# HW10.nb 1. It is basically quadratic around zero and is very steep. One may guess that the harmonic oscillator is a pretty good approximation.

Save this PDF as:

Size: px
Start display at page:

Download "HW10.nb 1. It is basically quadratic around zero and is very steep. One may guess that the harmonic oscillator is a pretty good approximation."

## Transcription

1 HW0.nb HW #0. Varatonal Method Plot of the potental The potental n the problem s V = 50 He -x - L. V = 50 HE -x - L 50 H- + -x L 8x, -, <D Ü Graphcs Ü It s bascally quadratc around zero and s very steep. One may guess that the harmonc oscllator s a pretty good approxmaton. Intal guess 8x, 0, 3<D 50 x - 50 x If we try to dentfy the frst term wth the harmonc oscllator potental ÅÅÅÅ m w x, we fnd w = 0 because m =. Then one may hope that t would gve the ground-state energy ÅÅÅÅ w = 5. However, ths hope s not qute fulflled. Usng the groundstate wave functon of the harmonc oscllator, y = J ÅÅÅÅÅÅÅÅÅ m w ê4 p N E -m w x êh L - m x w ÅÅÅÅÅÅÅÅÅÅÅÅÅ H ÅÅÅÅÅÅ m w ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Lê4 p ê4 ÅÅÅÅÅ

2 HW0.nb y = y ê. 8m Ø, w Ø 0, Ø < -5 x J ÅÅÅÅÅÅÅ 0 Nê4 p K = ÅÅÅÅÅÅÅÅÅ - 8x, <D, 8x, -, <D ê. 8 Ø, m Ø < m 5 ÅÅÅÅ P = V, 8x, -, <D Unque::usym : 5ê s not a symbol or a vald symbol name. The error s 50 H - ê40 + ê0 L Ebar = K + P 5 ÅÅÅÅ + 50 H - ê40 + ê0 L % - 39 ê 8 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ 39 ê and s bgger than 5%, but s pretty good, accurate wthn 7.%. Therefore, we are motvated to try a Gaussan as a tral functon. Gaussan tral functon y = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ p ê4 D ê E-x êh D L - ÅÅÅÅÅÅÅÅÅ x D ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ pê4 è!!! D K = ÅÅÅÅÅÅÅÅÅ - 8x, <D, 8x, -, <, Assumptons Ø D > 0D ê. 8 Ø, m Ø < m Unque::usym : 5ê s not a symbol or a vald symbol name. ÅÅÅÅÅÅÅÅÅ 4 D P = V, 8x, -, <, Assumptons Ø D > 0D Unque::usym : êh4*d^l s not a symbol or a vald symbol name. 50 J - D ÅÅÅÅÅÅ 4 + D N

3 HW0.nb 3 Ebar = K + P ÅÅÅÅÅÅ 50 J - D 4 + D N + ÅÅÅÅÅÅÅÅÅ 4 D 8D, 0 -ê <D , 8D Ø << - 39 ê 8 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 39 ê It has mproved, but not yet wthn 5%. Lnear tmes Gaussan One way to mprove t further s the followng. Note that the potental s not party symmetrc, and hence the groundstate wavefuncton s not expected to be an even functon. Because the potental s lower on the rght, we expect the wave functon s skewed towards the rght. Therefore, we can try y = H + k xl E -x êh D L - ÅÅÅÅÅÅÅÅÅÅ x D H + k xl It s not normalzed at ths pont, and we calculate ts norm norm = 8x, -, <, Assumptons Ø D > 0D Unque::usym : êh4*d^l s not a symbol or a vald symbol name. è!!! ÅÅÅÅ p D H + k D L K = ÅÅÅÅÅÅÅÅÅ - 8x, <D, 8x, -, <, Assumptons Ø D > 0D ê. 8m Ø, Ø < m Unque::usym : êh4*d^l s not a symbol or a vald symbol name. è!!! p H + 3 k D L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ 8 D P = V, 8x, -, <, Assumptons Ø D > 0D Unque::usym : á30à s not a symbol or a vald symbol name. 5 è!!! p D ÅÅÅÅÅÅÅ J - 4 D 4 + D ÅÅÅÅÅÅÅ + 4 D 4 k D - 4 D k D + k D ÅÅÅÅÅÅ - D 4 k D + D k D ÅÅÅÅÅÅ - D 4 k D 4 + D k D 4 N

