The Infrastructure for Information Management: A Brave New World for the CIO WHITE PAPER

Size: px
Start display at page:

Download "The Infrastructure for Information Management: A Brave New World for the CIO WHITE PAPER"

Transcription

1 The Infrastructure for Information Management: A Brave New World for the CIO WHITE PAPER

2 SAS White Paper Table of Contents Trends and Drivers for Information Infrastructure Objectives for Organizational Information Management: The New Dial Tone Emerging Drivers for Common Enterprise Information Analytics Industry Interests Also Drive Enterprise Information Management.. 4 Financial Services... 5 Health Care and Life Sciences Government Telecommunications... 6 Energy and Utilities... 7 Implications for Information Management Data Integration Data Virtualization... 8 Event Stream Processing Metadata Management Data Quality Management Data Governance Summary Content for this paper was provided by David Loshin, President of Knowledge Integrity Inc. Loshin is a recognized thought leader and expert consultant in the areas of data quality, master data management and business intelligence. He has written numerous books, white papers and Web seminars on a variety of data management best practices. His book Master Data Management, has been endorsed by data management industry leaders, and his MDM insights can be reviewed at mdmbook.com. He can be reached at

3 The Infrastructure for Information Management: A Brave New World for the CIO The concept of the chief information officer (CIO) title has been well-established for many years. And although the role the CIO plays has slowly evolved in alignment with (and sometimes in reaction to) changes in the world of technology, dramatic changes in the perception of the creation, use and employment of information have somewhat skewed the direction that the CIO role has taken. In the past, the main focus of information management was subsidiary to the execution of business as usual, typically framed within the development framework for applications that implement operational or transactional business processes. Here, the data acquired, created, modified and used was solely intended to guarantee the proper completion of the process. This allowed siloed business functions to develop the same or similar data models, interfaces and functionality. In this context, the CIO s main focus was system infrastructure ensuring that the system (including processing engines, storage and networking) was configured to meet business needs. Trends and Drivers for Information Infrastructure Organizations continued to recognize that data sets (previously presumed to be byproducts of the operational environments) actually held significant value. As data sets were collected and combined for reporting or analysis, their repurposing introduced new demands and uncovered new constraints in the information infrastructure. There are a number of trends that are worth noting: Technology adaptation: Innovative technologies can disrupt the presumed information infrastructure needs, such as the explosive use of smartphones, which both generate and consume information. Some industries are particularly sensitive to technical changes, such as the energy industry s adoption of new smart meters that generate orders of magnitude more data than before. Big data and big data analytics: This trend only confirms the need, as more organizations seek to absorb larger volumes of data sets from varied sources and of varied structure. Integrated predictive analytics: The time gap for exploiting information is rapidly closing as organizations focus on competitiveness. Many organizations are tightly coupling their analytics engines to their operational systems to inform decision making in real time. Management of auditable compliance: Whether one examines the result of the recent financial credit crisis, deregulation of industries, new laws enacted governing health care reform, or numerous other legislative initiatives, the implication is that demonstrating compliance with regulations requires access to historical data. Data governance: Increased reuse and repurposing of information, coupled with the expanded scope of information management, has highlighted the gaps in which the absence of defined and enforced data policies can impede the business. Operational data governance requires retooling of the environment to enable inspection, monitoring and reporting of data policy compliance. 1

4 SAS White Paper Any one of these trends would imply the need for sound information management practices. However, the nexus of all the trends creates the impetus to institute the proper information management policies and infrastructure to capture, filter and analyze data and turn it into knowledge that drives positive business results. Objectives for Organizational Information Management: The New Dial Tone The stark reality is that as information ascends in perception of value and importance to the organization, there is an ever-growing need for the CIO to demonstrate more immediate value from data. Adopting innovative technology is one way to provide the perception of progress. However, introducing analytical appliances or implementing Hadoop while ignoring the critical information infrastructure aspects necessary to support the collection and management of data may lead to questionable results when the level of trust in the usability of the information can easily be challenged. That means that increased attention to fundamental capabilities for information management must accompany any adoption of new technology. As opposed to implementing data management components on a project-by-project basis, the time has come to view information management as an organizational business imperative. Business user expectations for data accessibility, availability and quality are approaching the sustained need for standard services, like telephony and network access. This dial-tone approach to information management services establishes a baseline enterprisewide capability for data utility, and includes components for: Data integration. What used to be called extraction, transformation and loading (ETL) has evolved beyond the original scope of data warehouse population to include the end-to-end mechanisms for data sharing, access and delivery. Data federation and virtualization. The desire for real-time, integrated analytics has ramped up the demand for high-speed data access to heterogeneous sources. Data federation enables semantically correct mappings across data assets and makes heterogeneous data access transparent to the end users. Virtualization smooths the delivery and presentation of federated data and provides caching to make access times predictable. Event stream processing. With the desire to absorb data from numerous sources, the business may want to apply filters or trigger actions based on streaming data. Event stream processing provides the infrastructure to support these types of actions. Managed metadata. Merging a variety of data sources without a common agreement to definitions and meanings will always lead to confusion. Establishing a metadata management practice using the right components will help alleviate some of these concerns. Data quality management. Any business environment will be compromised without establishing a level of trust in the usability and quality of the data. Parsing, standardization and cleansing all contribute to a predictable level of data quality. Data governance. These technologies enable inspection, monitoring and reporting of compliance with data quality rules and policies. In addition, tools to alert data stewards to data issues and monitor remediation progress help deploy corporate data policies. 2

5 The Infrastructure for Information Management: A Brave New World for the CIO The demand for analytics incorporates a wide variety of data sources, including social media data, machine-generated data, and mixed-format content (such as documents and websites containing text, images, video, etc.). It is worthwhile examining how the demand for analytics, both in common use cases as well as industry-specific cases, drives the need for predictable and trustworthy information management. Emerging Drivers for Common Enterprise Information Analytics It would be unusual to suggest that some businesses are not continuously seeking better ways of increasing revenues, decreasing operational costs and extending profitable customer relationships. A closer inspection of the popular approaches for achieving these goals centers on what could be called common analytics that are not specific to any particular industry. Some examples include: Customer profiling and segmentation, which divides the customer community into categories based on key variables as a way of developing predictive models for behavior analysis. Customer/product affinity analysis, which examines which customer segments have affinities to specific products (or products within organized categories). Market basket analysis, which looks at predispositions to purchasing certain products at the same time. All of these are examples of analytical approaches to drive increased product sales via up-selling, cross-selling, understanding customer price sensitivity, or through the purchase of product bundles with higher profit margins. And while the ability to execute projects enabling these analyses has typically been reserved by only the largest organizations with the biggest analytics budgets, a combination of factors is increasingly enabling a much broader spectrum of companies to be able to benefit from analytics, including: Data volumes: Not only are the volumes of data expanding, but the rate of expansion of newly created digital content continues to increase. Positive marketing: The information management industry has done a good job in marketing the purported benefits of analytics, effectively generating a blossoming demand. Feasibility: Larger organizations may have already had the resources to implement large-scale analytics programs, but with high-performance platforms deployed on collections of easily acquired commodity hardware components, the barrier to entry for implementing an analytics program has been significantly lowered. Right-time delivery: As the time windows for responding to emerging opportunities continues to shrink, there is a growing appetite for near-real-time delivery of useful knowledge to drive trustworthy decision making. 3

