Optimización Energética de una Central Térmica para su Operación Eficiente con un Sistema de Captura de CO 2 por Post-combustión

Size: px
Start display at page:

Download "Optimización Energética de una Central Térmica para su Operación Eficiente con un Sistema de Captura de CO 2 por Post-combustión"

Transcription

1 Proyecto Fin de Carrera Optimización Energética de una Central Térmica para su Operación Eficiente con un Sistema de Captura de CO 2 por Post-combustión Un proyecto para la consecución del título de Ingeniería Industrial Especialidad Tecnologías Energéticas Tutores de proyecto: Proj.Ass. Dipl.-Ing. Sebastian POSCH (TU WIEN) Univ.Prof. Dipl.-Ing. Dr.tech. arkus HAIDER (TU WIEN) Jorge LÓPEZ PUENTE (UC3) E Institut für Energietechnik und Thermodynamik Realizado en Technische Universität Wien Fakultät für aschinenwesen und Betriebswissenschaften Autor Ignacio GARCÍA SÁNCHEZ-CERVERA NIA Claudio Coello adrid adrid Spain Viena, 28 de junio de 2010

2 Resumen del Proyecto en Castellano Introducción El cambio climático es responsable del incremento gradual de la temperatura global. Detener este incremento y mantenerlo por debajo de 2,4 C será necesario para evitar cambios irreversibles en las condiciones climáticas del planeta. Existe un consenso creciente sobre la necesidad de reducir las emisiones de gases de efecto invernadero, principal causante del cambio climático, sin embargo, desde un enfoque realista la Agencia Internacional de la Energía (AIE) [19] detalla cómo actualmente los combustibles fósiles representan más del 80% de la energía primaria consumida en el mundo y cómo éstos seguirán siendo la principal fuente de energía durante las próximas décadas. Ante este escenario, la Captura y Confinamiento de CO 2 (CCS) se convierte junto a la eficiencia energética, energías renovables y energía nuclear en una pieza clave dentro del conjunto de tecnologías necesarias para conseguir los ambiciosos objetivos de reducción de emisiones. En el plan de la AIE para afrontar el Cambio Climático, la CCS asume cerca del 20% del objetivo de reducción de emisiones para Fuente: AIE [20] La Captura y Confinamiento de CO 2 es un proceso por el cual el CO 2 generado en grandes focos de emisión tales como centrales térmicas, acerías o cementeras entre otros, es capturado y confinado indefinidamente para anular su efecto sobre la atmósfera. Dentro de la Captura y Confinamiento de CO 2, la tecnología de post-combustión es considerada actualmente como la más prometedora para su implementación en centrales térmicas ya existentes y otras grandes instalaciones productoras de CO 2, puesto que se caracteriza por las menores modificaciones necesarias comparándola con las otras tecnologías de captura. Además presenta un elevado potencial para su optimización energética en un futuro próximo. A lo largo de este proyecto se ha simulado una central térmica perteneciente al estado de la técnica y se ha optimizado para su operación junto con un sistema de captura por post-combustión. El software Ebsilon R Professional ha sido escogido para llevar a cabo la simulación. i