4 HW0.nb 4 Ebar = K + P ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ norm j è!!! p H + 3 k j D L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ + 5 è!!! ÅÅÅÅÅÅÅ p D J - 4 D 4 + k k 8 D D ÅÅÅÅÅÅÅ + 4 D 4 k D - 4 D k D + k D ÅÅÅÅÅÅÅ - D 4 k D + D k D ÅÅÅÅÅÅ - D 4 k D 4 + D k D 4 N y z y z ì H è!!! p D H + k D LL soluton = 8D, 0 -ê <, 8k, 0<D , 8D Ø , k Ø << - 39 ê 8 ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ 39 ê Ths s correct at the % level! The wave functon s therefore y ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ è!!!!!!!!!!!!! ÅÅÅÅÅ norm ê. x H xl y PlotA ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅ è!!!!!!!!!!!! norm ê. 8x, -, <E Ü Graphcs Ü As expected, t s more or less a Gaussan, but skewed to the rght. Obvously, there are many ways to mprove Gaussan. I hope you found one successfully. The analytc soluton Ths problem s actually a specal case of the Morse potental V = D HE -a u - L D H- + -a u L

5 HW0.nb 5 Ths potental s a form of the nter-atomc potental n datomc molecules proposed by P.M. Morse, Phys. Rev. 34, 57 (99). The varable u s the dstance between two atoms mnus ts equlbrum dstance u = r - r 0. The Schrödnger equaton can be solved analytcally. Expandng t around the mnmum, 8u, 0, 4<D a D u - a 3 D u ÅÅÅÅÅÅÅ a4 D u Harmonc oscllator approxmaton gves w = "########### a D ÅÅÅÅÅÅÅÅÅÅÅÅÅ. The correct energy egenvalues are known to be m E n = whn + ÅÅÅÅ L - a ÅÅÅÅÅÅÅÅÅÅÅÅ m Hn + ÅÅÅÅ L, where the second term s called the anharmoncanharmonc correcton. For large n, the second term wll domnate and the energy appears to become negatve. Clearly, the bound state spectrum does not go forever, and ends at a certan value of n, qute dfferent from the harmonc oscllator. But ths s expcted because the potental energy asymptotes to D for u Ø + and hence states for E > D must be unbound and hence have a contnuous spectrum. The ground-state wave functon s known to have the form -d E-a u -b a uê y = E E -d -a u - ÅÅÅÅÅÅÅÅÅÅÅ a b u where b = d -, d = è!!!!!!!!!!!! D m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ. Let us see that t satsfes the Schrödnger equaton. a I- ÅÅÅÅÅÅ m SmplfyA 8u, <D + D HE-a u - L ym ÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ y è!!! a H-4 è!!!!!!! D m + a L - ÅÅÅÅÅÅÅ ÅÅÅÅÅÅ 8 m ê. 8b Ø d - < ê. 9d -> è!!!!!!!!!! D m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ =E a The frst term s ÅÅÅÅ w = a "######## ÅÅÅÅÅÅÅ D m and the zero-pont energy wth the harmonc oscllator approxmaton. The second term - a ÅÅÅÅÅÅÅÅÅÅÅÅ s the anharmonc correcton. 8 m The normalzaton s norm = 8u, -, <, Assumptons Ø a > 0 && d > 0D Unque::usym : êh4*d^l s not a symbol or a vald symbol name. -b d -b ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ a Actually, ths wave functon could have been guessed f one pays a careful attenton to the asymptotc behavors. For u Ø, the potental asymptotes to a constant D, and hence the wave functon must damp exponentally e -k u wth k = è!!!!!!!!!!!!!!! m» E» ë. For u Ø -, the potental rses extremely steeply as D e - a u. It suggests that the energy egenvalue becomes quckly rrelevant, and the behavor of the wave functon must be gven purely by the rsng behavor of the potental. By droppng the energy egenvalue and lookng at the Schrödnger equaton, - ÅÅÅÅÅÅÅÅ d y ÅÅÅÅÅÅÅÅÅÅ + D e - a u y = 0, m d u and change the varable to y = e -a u, we fnd - ÅÅÅÅÅÅÅÅ m I d y ÅÅÅÅÅÅÅÅÅÅ + ÅÅÅÅ ÅÅÅÅÅÅÅ d y d y y d y M + D y = 0. The second term n the parentheses s neglble for y Ø. Therefore the wave functon has the behavor y e -è!!!!!!!!!!! m D yê a. Combnng the behavor on both ends, the wave functon has precsely the exact form gven above. Ths s the lesson: the one-dmensonal potental problem s so smple that there are many ways to study the behavor of the wave functon. On the other hand, the real-world problem nvolves many more degrees of freedom. In many cases, the Hamltonan tself must be guessed.