6 SAS White Paper The result is that a greater number of smaller organizations are seeking to employ more sophisticated analysis techniques over a broader variety of digital content that spans both structured and unstructured sources. For example, these types of digital content, among others, are growing in importance: Structured data sets acquired either directly through the Web or through data aggregator vendors. Social media data, such as the unstructured comments and posts streamed through Twitter or Facebook. Machine-generated data, such as periodic reading of smart energy meters installed across a residential network. Mixed-format content, such as documents and websites containing text, photo images, graphic images, video, etc. Analytic applications such as customer profiling, segmentation and classification can be greatly enhanced with data from a wider variety of sources. But as the demand grows for applications incorporating different types of data sources, the data management environment must be able to scale with the size and complexity of the data, and not just from a strict throughput performance perspective. There must be processes for extracting entity data from an unstructured source, identifying that entity, and augmenting the entity s profile with discovered characteristics. All aspects of data utility have to be taken into account and aligned with the idea of data management as a dial-tone service. Enabling predictive analytics implies that data management services must meet a base level of expectations: The performance for data delivery must be predictable; the framework must provide trustworthy information; there must be ways to ensure that commonly-used terms are not confused by downstream reinterpretation; and data and business rules must be effectively incorporated directly into developed applications as part of the system development life cycle. Industry Interests Also Drive Enterprise Information Management Distinct industries have particular business challenges whose solutions can be impeded by the absence of a sound information management strategy. The business objectives within any industry remain aligned with the same core dimensions of value (namely increasing revenues, decreasing operational costs, managing risk and enhancing profitable customer experiences). Reviewing some examples of discrete challenges facing different industries allows one to see how the business drivers can be specifically linked to establishing best practices for information management. Naturally, all of these industries have different business applications that rely on good data management practices. And they all share key dependencies: predictability of data availability, data accessibility, timeliness, and importantly, consistency from a structural and semantic perspective. 4

7 The Infrastructure for Information Management: A Brave New World for the CIO Financial Services In the banking and financial services industry, the aftermath of the recent credit crisis has led to increased concern about accuracy in assessing and managing risk. A number of governmental agencies, as well as international oversight authorities, have drafted regulations intended to ensure that financial institutions are properly capitalized to guard against excessive risks. Most of these regulations and guidelines are tightly coupled with data delivery and information management. For example: Dodd-Frank: In the United States, the Dodd-Frank Wall Street Reform and Consumer Protection Act empowered new government research agencies to request data from banking institutions to ensure financial stability. Solvency II: These insurance industry regulations empower a supervisory authority to request information that can comprise qualitative or quantitative elements, historic, current or prospective elements, and data from internal or external sources. This information must reflect the nature, scale and complexity of the business, must be accessible, complete in all material respects, comparable and consistent over time, and must be relevant, reliable and comprehensible. (See the Solvency II site for more details.) Basel III: These international banking accords establish a standard for bank capital adequacy, stress testing and market liquidity risk. Basel III accords rely on the availability of accurate information for analytical calculations of capitalization requirements intended to improve risk management and provide enhanced predictability of financial stability. Health Care and Life Sciences In the United States, there are certainly issues for Medicare and Medicaid driven by the Affordable Care Act after it was upheld by the Supreme Court in This affects the information management expectations for government, health care providers, payers, pharmaceutical companies and medical device manufacturers. Some examples include: Health information exchanges: The desire to migrate toward electronic health records requires the creation of HIEs that enable the electronic exchange of health care information within a region or among a community of participants. Dual-eligibles: Both state and federal government agencies are charged with aligning the care provided to dual-eligibles, or individuals who are covered by both Medicare and Medicaid programs. Reducing duplicated service and payments requires an effective way of managing and merging data from multiple systems. Physician sunshine reporting: Increased scrutiny of pharmaceutical incentives to health care providers has led to increased requirements for reporting and analysis, both by the reporting companies and the agencies collecting the data. Accurate and complete reports require broad data visibility across multiple business functions and systems. At the same time, government agencies aggregating reported exchanges of value to providers must be able to uniquely identify providers as well as link their records across a multitude of reports filed by pharmaceutical and medical device companies. 5

8 SAS White Paper Government Aside from the examples we have already seen related to government information management, there are additional drivers within government to devote increased attention to improved information management. Some examples include: Management and retention: Agencies may collect significant amounts of information over time, requiring the implementation of data archiving and retention policies. Cross-agency integration: Cooperation among agencies for providing social services, assessing government debt obligations and analyzing security threats suggests the benefits of establishing methods for efficient and high-quality data exchanges. Transparency: Directives for transparency of government operations have driven the creation of data sets for public consumption. The processes for creating and publishing these data sets require data accessibility, data integration and organization. Telecommunications The telecommunications industry is no stranger to the need for information management. These companies have a long history of collecting massive amounts of transaction data associated with call detail records to both ensure high-quality communications connectivity and business operations (managing accounts, issuing statements and collecting payments). Yet the industry continues to adapt in ways that seem to expand beyond its original focus, including providing a wider range of services such as wireless, television and Internet, among others. The amount of information now available collides with the key drivers facing the industry, including: Coordination across provided services. Providing the perception of a unified provision of services requires the ability to unify customer/product information across all areas of the business. Improved marketing of bundled services. Telecommunications marketing becomes more complex as the array of services and potential product bundles widens. Again, visibility into customer account information, relationships among customers, and customer profiles and preferences will enable more productive marketing campaigns. Compliance with regional and local taxation. A variety of governmental taxes, fees and other charges must be applied according to geography, and this demands accuracy in account and invoicing data. Enhanced customer experience management. Customer profitability analysis helps drive VIP levels of service to the best customers, which again requires accuracy of insight into the customer/product mix. Fraud analysis. The growing range of provided services creates new opportunities for abuse and fraud, especially in the context of revenue leakage, which requires governed management of enterprise data for rapid and accurate analyses. 6

