 2 Qu Zheng *1, Shuang Kai Beijing University of Posts and Telecommunications, [email protected] 2, Qu Zheng Beijing University of Posts and Telecommunications, [email protected] Abstract
Energy Constrained Resource Scheduling for Cloud Environment
Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering
Load Balancing in Fault Tolerant Video Server
Load Balancing in Fault Tolerant Video Server # D. N. Sujatha*, Girish K*, Rashmi B*, Venugopal K. R*, L. M. Patnaik** *Department of Computer Science and Engineering University Visvesvaraya College of
Energetic Resource Allocation Framework Using Virtualization in Cloud
Energetic Resource Allocation Framework Using Virtualization in Ms.K.Guna *1, Ms.P.Saranya M.E *2 1 (II M.E(CSE)) Student Department of Computer Science and Engineering, 2 Assistant Professor Department
8 Conclusion and Future Work
8 Conclusion and Future Work This chapter concludes this thesis and provides an outlook on future work in the area of mobile ad hoc networks and peer-to-peer overlay networks 8.1 Conclusion Due to the
DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH
DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH P.Neelakantan Department of Computer Science & Engineering, SVCET, Chittoor [email protected] ABSTRACT The grid
5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. [email protected].
5 Performance Management for Web Services Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology [email protected] April 2008 Overview Service Management Performance Mgt QoS Mgt
IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND SCIENCE IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION N.Vijaya Sunder Sagar 1, M.Dileep Kumar 2, M.Nagesh 3, Lunavath Gandhi
International Journal Of Engineering Research & Management Technology
International Journal Of Engineering Research & Management Technology March- 2014 Volume-1, Issue-2 PRIORITY BASED ENHANCED HTV DYNAMIC LOAD BALANCING ALGORITHM IN CLOUD COMPUTING Srishti Agarwal, Research
Infrastructure for Load Balancing on Mosix Cluster
Infrastructure for Load Balancing on Mosix Cluster MadhuSudhan Reddy Tera and Sadanand Kota Computing and Information Science, Kansas State University Under the Guidance of Dr. Daniel Andresen. Abstract
Load Balancing in Structured Peer to Peer Systems
Load Balancing in Structured Peer to Peer Systems DR.K.P.KALIYAMURTHIE 1, D.PARAMESWARI 2 Professor and Head, Dept. of IT, Bharath University, Chennai-600 073 1 Asst. Prof. (SG), Dept. of Computer Applications,
Operating System Multilevel Load Balancing
Operating System Multilevel Load Balancing M. Corrêa, A. Zorzo Faculty of Informatics - PUCRS Porto Alegre, Brazil {mcorrea, zorzo}@inf.pucrs.br R. Scheer HP Brazil R&D Porto Alegre, Brazil [email protected]
A Novel Switch Mechanism for Load Balancing in Public Cloud
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) A Novel Switch Mechanism for Load Balancing in Public Cloud Kalathoti Rambabu 1, M. Chandra Sekhar 2 1 M. Tech (CSE), MVR College
Energy Efficient MapReduce
Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing
Figure 1. The cloud scales: Amazon EC2 growth [2].
- Chung-Cheng Li and Kuochen Wang Department of Computer Science National Chiao Tung University Hsinchu, Taiwan 300 [email protected], [email protected] Abstract One of the most important issues
Dynamic Load Balancing of Virtual Machines using QEMU-KVM
Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College
Index Terms : Load rebalance, distributed file systems, clouds, movement cost, load imbalance, chunk.