6 HW0.nb 6 Back to the Morse potental. The case of the homework problem corresponds to D = 50, a =, m =, =. Therefore the groundstate energy s E 0 = ÅÅÅÅ a "######## ÅÅÅÅÅÅÅ D m - a ÅÅÅÅÅÅÅÅÅÅÅÅ 8 m = 5 - ÅÅÅÅ 8 = ÅÅÅÅÅÅ SmplfyA y ê. 8b Ø d - < ê. 9d Ø è!!!!!!!!!!!! norm u - ÅÅÅÅÅÅÅÅÅ 9 u ÅÅÅÅÅÅÅÅÅ 567 è!!!!!!!!!! 43 9 u ÅÅÅÅÅÅÅÅÅ è!!!!!!!!!! D m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ a PlotA u - ÅÅÅÅÅÅÅÅÅ 567 è!!!!!!!!!!, 8u, -, <, PlotPonts Ø 50E 43 = ê. 8D Ø 50, a Ø, m Ø, Ø <E Ü Graphcs Ü The varatonal lnear tmes Gaussan wave functon was ` x PlotA ` H ` xl, 8x, -, <, PlotPonts Ø 50E Ü Graphcs Ü

7 HW0.nb 7 %%D Ü Graphcs Ü Qute close.. Neutrno Oscllaton (a) The untarty matrx s 88, 0, 0<, 80, 3 D, 3 D<, 80, 3 D, 3 D<< êê MatrxForm 0 0 y 0 3 D 3 D j z k 0 3 D 3 D 3 D, 0, 3 D E -I d <, 80,, 0<, 3 D E I d, 0, 3 D<< êê MatrxForm 3 D 0 -Â d 3 D y 0 0 j z k - Â d 3 D 0 3 D D, D, 0<, D, D, 0<, 80, 0, << êê MatrxForm D D 0 y D D 0 j z k 0 0 U = 88, 0, 0<, 80, 3 D, 3 D<, 80, 3 D, 3 D<<. 3 D, 0, 3 D E -I d <, 80,, 0<, 3 D E I d, 0, 3 D<<. D, D, 0<, D, D, 0<, 80, 0, << D 3 D, 3 D D, -Â d 3 D<, 3 D D - Â d D 3 D 3 D, D 3 D - Â d D 3 D 3 D, 3 D 3 D<, 8- Â d D 3 D 3 D + D 3 D, - Â d 3 D D 3 D - D 3 D, 3 D 3 D<<

8 HW0.nb 8 Udagger = ê. 8d Ø -d<d D 3 D, 3 D D - -Â d D 3 D 3 D, - -Â d D 3 D 3 D + D 3 D<, 3 D D, D 3 D - -Â d D 3 D 3 D, - -Â d 3 D D 3 D - D 3 D<, 8 Â d 3 D, 3 D 3 D, 3 D 3 D<< 88, 0, 0<, 80,, 0<, 80, 0, << For the two-by-two case, the untarty matrx s U3 = U ê. 8q Ø 0, q 3 Ø 0< 88, 0, 0<, 80, 3 D, 3 D<, 80, 3 D, 3 D<< % êê MatrxForm 0 0 y 0 3 D 3 D j z k 0 3 D 3 D The man pont n the calculaton s that the Hamltonan can be wrtten as H = UIc p + m c ÅÅÅÅÅÅÅÅÅÅ 3 Å p M U, and hence the tme evoluton operator s e - H tê = U e -Hc p+m c 3 ê pl tê U e - m c 3 tê p 0 0 = e - c p tê U 0 e - m c 3 tê p 0 U j k 0 0 e - m 3 c 3 tê p z The ampltude of our nterest s y A = E -I c p tê I80,, 0<.U3.DagonalMatrxA9E -I m c 3 têh p L, E -I m c 3 têh p L, E -I m 3 c 3 têh p L =E. - Â c p t ÅÅÅÅÅÅÅÅÅÅÅÅÅ 8<, j - Â c 3 ÅÅÅÅ p 3 D + - Â c3 3 p 3 D y z k Astar = A ê. 8t Ø -t< ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Â c p t j Â c3 k p 3 D + Â c3 3 p 3 D y z Psurv = AstarDDD 3 D 4 + CosA c3 t Hm - m 3 L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E p 3 D 3 D + 3 D 4