9 The Infrastructure for Information Management: A Brave New World for the CIO Energy and Utilities The combination of deregulation, eco-awareness and technical improvements in data collection and monitoring via smart meters is driving monumental changes in the energy and utilities industries, requiring improved information management capabilities. Some specific drivers include: Data volumes from smart metering. The trend of installing smart meters heralds a new age in data management for energy utilities, as both the volume and the speed of data generation will explode. The combination of size and velocity of this data will drive a re-engineering of the enterprise data management infrastructure. Increased needs for monitoring energy grids. With increased violent weather patterns, there is a corresponding increase in events leading to widespread outages. Proactive monitoring of the energy grid for sentinel patterns indicating imminent outages can help utilities more effectively allocate resources for remediation efforts. Monitoring pipeline sensor networks. As more cross-continental pipeline projects appear imminent, there is a corresponding need for the information management components to monitor and analyze data streaming from thousands more (or perhaps orders of magnitude more) sensors strategically placed along the entire length of the pipeline network. Eco-awareness and corresponding analytics. Energy companies, in reaction to increased eco-awareness, have begun to provide analytical feedback to customers in terms of absolute and relative energy consumption. This requires data accessibility and the ability to deliver reports to customers. Implications for Information Management We have considered two tracks of business drivers for deploying best practices in information management across the enterprise. First, there are common demands that are shared across many different industries, such as the need for useful knowledge about customers and products to drive increased revenues and longer customer relationships. Second, there are characteristics for operational and analytical needs associated with specific industries. Either of these business drivers points to the need for increased agility and maturity in coupling well-defined information management practices with the technologies that compose an end-to-end information management framework. That suggests the need for a core understanding of the fundamental components of an information management strategy. Data Integration Data integration has become the lifeblood of the enterprise. Organizations continually recognize how critical it is to share data across business functions, and that suggests a continued need for increasing reliability, performance and access speed for data integration, particularly in these fundamental capabilities: 7

10 SAS White Paper Data accessibility. Organizations must support a vast landscape of legacy data systems, especially due to the desire to scan historical data assets for potential business value. One key aspect of data integration is accessibility, and the information management framework must provide connectors to that wide variety of data sources, including file-based and tree-structured data sets, relational databases, and even streamed data sources. Data transformation, exchange and delivery. Once data sets can be accessed from their original sources, the data integration framework must be able to efficiently move the data from source to target. There must be a capability to transform the data from its original format into one that is suited to the target, with a means of verifying that the data sets are appropriately packaged and delivered. Data replication and change data capture. The need to regulate the accessibility and delivery of ever-growing data volumes within expected time frames is impeded by data delivery bottlenecks, especially in periodic extractions from source systems and loading into data warehouses. Data replication techniques enable rapid bulk transfers of large data sets. You can synchronize the process by using a method known as change data capture that monitors system logs and triggers updates to the target systems as changes happen in the source. Data Virtualization Efficient data integration can address some of the issues associated with increasing demands for accessing data from numerous sources and of varied structure and format. Yet some complications remain in populating data warehouses in a timely and consistent manner that meets the performance requirements of consuming systems. When the impediments are linked to the complexity of synchronous extraction and transformation, you run the risk of inconsistencies between the consumers of data and the original source systems. One way to address this is by reducing the perception of data latency and asynchrony. Data virtualization techniques have evolved and matured to address these concerns. Data virtualization tools and techniques provide three key capabilities: Federation: They enable federation of heterogeneous sources by mapping a standard data model to the access methods for the variety of sources constituting the federated model. Caching: Managing accessed and aggregated data within a virtual (cached) environment reduces data latency, thereby increasing system performance. Consistency: Together, federation and virtualization abstract the methods for access and combine them with the application of standards for data validation, cleansing and unification. A virtualized data environment can simplify how end-user applications and business analysts access data without forcing them to be aware of source data locations, data integration or application of business rules. 8

11 The Infrastructure for Information Management: A Brave New World for the CIO Event Stream Processing Traditional business intelligence systems may be insufficient to address the active capturing, monitoring and correlation of real-time event information into useful knowledge. To address this, a technique called event stream processing (ESP) enables real-time monitoring of patterns and sequences of events flowing through streams of information. ESP systems help organizations rapidly respond to emerging opportunities that can result from the confluence of multiple streams of information. These systems allow information management professionals to model how participants within an environment are influenced by many different data input streams, and analyze patterns that trigger desired outcomes. ESP systems can continuously monitor (in real time) all potentially influential streams of events against the expected patterns and provide low-latency event processing within defined event windows. When there is a variance from expectations or identification of new opportunities, the systems can generate alerts to the right individuals, who can take action much more rapidly than in a traditional data analysis scenario. ESP networks can monitor high data volumes from multiple input data sources with very low latencies for event processing. The ability to continuously monitor a wide variety of streaming inputs in a scalable manner allows you to recognize and respond to emerging scenarios because of the lower latencies and turnaround time for analysis. In essence, instead of running dynamic queries against static data, you can look at ESP as a method for simultaneously searching through massive amounts of dynamic data for many defined patterns. Metadata Management The drive for cross-functional data sharing and exchange exposed the inherent inconsistencies associated with data systems designed, developed and implemented separately within functional silos. And since early metadata management approaches only focused on structural, technical aspects of data models (to the exclusion of the meanings and semantics that are relevant to the business), metadata management projects often foundered. That says that the modern enterprise information management environment must enable business-oriented metadata management, including tools and methods for: Business term glossaries to capture frequently used business terms and their authoritative definitions. Data standards, such as naming conventions, defined reference data sets, and standards for storage and exchange. Data element definitions that reflect the connection to business terms and provide context-relevant definitions for use within business applications. Data lineage that shows the relationships between data element concepts and their instantiation across different models and applications. Integration with data governance policies to support validation, compliance and control. 9