Load Rebalancing for Distributed File Systems in Clouds. Smita Salunkhe, S. S. Sannakki Department of Computer Science and Engineering KLS Gogte Institute of Technology, Belgaum, Karnataka, India Affiliated
SCHEDULING IN CLOUD COMPUTING
SCHEDULING IN CLOUD COMPUTING Lipsa Tripathy, Rasmi Ranjan Patra CSA,CPGS,OUAT,Bhubaneswar,Odisha Abstract Cloud computing is an emerging technology. It process huge amount of data so scheduling mechanism
Fault Tolerance in Hadoop for Work Migration
1 Fault Tolerance in Hadoop for Work Migration Shivaraman Janakiraman Indiana University Bloomington ABSTRACT Hadoop is a framework that runs applications on large clusters which are built on numerous
Ant-based Load Balancing Algorithm in Structured P2P Systems
Ant-based Load Balancing Algorithm in Structured P2P Systems Wei Mi, 2 Chunhong Zhang, 3 Xiaofeng Qiu Beijing University of Posts and Telecommunications, Beijing 876, China, {miwei985, zhangch.bupt., qiuxiaofeng}@gmail.com
MEASURING PERFORMANCE OF DYNAMIC LOAD BALANCING ALGORITHMS IN DISTRIBUTED COMPUTING APPLICATIONS
MEASURING PERFORMANCE OF DYNAMIC LOAD BALANCING ALGORITHMS IN DISTRIBUTED COMPUTING APPLICATIONS Priyesh Kanungo 1 Professor and Senior Systems Engineer (Computer Centre), School of Computer Science and
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering
A Novel Approach for Efficient Load Balancing in Cloud Computing Environment by Using Partitioning
A Novel Approach for Efficient Load Balancing in Cloud Computing Environment by Using Partitioning 1 P. Vijay Kumar, 2 R. Suresh 1 M.Tech 2 nd Year, Department of CSE, CREC Tirupati, AP, India 2 Professor
Comparison of PBRR Scheduling Algorithm with Round Robin and Heuristic Priority Scheduling Algorithm in Virtual Cloud Environment
www.ijcsi.org 99 Comparison of PBRR Scheduling Algorithm with Round Robin and Heuristic Priority Scheduling Algorithm in Cloud Environment Er. Navreet Singh 1 1 Asst. Professor, Computer Science Department
Towards a Load Balancing in a Three-level Cloud Computing Network
Towards a Load Balancing in a Three-level Cloud Computing Network Shu-Ching Wang, Kuo-Qin Yan * (Corresponding author), Wen-Pin Liao and Shun-Sheng Wang Chaoyang University of Technology Taiwan, R.O.C.
Load Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait
Locality-Aware Randomized Load Balancing Algorithms for DHT Networks
Locality-Aware ized Load Balancing Algorithms for DHT Networks Haiying Shen and Cheng-Zhong Xu Department of Electrical & Computer Engineering Wayne State University, Detroit, MI 4822 {shy,czxu}@ece.eng.wayne.edu
Load Balancing in Distributed Web Server Systems With Partial Document Replication
Load Balancing in Distributed Web Server Systems With Partial Document Replication Ling Zhuo, Cho-Li Wang and Francis C. M. Lau Department of Computer Science and Information Systems The University of
A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems
A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems RUPAM MUKHOPADHYAY, DIBYAJYOTI GHOSH AND NANDINI MUKHERJEE Department of Computer
Real Time Network Server Monitoring using Smartphone with Dynamic Load Balancing
www.ijcsi.org 227 Real Time Network Server Monitoring using Smartphone with Dynamic Load Balancing Dhuha Basheer Abdullah 1, Zeena Abdulgafar Thanoon 2, 1 Computer Science Department, Mosul University,
Load Balancing in Structured P2P Systems
1 Load Balancing in Structured P2P Systems Ananth Rao Karthik Lakshminarayanan Sonesh Surana Richard Karp Ion Stoica ananthar, karthik, sonesh, karp, istoica @cs.berkeley.edu Abstract Most P2P systems
TCP Servers: Offloading TCP Processing in Internet Servers. Design, Implementation, and Performance
TCP Servers: Offloading TCP Processing in Internet Servers. Design, Implementation, and Performance M. Rangarajan, A. Bohra, K. Banerjee, E.V. Carrera, R. Bianchini, L. Iftode, W. Zwaenepoel. Presented