9 HW0.nb 9 Ths can be rewrtten as P surv = cos 4 q 3 + cos q 3 sn q 3 coshm - m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅ p + sn4 q 3 = Hcos q 3 + sn q 3 L - cos q 3 sn q 3 + cos q 3 sn q 3 coshm - m 3 L c 3 = - cos q 3 sn q 3 I - coshm - m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅÅ p M = - 4 cos q 3 sn q 3 sn Hm - m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅÅ 4 p = - sn q 3 sn Hm -m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 4 p. Ths s nothng but Eq. (5) n the problem. (b) t ÅÅÅÅÅÅÅÅÅÅÅ p For p = GeV, m 3 - m =.5ä0-3 ev ê c, and usng = 6.58 ä0 - MeV sec = 6.58 ä0-6 ev sec and c = 3.00 ä0 0 cm sec -, the argument of sn.5ä0 s -3 ev êc c 3 t ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅ 950 t = ÅÅÅÅÅÅÅÅÅÅÅÅÅ 950 c t = 37 L L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = 3.7 c ev ev sec sec c sec 0 0 ä0-3 ÅÅÅÅÅÅÅ cm km. Takng q 3 = ÅÅÅÅÅÅÅÅ è!!!! and hence sn q 3 =, we fnd P surv = - sn H3.7 ä0-3 ÅÅÅÅÅÅÅ L km L = cos H3.7 ä0-3 ÅÅÅÅÅÅÅ L km L. 0-3 LD, 8L, 0, 0000<E Ü Graphcs Ü The oscllaton occurs on the dstances of thousands of klometers. Ths s what had been observed by the SuperKamokande experment, Phys. Rev. 93, 080 (004), even though the data shows nearly washed-out oscllaton due to the so-so resoluton n energy and dstance. A very macroscopc quantum phenomenon. (c) For the three-state case, we keep all angles, and we calculate the oscllaton probablty from n m to n e,

10 HW0.nb 0 Amue = E -I c p tê I8, 0, 0<.U.DagonalMatrxA9E -I m c 3 têh p L, E -I m c 3 têh p L, E -I m 3 c 3 têh p L =E.Udagger. - Â c p t ÅÅÅÅÅÅÅÅÅÅÅÅÅ 880<, 8<, j -Â d- Â c3 3 ÅÅÅ p 3 D 3 D 3 D + k - Â c3 p D 3 D 3 D D - -Â d D 3 D 3 DL + - Â c3 p 3 D D D 3 D - -Â d D 3 D 3 DL y z Amuestar = % ê. 8t Ø -t, d Ø -d< ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Â c p t j Â d+ Â c3 3 k Â c3 p 3 D 3 D 3 D + p D 3 D 3 D D - Â d D 3 D 3 DL + Â c3 p 3 D D D 3 D - Â d D 3 D 3 DL y z and from n e to n m, Pmue = AmuestarDD D 3 D 3 D D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D 3 D D - CosAd - c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p + c3 p E D 3 D 3 D D 3 D 3 D + CosAd - c3 p + c3 p E D 3 D 3 D D 3 D 3 D + D 3 3 D 3 D D 3 D 3 D - CosAd + c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 3 D 3 D D 3 D 3 D - D 3 D 3 D D 3 3 D 3 D + CosAd - c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p + c3 p E D 3 D 3 D D 3 3 D 3 D + 3 D 3 D 3 D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D 3 D 3 D + D 4 3 D 3 D 3 D - CosA c3 p E 3 D D 3 D 3 D + CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D D 3 D 3 D + 3 D D 4 3 D 3 D