12 SAS White Paper Data Quality Management Best practices for data quality management are intended to help organizations improve the precision of identifying data flaws and errors as well as simplify the analysis and remediation of root causes of data flaws. At the same time, data quality tools and techniques must support the ability to standardize and potentially correct data when possible, flag issues when they are identified, notify the appropriate data steward and facilitate the communication of potential data issues to the source data providers. These objectives can be met within a formal framework for data quality management that incorporates techniques for: Data parsing and standardization: Scanning data values with the intent of transforming nonstandard representations into standard formats. Data correction and cleansing: Applying data quality rules to correct recognized errors to cleanse the data and eliminate inconsistencies. Data quality rules management: Centrally manage data quality requirements and rules for validation and verification of compliance with data expectations. Data quality measurement and reporting: Provide a framework for invoking services to validate data against data rules and report anomalies and data flaws. Standardized data integration validation: Continual validation of existing data integration processes and embedded verification of newly developed data integration processes. Data quality assessment: Source data assessment and evaluation of data issues to identify potential data quality rules using data profiling and other statistical tools. Incident management: Standardized approaches to data quality incident management (reporting, analysis/evaluation, prioritization, remediation, tracking). Data Governance Finally, no modern enterprise information management environment would be complete without techniques for validating data rules and compliance with data policies. At the very least, that would be supported with tools for managing the data policy life cycle, which includes drafting policies, proposing policies to the data governance committee, providing reviews and revisions, seeking approval, and moving rules into production. These tasks must be aligned with the design and development tasks within the organization s system development life cycle. This permeates the lifetime of information management, from the analysis and synthesis of data consumer requirements through conceptual modeling, logical and physical design, and subsequent implementation. 10

13 The Infrastructure for Information Management: A Brave New World for the CIO Summary If businesses are recognizing the need for a dial-tone approach to establishing data utility services for meeting user expectations for data accessibility, availability and quality, it is incumbent upon the information management practitioners to ensure that the organization is properly prepared, from both a policy/process level and a technology level. This paper has provided an overview of the key drivers and then presented an enumeration of the critical capabilities that must compose the information management landscape. Organizational readiness implies three things: 1. There has been an evaluation of the current and future organizational needs for information management practices, services and technologies. 2. There has been an assessment to determine whether the existing capabilities and organizational maturity are sufficient to satisfy current and future needs, as well as identify potential gaps. 3. There is a plan to acquire and embed the methods and technologies that are required to eliminate any gaps. Enumerating the business needs for information management capabilities within your organization and assessing the capability gap will provide you with a strategy and a road map for developing an enterprisewide information management framework. 11

14 SAS White Paper 12

15 The Infrastructure for Information Management: A Brave New World for the CIO 13

16 About SAS SAS is the leader in business analytics software and services, and the largest independent vendor in the business intelligence market. Through innovative solutions, SAS helps customers at more than 65,000 sites improve performance and deliver value by making better decisions faster. Since 1976 SAS has been giving customers around the world THE POWER TO KNOW. SAS Institute Inc. World Headquarters To contact your local SAS office, please visit: sas.com/offices SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. indicates USA registration. Other brand and product names are trademarks of their respective companies. Copyright 2013, SAS Institute Inc. All rights reserved _S107489_0713

Supporting Your Data Management Strategy with a Phased Approach to Master Data Management WHITE PAPER

Supporting Your Data Management Strategy with a Phased Approach to Master Data Management WHITE PAPER Supporting Your Data Strategy with a Phased Approach to Master Data WHITE PAPER SAS White Paper Table of Contents Changing the Way We Think About Master Data.... 1 Master Data Consumers, the Information

More information

Three Fundamental Techniques To Maximize the Value of Your Enterprise Data

Three Fundamental Techniques To Maximize the Value of Your Enterprise Data Three Fundamental Techniques To Maximize the Value of Your Enterprise Data Prepared for Talend by: David Loshin Knowledge Integrity, Inc. October, 2010 2010 Knowledge Integrity, Inc. 1 Introduction Organizations

More information

Building a Data Quality Scorecard for Operational Data Governance

Building a Data Quality Scorecard for Operational Data Governance Building a Data Quality Scorecard for Operational Data Governance A White Paper by David Loshin WHITE PAPER Table of Contents Introduction.... 1 Establishing Business Objectives.... 1 Business Drivers...

More information

Practical Fundamentals for Master Data Management

Practical Fundamentals for Master Data Management Practical Fundamentals for Master Data Management How to build an effective master data capability as the cornerstone of an enterprise information management program WHITE PAPER SAS White Paper Table of

More information

Effecting Data Quality Improvement through Data Virtualization

Effecting Data Quality Improvement through Data Virtualization Effecting Data Quality Improvement through Data Virtualization Prepared for Composite Software by: David Loshin Knowledge Integrity, Inc. June, 2010 2010 Knowledge Integrity, Inc. Page 1 Introduction The

More information

Five Fundamental Data Quality Practices

Five Fundamental Data Quality Practices Five Fundamental Data Quality Practices W H I T E PA P E R : DATA QUALITY & DATA INTEGRATION David Loshin WHITE PAPER: DATA QUALITY & DATA INTEGRATION Five Fundamental Data Quality Practices 2 INTRODUCTION

More information

Data Integration Alternatives Managing Value and Quality

Data Integration Alternatives Managing Value and Quality Solutions for Customer Intelligence, Communications and Care. Data Integration Alternatives Managing Value and Quality Using a Governed Approach to Incorporating Data Quality Services Within the Data Integration

More information

Data Integration Alternatives Managing Value and Quality

Data Integration Alternatives Managing Value and Quality Solutions for Enabling Lifetime Customer Relationships Data Integration Alternatives Managing Value and Quality Using a Governed Approach to Incorporating Data Quality Services Within the Data Integration

More information

Data Governance, Data Architecture, and Metadata Essentials

Data Governance, Data Architecture, and Metadata Essentials WHITE PAPER Data Governance, Data Architecture, and Metadata Essentials www.sybase.com TABLE OF CONTENTS 1 The Absence of Data Governance Threatens Business Success 1 Data Repurposing and Data Integration

More information

Operationalizing Data Governance through Data Policy Management

Operationalizing Data Governance through Data Policy Management Operationalizing Data Governance through Data Policy Management Prepared for alido by: David Loshin nowledge Integrity, Inc. June, 2010 2010 nowledge Integrity, Inc. Page 1 Introduction The increasing

More information

Observing Data Quality Service Level Agreements: Inspection, Monitoring, and Tracking

Observing Data Quality Service Level Agreements: Inspection, Monitoring, and Tracking A DataFlux White Paper Prepared by: David Loshin Observing Data Quality Service Level Agreements: Inspection, Monitoring, and Tracking Leader in Data Quality and Data Integration www.dataflux.com 877 846

More information

Busting 7 Myths about Master Data Management

Busting 7 Myths about Master Data Management Knowledge Integrity Incorporated Busting 7 Myths about Master Data Management Prepared by: David Loshin Knowledge Integrity, Inc. August, 2011 Sponsored by: 2011 Knowledge Integrity, Inc. 1 (301) 754-6350