11 HW0.nb Aemu = E -I c p tê I80,, 0<.U.DagonalMatrxA9E -I m c 3 têh p L, E -I m c 3 têh p L, E -I m 3 c 3 têh p L =E.Udagger. - Â c p t ÅÅÅÅÅÅÅÅÅÅÅÅÅ 88<, 80<, j Â d- Â c3 3 ÅÅÅ p 3 D 3 D 3 D + k - Â c3 p D 3 D 3 D D - Â d D 3 D 3 DL + - Â c3 p 3 D D D 3 D - Â d D 3 D 3 DL y z Aemustar = % ê. 8t Ø -t, d Ø -d< ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Â c p t j -Â d+ Â c3 3 k Â c3 p 3 D 3 D 3 D + p D 3 D 3 D D - -Â d D 3 D 3 DL + Â c3 p 3 D D D 3 D - -Â d D 3 D 3 DL y z Pemu = AemustarDD D 3 D 3 D D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D 3 D D - CosAd + c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D 3 D D 3 D 3 D + CosAd + c3 p E D 3 D 3 D D 3 D 3 D + D 3 3 D 3 D D 3 D 3 D - CosAd - c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p + c3 p E D 3 3 D 3 D D 3 D 3 D - D 3 D 3 D D 3 3 D 3 D + CosAd + c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D 3 D D 3 3 D 3 D + 3 D 3 D 3 D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D 3 D 3 D + D 4 3 D 3 D 3 D - CosA c3 p E 3 D D 3 D 3 D + CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E D 3 D D 3 D 3 D + 3 D D 4 3 D 3 D - PemuD 4 3 D SnA c3 t Hm - m L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E 4 p SnA c3 t Hm - m 3 L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E SnA c3 t Hm - m 3 L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E q 4 p 4 p D 3 D q 3 D Indeed, when d 0, two probabltes are dfferent.

12 HW0.nb (d) As we dd n the class, the tme-reserval nvarance states that Xa» e - H tê» b\ = Xb è» e - H tê» a è \, and hecepha Ø bl = PHb è Ø a è L. Here, a è s the tme-reversed state of a, and b è s the tme-reversed state of b. In our case, the tme-reversed state has the opposte momentum. (If you worry about the helcty, both the momentum and the spn flp, and remans the same, namely left-handed.) However, the Hamltonan depends only on the magntude of the momentum and hence the oscllaton probabltes also depend only on the magntude of the momentum. Therefore PHb è Ø a è L = PHb Ø al. Choosng n e and n m of the same momenta to be the ntal and fnal states, we fnd that the tme reversal nvarance would predct PHn m Ø n e L = PHn e Ø n m L. The fact that the tme-reversal volaton requres d 0makes sense because the tme-reversal opeator nvolves the complex conjugaton, and d s the only complex parameter n the Hamltonan.

### State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

### Simple Interest Loans (Section 5.1) :

Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

### Chapter 2 Polynomial and Rational Functions

Chapter 2 Polnomial and Rational Functions Course Number Section 2.1 Quadratic Functions and Models Instructor In this lesson ou learned how to sketch and analze graphs of functions. Date Define each term

### QUANTUM MECHANICS, BRAS AND KETS

PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

### Recurrence. 1 Definitions and main statements

Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

### Experiment 8 Two Types of Pendulum

Experment 8 Two Types of Pendulum Preparaton For ths week's quz revew past experments and read about pendulums and harmonc moton Prncples Any object that swngs back and forth can be consdered a pendulum

### PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

### 8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

### Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

### The eigenvalue derivatives of linear damped systems

Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by Yeong-Jeu Sun Department of Electrcal Engneerng I-Shou Unversty Kaohsung, Tawan 840, R.O.C e-mal: yjsun@su.edu.tw

### Gibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments)

Gbbs Free Energy and Chemcal Equlbrum (or how to predct chemcal reactons wthout dong experments) OCN 623 Chemcal Oceanography Readng: Frst half of Chapter 3, Snoeynk and Jenkns (1980) Introducton We want

### VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

VLI Technology Dr. Nandta Dasgupta Department of Electrcal Engneerng Indan Insttute of Technology, Madras Lecture - 11 Oxdaton I netcs of Oxdaton o, the unt process step that we are gong to dscuss today

### Formula of Total Probability, Bayes Rule, and Applications

1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.

### benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

### INTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations

WEIGHTED RESIDUA METHOD INTRODUCTION Drect stffness method s lmted for smple D problems PMPE s lmted to potental problems FEM can be appled to many engneerng problems that are governed by a dfferental

### Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

### Solutions to First Midterm

rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.