More information

Master Data Management Drivers: Fantasy, Reality and Quality

Master Data Management Drivers: Fantasy, Reality and Quality Solutions for Customer Intelligence, Communications and Care. Master Data Management Drivers: Fantasy, Reality and Quality A Review and Classification of Potential Benefits of Implementing Master Data

More information

Challenges in the Effective Use of Master Data Management Techniques WHITE PAPER

Challenges in the Effective Use of Master Data Management Techniques WHITE PAPER Challenges in the Effective Use of Master Management Techniques WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Consolidation: The Typical Approach to Master Management. 2 Why Consolidation

More information

Populating a Data Quality Scorecard with Relevant Metrics WHITE PAPER

Populating a Data Quality Scorecard with Relevant Metrics WHITE PAPER Populating a Data Quality Scorecard with Relevant Metrics WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Useful vs. So-What Metrics... 2 The So-What Metric.... 2 Defining Relevant Metrics...

More information

5 Best Practices for SAP Master Data Governance

5 Best Practices for SAP Master Data Governance 5 Best Practices for SAP Master Data Governance By David Loshin President, Knowledge Integrity, Inc. Sponsored by Winshuttle, LLC 2012 Winshuttle, LLC. All rights reserved. 4/12 www.winshuttle.com Introduction

More information

Build an effective data integration strategy to drive innovation

Build an effective data integration strategy to drive innovation IBM Software Thought Leadership White Paper September 2010 Build an effective data integration strategy to drive innovation Five questions business leaders must ask 2 Build an effective data integration

More information

BANKING ON CUSTOMER BEHAVIOR

BANKING ON CUSTOMER BEHAVIOR BANKING ON CUSTOMER BEHAVIOR How customer data analytics are helping banks grow revenue, improve products, and reduce risk In the face of changing economies and regulatory pressures, retail banks are looking

More information

Integrating Data Governance into Your Operational Processes

Integrating Data Governance into Your Operational Processes TDWI rese a rch TDWI Checklist Report Integrating Data Governance into Your Operational Processes By David Loshin Sponsored by tdwi.org August 2011 TDWI Checklist Report Integrating Data Governance into

More information

Understanding the Financial Value of Data Quality Improvement

Understanding the Financial Value of Data Quality Improvement Understanding the Financial Value of Data Quality Improvement Prepared by: David Loshin Knowledge Integrity, Inc. January, 2011 Sponsored by: 2011 Knowledge Integrity, Inc. 1 Introduction Despite the many

More information

Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise

Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise Data Governance Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise 2 Table of Contents 4 Why Business Success Requires Data Governance Data Repurposing

More information

Business Drivers for Data Quality in the Utilities Industry

Business Drivers for Data Quality in the Utilities Industry Solutions for Enabling Lifetime Customer Relationships. Business Drivers for Data Quality in the Utilities Industry Xxxxx W HITE PAPER: UTILITIES WHITE PAPER: UTILITIES Business Drivers for Data Quality

More information

The Informatica Solution for Improper Payments

The Informatica Solution for Improper Payments The Informatica Solution for Improper Payments Reducing Improper Payments and Improving Fiscal Accountability for Government Agencies WHITE PAPER This document contains Confidential, Proprietary and Trade

More information

The Role of Metadata in a Data Governance Strategy

The Role of Metadata in a Data Governance Strategy The Role of Metadata in a Data Governance Strategy Prepared by: David Loshin President, Knowledge Integrity, Inc. (301) 754-6350 loshin@knowledge- integrity.com Sponsored by: Knowledge Integrity, Inc.

More information

Enable Business Agility and Speed Empower your business with proven multidomain master data management (MDM)

Enable Business Agility and Speed Empower your business with proven multidomain master data management (MDM) Enable Business Agility and Speed Empower your business with proven multidomain master data management (MDM) Customer Viewpoint By leveraging a well-thoughtout MDM strategy, we have been able to strengthen

More information

SATISFYING NEW REQUIREMENTS FOR DATA INTEGRATION

SATISFYING NEW REQUIREMENTS FOR DATA INTEGRATION TDWI RESEARCH TDWI CHECKLIST REPORT SATISFYING NEW REQUIREMENTS FOR DATA INTEGRATION By David Loshin Sponsored by tdwi.org JUNE 2012 TDWI CHECKLIST REPORT SATISFYING NEW REQUIREMENTS FOR DATA INTEGRATION

More information

How to Manage Your Data as a Strategic Information Asset

How to Manage Your Data as a Strategic Information Asset How to Manage Your Data as a Strategic Information Asset CONCLUSIONS PAPER Insights from a webinar in the 2012 Applying Business Analytics Webinar Series Featuring: Mark Troester, Former IT/CIO Thought

More information

Data Governance. Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise

Data Governance. Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise Data Governance Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise 2 Table of Contents 4 Why Business Success Requires Data Governance Data Repurposing

More information

A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY

A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY Analytics for Enterprise Data Warehouse Management and Optimization Executive Summary Successful enterprise data management is an important initiative for growing

More information

Big Data Comes of Age: Shifting to a Real-time Data Platform

Big Data Comes of Age: Shifting to a Real-time Data Platform An ENTERPRISE MANAGEMENT ASSOCIATES (EMA ) White Paper Prepared for SAP April 2013 IT & DATA MANAGEMENT RESEARCH, INDUSTRY ANALYSIS & CONSULTING Table of Contents Introduction... 1 Drivers of Change...

More information

An Enterprise Framework for Business Intelligence

An Enterprise Framework for Business Intelligence An Enterprise Framework for Business Intelligence Colin White BI Research May 2009 Sponsored by Oracle Corporation TABLE OF CONTENTS AN ENTERPRISE FRAMEWORK FOR BUSINESS INTELLIGENCE 1 THE BI PROCESSING

More information

Increase Business Intelligence Infrastructure Responsiveness and Reliability Using IT Automation

Increase Business Intelligence Infrastructure Responsiveness and Reliability Using IT Automation White Paper Increase Business Intelligence Infrastructure Responsiveness and Reliability Using IT Automation What You Will Learn That business intelligence (BI) is at a critical crossroads and attentive

More information

Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff

Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff The Challenge IT Executives are challenged with issues around data, compliancy, regulation and making confident decisions on their business

More information

Data Governance for Master Data Management and Beyond

Data Governance for Master Data Management and Beyond Data Governance for Master Data Management and Beyond A White Paper by David Loshin WHITE PAPER Table of Contents Aligning Information Objectives with the Business Strategy.... 1 Clarifying the Information