### A. Te densty matrx and densty operator In general, te many-body wave functon (q 1 ; :::; q 3N ; t) s far too large to calculate for a macroscopc syste

G25.2651: Statstcal Mecancs Notes for Lecture 13 I. PRINCIPLES OF QUANTUM STATISTICAL MECHANICS Te problem of quantum statstcal mecancs s te quantum mecancal treatment of an N-partcle system. Suppose te

### 5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)

5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let Â satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB Â η = a η (13.29) ˆB [ Â η ] = ˆB [a η ] = a

### Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

### Implementation of Deutsch's Algorithm Using Mathcad

Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"

### Section 5.3 Annuities, Future Value, and Sinking Funds

Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

### Hedging Interest-Rate Risk with Duration

FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton

### Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

### Support Vector Machines

Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

### 1 Approximation Algorithms

CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

### Nuno Vasconcelos UCSD

Bayesan parameter estmaton Nuno Vasconcelos UCSD 1 Maxmum lkelhood parameter estmaton n three steps: 1 choose a parametrc model for probabltes to make ths clear we denote the vector of parameters by Θ

### BERNSTEIN POLYNOMIALS

On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

### THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

### Chapter 31B - Transient Currents and Inductance

Chapter 31B - Transent Currents and Inductance A PowerPont Presentaton by Paul E. Tppens, Professor of Physcs Southern Polytechnc State Unversty 007 Objectves: After completng ths module, you should be

### The Mathematical Derivation of Least Squares

Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

### Section 2 Introduction to Statistical Mechanics

Secton 2 Introducton to Statstcal Mechancs 2.1 Introducng entropy 2.1.1 Boltzmann s formula A very mportant thermodynamc concept s that of entropy S. Entropy s a functon of state, lke the nternal energy.

### LETTER IMAGE RECOGNITION

LETTER IMAGE RECOGNITION 1. Introducton. 1. Introducton. Objectve: desgn classfers for letter mage recognton. consder accuracy and tme n takng the decson. 20,000 samples: Startng set: mages based on 20

### Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

### Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

### THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

### + + + - - This circuit than can be reduced to a planar circuit

MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

### Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

### Semiclassical Statistical Mechanics

Semclasscal Statstcal Mechancs from Statstcal Physcs usng Mathematca James J. Kelly, 996-2002 A classcal ensemble s represented by a dstrbuton of ponts n phase space. Two mportant theorems, equpartton

### The material in this lecture covers the following in Atkins. 11.5 The informtion of a wavefunction (d) superpositions and expectation values

Lecture 7: Expectaton Values The materal n ths lecture covers the followng n Atkns. 11.5 The nformton of a wavefuncton (d) superpostons and expectaton values Lecture on-lne Expectaton Values (PDF) Expectaton

### INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS

21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS

### Lecture 2: Absorbing states in Markov chains. Mean time to absorption. Wright-Fisher Model. Moran Model.

Lecture 2: Absorbng states n Markov chans. Mean tme to absorpton. Wrght-Fsher Model. Moran Model. Antonna Mtrofanova, NYU, department of Computer Scence December 8, 2007 Hgher Order Transton Probabltes

### Chapter 12 Inductors and AC Circuits

hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for

### Communication Networks II Contents

8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

### v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

### 1. Math 210 Finite Mathematics

1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

### Mean Molecular Weight

Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of

### Online Learning from Experts: Minimax Regret

E0 370 tatstcal Learnng Theory Lecture 2 Nov 24, 20) Onlne Learnng from Experts: Mn Regret Lecturer: hvan garwal crbe: Nkhl Vdhan Introducton In the last three lectures we have been dscussng the onlne

### Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

### Regression Models for a Binary Response Using EXCEL and JMP

SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal

### NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

### Chapter 9. Linear Momentum and Collisions

Chapter 9 Lnear Momentum and Collsons CHAPTER OUTLINE 9.1 Lnear Momentum and Its Conservaton 9.2 Impulse and Momentum 9.3 Collsons n One Dmenson 9.4 Two-Dmensonal Collsons 9.5 The Center of Mass 9.6 Moton