More information

Enhance visibility into and control over software projects IBM Rational change and release management software

Enhance visibility into and control over software projects IBM Rational change and release management software Enhance visibility into and control over software projects IBM Rational change and release management software Accelerating the software delivery lifecycle Faster delivery of high-quality software Software

More information

Solutions for Enterprise Risk Management SAS. Overview. A holistic view of risk of risk and exposures for better risk management SOLUTION OVERVIEW

Solutions for Enterprise Risk Management SAS. Overview. A holistic view of risk of risk and exposures for better risk management SOLUTION OVERVIEW SOLUTION OVERVIEW SAS Solutions for Enterprise Risk Management A holistic view of risk of risk and exposures for better risk management Overview The principal goal of any financial institution is to generate

More information

Data Integration for the Real Time Enterprise

Data Integration for the Real Time Enterprise Executive Brief Data Integration for the Real Time Enterprise Business Agility in a Constantly Changing World Overcoming the Challenges of Global Uncertainty Informatica gives Zyme the ability to maintain

More information

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

White Paper. How Streaming Data Analytics Enables Real-Time Decisions White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream

More information

Data virtualization: Delivering on-demand access to information throughout the enterprise

Data virtualization: Delivering on-demand access to information throughout the enterprise IBM Software Thought Leadership White Paper April 2013 Data virtualization: Delivering on-demand access to information throughout the enterprise 2 Data virtualization: Delivering on-demand access to information

More information

NCOE whitepaper Master Data Deployment and Management in a Global ERP Implementation

NCOE whitepaper Master Data Deployment and Management in a Global ERP Implementation NCOE whitepaper Master Data Deployment and Management in a Global ERP Implementation Market Offering: Package(s): Oracle Authors: Rick Olson, Luke Tay Date: January 13, 2012 Contents Executive summary

More information

JOURNAL OF OBJECT TECHNOLOGY

JOURNAL OF OBJECT TECHNOLOGY JOURNAL OF OBJECT TECHNOLOGY Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2008 Vol. 7, No. 8, November-December 2008 What s Your Information Agenda? Mahesh H. Dodani,

More information

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.935.4445 F.508.988.7881 www.idc-hi.com

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.935.4445 F.508.988.7881 www.idc-hi.com Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.935.4445 F.508.988.7881 www.idc-hi.com L e v e raging Big Data to Build a F o undation f o r Accountable Healthcare C U S T O M I N D

More information

Solutions for Communications with IBM Netezza Network Analytics Accelerator

Solutions for Communications with IBM Netezza Network Analytics Accelerator Solutions for Communications with IBM Netezza Analytics Accelerator The all-in-one network intelligence appliance for the telecommunications industry Highlights The Analytics Accelerator combines speed,

More information

CONNECTING DATA WITH BUSINESS

CONNECTING DATA WITH BUSINESS CONNECTING DATA WITH BUSINESS Big Data and Data Science consulting Business Value through Data Knowledge Synergic Partners is a specialized Big Data, Data Science and Data Engineering consultancy firm

More information

Master big data to optimize the oil and gas lifecycle

Master big data to optimize the oil and gas lifecycle Viewpoint paper Master big data to optimize the oil and gas lifecycle Information management and analytics (IM&A) helps move decisions from reactive to predictive Table of contents 4 Getting a handle on

More information

Symantec Global Intelligence Network 2.0 Architecture: Staying Ahead of the Evolving Threat Landscape

Symantec Global Intelligence Network 2.0 Architecture: Staying Ahead of the Evolving Threat Landscape WHITE PAPER: SYMANTEC GLOBAL INTELLIGENCE NETWORK 2.0.... ARCHITECTURE.................................... Symantec Global Intelligence Network 2.0 Architecture: Staying Ahead of the Evolving Threat Who

More information

How Financial Services Firms Can Benefit From Streaming Analytics

How Financial Services Firms Can Benefit From Streaming Analytics How Financial Services Firms Can Benefit From Streaming Analytics > 2 VITRIA TECHNOLOGY, INC. > How Financial Services Firms Can Benefit From Streaming Analytics Streaming Analytics: Why It s Important

More information

Transforming life sciences contract management operations into sustainable profit centers

Transforming life sciences contract management operations into sustainable profit centers Point of View Generating life sciences Impact Transforming life sciences contract management operations into sustainable profit centers Globally, life sciences companies spend anywhere from $700 million

More information

How the oil and gas industry can gain value from Big Data?

How the oil and gas industry can gain value from Big Data? How the oil and gas industry can gain value from Big Data? Arild Kristensen Nordic Sales Manager, Big Data Analytics arild.kristensen@no.ibm.com, tlf. +4790532591 April 25, 2013 2013 IBM Corporation Dilbert

More information

Best Practices in Enterprise Data Governance

Best Practices in Enterprise Data Governance Best Practices in Enterprise Data Governance Scott Gidley and Nancy Rausch, SAS WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Data Governance Use Case and Challenges.... 1 Collaboration

More information

Point of View: FINANCIAL SERVICES DELIVERING BUSINESS VALUE THROUGH ENTERPRISE DATA MANAGEMENT

Point of View: FINANCIAL SERVICES DELIVERING BUSINESS VALUE THROUGH ENTERPRISE DATA MANAGEMENT Point of View: FINANCIAL SERVICES DELIVERING BUSINESS VALUE THROUGH ENTERPRISE DATA MANAGEMENT THROUGH ENTERPRISE DATA MANAGEMENT IN THIS POINT OF VIEW: PAGE INTRODUCTION: A NEW PATH TO DATA ACCURACY AND

More information

WITH AGILE TECHNOLOGY

WITH AGILE TECHNOLOGY FUTURE-PROOF BANKING STRATEGIES Technology Transformation STARTS NOW Banks now better understand the strategic nature of their core systems and are ready to embark on critical technology projects to support

More information

Enterprise Data Integration

Enterprise Data Integration Enterprise Data Integration Access, Integrate, and Deliver Data Efficiently Throughout the Enterprise brochure How Can Your IT Organization Deliver a Return on Data? The High Price of Data Fragmentation

More information

DIGGING DEEPER: What Really Matters in Data Integration Evaluations?

DIGGING DEEPER: What Really Matters in Data Integration Evaluations? DIGGING DEEPER: What Really Matters in Data Integration Evaluations? It s no surprise that when customers begin the daunting task of comparing data integration products, the similarities seem to outweigh

More information

Integrate and Deliver Trusted Data and Enable Deep Insights

Integrate and Deliver Trusted Data and Enable Deep Insights SAP Technical Brief SAP s for Enterprise Information Management SAP Data Services Objectives Integrate and Deliver Trusted Data and Enable Deep Insights Provide a wide-ranging view of enterprise information

More information

ORACLE HYPERION DATA RELATIONSHIP MANAGEMENT

ORACLE HYPERION DATA RELATIONSHIP MANAGEMENT Oracle Fusion editions of Oracle's Hyperion performance management products are currently available only on Microsoft Windows server platforms. The following is intended to outline our general product

More information

Engage your customers

Engage your customers Business white paper Engage your customers HP Autonomy s Customer Experience Management market offering Table of contents 3 Introduction 3 The customer experience includes every interaction 3 Leveraging

More information

Big Data and Healthcare Payers WHITE PAPER

Big Data and Healthcare Payers WHITE PAPER Knowledgent White Paper Series Big Data and Healthcare Payers WHITE PAPER Summary With the implementation of the Affordable Care Act, the transition to a more member-centric relationship model, and other

More information

META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING

META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING Ramesh Babu Palepu 1, Dr K V Sambasiva Rao 2 Dept of IT, Amrita Sai Institute of Science & Technology 1 MVR College of Engineering 2 asistithod@gmail.com

More information

Informatica Master Data Management

Informatica Master Data Management Informatica Master Data Management Improve Operations and Decision Making with Consolidated and Reliable Business-Critical Data brochure The Costs of Inconsistency Today, businesses are handling more data,

More information

High-Volume Data Warehousing in Centerprise. Product Datasheet

High-Volume Data Warehousing in Centerprise. Product Datasheet High-Volume Data Warehousing in Centerprise Product Datasheet Table of Contents Overview 3 Data Complexity 3 Data Quality 3 Speed and Scalability 3 Centerprise Data Warehouse Features 4 ETL in a Unified

More information

Considerations: Mastering Data Modeling for Master Data Domains

Considerations: Mastering Data Modeling for Master Data Domains Considerations: Mastering Data Modeling for Master Data Domains David Loshin President of Knowledge Integrity, Inc. June 2010 Americas Headquarters EMEA Headquarters Asia-Pacific Headquarters 100 California

More information

BEYOND BI: Big Data Analytic Use Cases

BEYOND BI: Big Data Analytic Use Cases BEYOND BI: Big Data Analytic Use Cases Big Data Analytics Use Cases This white paper discusses the types and characteristics of big data analytics use cases, how they differ from traditional business intelligence

More information

Predicting & Preventing Banking Customer Churn by Unlocking Big Data

Predicting & Preventing Banking Customer Churn by Unlocking Big Data Predicting & Preventing Banking Customer Churn by Unlocking Big Data Customer Churn: A Key Performance Indicator for Banks In 2012, 50% of customers, globally, either changed their banks or were planning

More information

A Tipping Point for Automation in the Data Warehouse. www.stonebranch.com

A Tipping Point for Automation in the Data Warehouse. www.stonebranch.com A Tipping Point for Automation in the Data Warehouse www.stonebranch.com Resolving the ETL Automation Problem The pressure on ETL Architects and Developers to utilize automation in the design and management

More information

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log

More information

Master data deployment and management in a global ERP implementation

Master data deployment and management in a global ERP implementation Master data deployment and management in a global ERP implementation Contents Master data management overview Master data maturity and ERP Master data governance Information management (IM) Business processes

More information

Customer Insight Appliance. Enabling retailers to understand and serve their customer

Customer Insight Appliance. Enabling retailers to understand and serve their customer Customer Insight Appliance Enabling retailers to understand and serve their customer Customer Insight Appliance Enabling retailers to understand and serve their customer. Technology has empowered today

More information

Discover, Cleanse, and Integrate Enterprise Data with SAP Data Services Software

Discover, Cleanse, and Integrate Enterprise Data with SAP Data Services Software SAP Brief SAP s for Enterprise Information Management Objectives SAP Data Services Discover, Cleanse, and Integrate Enterprise Data with SAP Data Services Software Step up to true enterprise information

More information

Next Generation Business Performance Management Solution

Next Generation Business Performance Management Solution Next Generation Business Performance Management Solution Why Existing Business Intelligence (BI) Products are Inadequate Changing Business Environment In the face of increased competition, complex customer

More information

Informatica PowerCenter The Foundation of Enterprise Data Integration

Informatica PowerCenter The Foundation of Enterprise Data Integration Informatica PowerCenter The Foundation of Enterprise Data Integration The Right Information, at the Right Time Powerful market forces globalization, new regulations, mergers and acquisitions, and business

More information

Patient Relationship Management

Patient Relationship Management Solution in Detail Healthcare Executive Summary Contact Us Patient Relationship Management 2013 2014 SAP AG or an SAP affiliate company. Attract and Delight the Empowered Patient Engaged Consumers Information

More information

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V WHITE PAPER Create the Data Center of the Future Accelerate

More information

SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics

SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics SAP Brief SAP HANA Objectives Transform Your Future with Better Business Insight Using Predictive Analytics Dealing with the new reality Dealing with the new reality Organizations like yours can identify

More information

Self-Service Big Data Analytics for Line of Business

Self-Service Big Data Analytics for Line of Business I D C A N A L Y S T C O N N E C T I O N Dan Vesset Program Vice President, Business Analytics and Big Data Self-Service Big Data Analytics for Line of Business March 2015 Big data, in all its forms, is

More information

SCALABLE ENTERPRISE CRM SERVICES

SCALABLE ENTERPRISE CRM SERVICES SCALABLE ENTERPRISE CRM SERVICES Scalable Systems Email: info@scalable-systems.com A majority of customer relationship management solutions have been designed and tested to solve yesterday's problems and

More information

Predicting & Preventing Banking Customer Churn by Unlocking Big Data

Predicting & Preventing Banking Customer Churn by Unlocking Big Data Predicting & Preventing Banking Customer Churn by Unlocking Big Data Making Sense of Big Data http://www.ngdata.com Predicting & Preventing Banking Customer Churn by Unlocking Big Data 1 Predicting & Preventing

More information

Tap into Big Data at the Speed of Business

Tap into Big Data at the Speed of Business SAP Brief SAP Technology SAP Sybase IQ Objectives Tap into Big Data at the Speed of Business A simpler, more affordable approach to Big Data analytics A simpler, more affordable approach to Big Data analytics

More information

Best Practices in Contract Migration

Best Practices in Contract Migration ebook Best Practices in Contract Migration Why You Should & How to Do It Introducing Contract Migration Organizations have as many as 10,000-200,000 contracts, perhaps more, yet very few organizations

More information

Architecting an Industrial Sensor Data Platform for Big Data Analytics

Architecting an Industrial Sensor Data Platform for Big Data Analytics Architecting an Industrial Sensor Data Platform for Big Data Analytics 1 Welcome For decades, organizations have been evolving best practices for IT (Information Technology) and OT (Operation Technology).