### where the coordinates are related to those in the old frame as follows.

Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

### Calculation of Sampling Weights

Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

### IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

### Guide August World Writer. Release A8.1. Item # A81CEAWW

Guide August 1997 World Writer Release A8.1 Item # A81CEAWW Where Do I Look? Online Help Program Form Field CD ROM Guides Guides Technical Foundation System Administration and Environment Fundamentals

### ErrorPropagation.nb 1. Error Propagation

ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then

### 1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes

### An Alternative Way to Measure Private Equity Performance

An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

### EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly

### Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-014 Copyrght R. H. Taylor Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and

### Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

### How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

### 5.74 Introductory Quantum Mechanics II

MIT OpenCourseWare http://ocw.mt.edu 5.74 Introductory Quantum Mechancs II Sprng 9 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 4-1 4.1. INTERACTION OF LIGHT

### PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

### Introduction to Statistical Physics (2SP)

Introducton to Statstcal Physcs (2SP) Rchard Sear March 5, 20 Contents What s the entropy (aka the uncertanty)? 2. One macroscopc state s the result of many many mcroscopc states.......... 2.2 States wth

### ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,

### The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

### FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

### Finite Math Chapter 10: Study Guide and Solution to Problems

Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

### 1 De nitions and Censoring

De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence

### Multicomponent Distillation

Multcomponent Dstllaton need more than one dstllaton tower, for n components, n-1 fractonators are requred Specfcaton Lmtatons The followng are establshed at the begnnng 1. Temperature, pressure, composton,

### EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

### Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

### 7.5. Present Value of an Annuity. Investigate

7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

### Introduction: Analysis of Electronic Circuits

/30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,

### Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

### Introduction to Regression

Introducton to Regresson Regresson a means of predctng a dependent varable based one or more ndependent varables. -Ths s done by fttng a lne or surface to the data ponts that mnmzes the total error. -

### 6. EIGENVALUES AND EIGENVECTORS 3 = 3 2

EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a non-zero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :

### Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier

Lesson 2 Chapter Two Three Phase Uncontrolled Rectfer. Operatng prncple of three phase half wave uncontrolled rectfer The half wave uncontrolled converter s the smplest of all three phase rectfer topologes.

### 8 Algorithm for Binary Searching in Trees

8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the

### Calculating the high frequency transmission line parameters of power cables

< ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

### The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets

. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely

### Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set

### The OC Curve of Attribute Acceptance Plans

The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

### Questions that we may have about the variables

Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent

### Least Squares Fitting of Data

Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

### Rotation Kinematics, Moment of Inertia, and Torque

Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

### HÜCKEL MOLECULAR ORBITAL THEORY

1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

### Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks

Bulletn of Mathematcal Bology (21 DOI 1.17/s11538-1-9517-4 ORIGINAL ARTICLE Product-Form Statonary Dstrbutons for Defcency Zero Chemcal Reacton Networks Davd F. Anderson, Gheorghe Cracun, Thomas G. Kurtz

### V-1 V. Electronic Spectroscopy. Eigen value: lowest U el is the ground state by electronic dipole selection rule;

V-1 V. Electronc Spectroscopy What we have done so far s use B O approxmaton to elmnate φ el (q,q) For example dd datomc, put asde φ el and focused on vbratonal & rotatonal soluton Now must consder electronc

### What is Candidate Sampling

What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

### CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

### A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II

A frequenc decomposton tme doman model of broadband frequenc-dependent absorpton: Model II W. Chen Smula Research Laborator, P. O. Box. 134, 135 Lsaker, Norwa (1 Aprl ) (Proect collaborators: A. Bounam,

### ESCI 341 Atmospheric Thermodynamics Lesson 9 Entropy

ESCI 341 Atmosherc hermodynamcs Lesson 9 Entroy References: An Introducton to Atmosherc hermodynamcs, sons Physcal Chemstry (4 th edton), Levne hermodynamcs and an Introducton to hermostatstcs, Callen

### Chapter 4 Financial Markets

Chapter 4 Fnancal Markets ECON2123 (Sprng 2012) 14 & 15.3.2012 (Tutoral 5) The demand for money Assumptons: There are only two assets n the fnancal market: money and bonds Prce s fxed and s gven, that

### A Note on the Decomposition of a Random Sample Size

A Note on the Decomposton of a Random Sample Sze Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract Ths note addresses some results of Hess 2000) on the decomposton