More information

BUSINESS INTELLIGENCE MATURITY AND THE QUEST FOR BETTER PERFORMANCE

BUSINESS INTELLIGENCE MATURITY AND THE QUEST FOR BETTER PERFORMANCE WHITE PAPER BUSINESS INTELLIGENCE MATURITY AND THE QUEST FOR BETTER PERFORMANCE Why most organizations aren t realizing the full potential of BI and what successful organizations do differently Research

More information

VIEWPOINT. High Performance Analytics. Industry Context and Trends

VIEWPOINT. High Performance Analytics. Industry Context and Trends VIEWPOINT High Performance Analytics Industry Context and Trends In the digital age of social media and connected devices, enterprises have a plethora of data that they can mine, to discover hidden correlations

More information

INTELLIGENT BUSINESS STRATEGIES WHITE PAPER

INTELLIGENT BUSINESS STRATEGIES WHITE PAPER INTELLIGENT BUSINESS STRATEGIES WHITE PAPER Improving Access to Data for Successful Business Intelligence Part 1: Meeting Today s Business Requirements in an Increasingly Complex Environment By Mike Ferguson

More information

Healthcare Data Management

Healthcare Data Management Healthcare Data Management Expanding Insight, Increasing Efficiency, Improving Care WHITE PAPER This document contains Confidential, Proprietary and Trade Secret Information ( Confidential Information

More information

IBM SECURITY QRADAR INCIDENT FORENSICS

IBM SECURITY QRADAR INCIDENT FORENSICS IBM SECURITY QRADAR INCIDENT FORENSICS DELIVERING CLARITY TO CYBER SECURITY INVESTIGATIONS Gyenese Péter Channel Sales Leader, CEE IBM Security Systems 12014 IBM Corporation Harsh realities for many enterprise

More information

Introduction. By Santhosh Patil, Infogix Inc.

Introduction. By Santhosh Patil, Infogix Inc. Enterprise Health Information Management Framework: Charting the path to bring efficiency in business operations and reduce administrative costs for healthcare payer organizations. By Santhosh Patil, Infogix

More information

DATAMEER WHITE PAPER. Beyond BI. Big Data Analytic Use Cases

DATAMEER WHITE PAPER. Beyond BI. Big Data Analytic Use Cases DATAMEER WHITE PAPER Beyond BI Big Data Analytic Use Cases This white paper discusses the types and characteristics of big data analytics use cases, how they differ from traditional business intelligence

More information

Transforming IT Processes and Culture to Assure Service Quality and Improve IT Operational Efficiency

Transforming IT Processes and Culture to Assure Service Quality and Improve IT Operational Efficiency EXECUTIVE BRIEF Service Operations Management November 2011 Transforming IT Processes and Culture to Assure Service Quality and Improve IT Operational Efficiency agility made possible David Hayward Sr.

More information

MDM and Data Quality for the Data Warehouse

MDM and Data Quality for the Data Warehouse E XECUTIVE BRIEF MDM and Data Quality for the Data Warehouse Enabling Timely, Confident Decisions and Accurate Reports with Reliable Reference Data This document contains Confidential, Proprietary and

More information

IBM Software A Journey to Adaptive MDM

IBM Software A Journey to Adaptive MDM IBM Software A Journey to Adaptive MDM What is Master Data? Why is it Important? A Journey to Adaptive MDM Contents 2 MDM Business Drivers and Business Value 4 MDM is a Journey 7 IBM MDM Portfolio An Adaptive

More information

White Paper. The Assurance Checklist for Branch Networks A pragmatic guide for building high performance branch office networks.

White Paper. The Assurance Checklist for Branch Networks A pragmatic guide for building high performance branch office networks. White Paper The Assurance Checklist for Branch Networks A pragmatic guide for building high performance branch office networks. - 1 - Executive Summary The era of mobility and consumerization has fundamentally

More information

Detect & Investigate Threats. OVERVIEW

Detect & Investigate Threats. OVERVIEW Detect & Investigate Threats. OVERVIEW HIGHLIGHTS Introducing RSA Security Analytics, Providing: Security monitoring Incident investigation Compliance reporting Providing Big Data Security Analytics Enterprise-wide

More information

P u b l i c a t i o n N u m b e r : W P 0 0 0 0 0 0 0 4 R e v. A

P u b l i c a t i o n N u m b e r : W P 0 0 0 0 0 0 0 4 R e v. A P u b l i c a t i o n N u m b e r : W P 0 0 0 0 0 0 0 4 R e v. A FileTek, Inc. 9400 Key West Avenue Rockville, MD 20850 Phone: 301.251.0600 International Headquarters: FileTek Ltd 1 Northumberland Avenue

More information

Beyond Watson: The Business Implications of Big Data

Beyond Watson: The Business Implications of Big Data Beyond Watson: The Business Implications of Big Data Shankar Venkataraman IBM Program Director, STSM, Big Data August 10, 2011 The World is Changing and Becoming More INSTRUMENTED INTERCONNECTED INTELLIGENT

More information

Strategically Detecting And Mitigating Employee Fraud

Strategically Detecting And Mitigating Employee Fraud A Custom Technology Adoption Profile Commissioned By SAP and Deloitte March 2014 Strategically Detecting And Mitigating Employee Fraud Executive Summary Employee fraud is a universal concern, with detection

More information

MDM and Data Warehousing Complement Each Other

MDM and Data Warehousing Complement Each Other Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There

More information

IBM Software Enabling business agility through real-time process visibility

IBM Software Enabling business agility through real-time process visibility IBM Software Enabling business agility through real-time process visibility IBM Business Monitor 2 Enabling business agility through real-time process visibility Highlights Understand the big picture of

More information

5 Best Practices for SAP Master Data Governance

5 Best Practices for SAP Master Data Governance 5 Best Practices for SAP Master Data Governance By David Loshin President, Knowledge Integrity, Inc. Sponsored by Winshuttle, LLC Executive Summary Successful deployment of ERP solutions can revolutionize

More information