3 Captura y Confinamiento de CO 2 CCS es la técnica mediante la cual parte del CO 2 generado en grandes focos de emisión es capturado, purificado, comprimido y posteriormente transportado para su posterior confinamiento en formaciones geológicas por un tiempo indefinido. Esta técnica aprovecha otras tecnologías ya maduras como son el lavado de gases mediante productos químicos, el transporte de gases o la exploración de yacimientos de petróleo y gas, aplicándolas con un nuevo fin de protección ambiental, para reducir las emisiones de CO 2 de los combustibles fósiles y actuar como una tecnología puente entre el escenario actual y un futuro donde las renovables supondrán la fuente más importante de energía. Captura de CO 2 Actualmente están siendo desarrolladas un número de tecnologías que podrían hacer comercialmente viable la CCS a gran escala para su implementación en centrales térmicas. Estas técnicas pueden ser agrupadas en tres categorías principales: Oxi combustión La combustión se realiza con un comburente de alto contenido en oxígeno y muy baja presencia de nitrógeno, de forma que la concentración de CO 2 en los gases resultantes sea muy elevada. Con ello se facilita la separación posterior, puesto que la composición de los gases de la combustión es casi en su totalidad vapor de agua y CO 2. El agua es separada y las impurezas restantes son extraídas para obtener una corriente de CO 2 de alta pureza lista para su compresión y transporte. Una de las desventajas de este método son los altos requerimientos energéticos del proceso de separación del oxígeno del aire. Las altas temperaturas alcanzadas al quemar combustibles con oxigeno - demasiado elevadas para las calderas convencionales - son otro reto para esta tecnología. Una solución es la recirculación de parte de los gases de la combustión. Diagrama de oxi combustión, también llamada combustión en O2/CO2. Fuente: Vattenfall Pre combustión Se trata de separar el CO 2 a la salida del gasificador, antes de que el gas de síntesis entre en la turbina de gas. Esta categoría es aplicable únicamente a nuevas centrales ii

4 térmicas de tipo Gasificación Integrada con Ciclo Combinado (GICC). Es la tecnología que presenta los menores costes de captura. Diagrama de captura por pre combustión, aplicado en centrales tipo GICC. Fuente: Vattenfall Post combustión Es un sistema de captura de CO 2 basado en el lavado de gases con productos químicos mediante procesos de absorción/desabsorción química. El CO 2 es absorbido en un disolvente en la columna de lavado, posteriormente el disolvente es regenerado en la columna de desabsorción liberandose el CO 2 y obteniéndose una corriente de alta pureza en CO 2. Esta categoría es la más apropiada para su aplicación en centrales térmicas ya existentes pero requiere altos consumos de energía y por tanto el rendimiento de la central cae de forma significativa. Diagrama de captura por post combustión. Es la categoría que menores modificaciones requiere en plantas convencionales. Fuente: Vattenfall Compresión y transporte de CO 2 El CO 2 ha de ser comprimido previamente a su transporte para reducir su volumen. En estado supercrítico el CO 2 ocupa un volumen del 0,2% en comparación con el volumen en condiciones ambientales. La presión de transporte depende de las características del lugar de almacenamiento final así como de las distancias de transporte por gasoducto. El CO 2 es iii

5 generalmente comprimido a presión supercrítica entre 100 y 150 bar. El transporte de CO 2 puede realizarse por gasoductos, buques gaseros, o por tierra mediante contenedores cisterna. El transporte de CO 2 se beneficia de la experiencia adquirida en el transporte de gas natural y otros combustibles gaseosos gracias a sus semejantes características. Almacenamiento de CO 2 Existen dos alternativas para el confinamiento permanente de CO 2 : formaciones geológicas y almacenamiento marino. El almacenamiento marino consiste en inyectar el CO 2 en simas profundas en el océano. El agua con CO 2 disuelto es más densa que el agua de mar y se mantiene estable durante cientos de años, formando lagos en el fondo marino. Esta opción ha sido casi totalmente descartada por la falta de conocimiento y las incertidumbres que genera. El confinamiento geológico tiene lugar en formaciones que aseguren que el CO 2 se mantenga sin fugas durante miles de años. Hay tres tipos de formaciones que pueden ser utilizadas para confinar CO 2 y que presentan un alto potencial en capacidad de almacenamiento: Acuíferos marinos, yacimientos agotados de petróleo y gas y betas de carbón no extraíbles. apa de posibles localizaciones de formaciones geológicas apropiadas para el confinamiento geológico de CO 2 en España. Fuente: Fundación para Estudios sobre la Energía iv

6 Simulación de la Central Térmica y Planta de Captura de CO 2 Los capítulos 2, 3 y 4 de este proyecto tratan aspectos teóricos sobre centrales térmicas y la tecnología de captura y almacenamiento de CO 2, post combustión en concreto. Estos capítulos ponen de manifiesto las ventajas de la captura de CO 2 pero también las grandes cantidades de energía necesarias y el efecto negativo que este proceso tiene sobre el rendimiento neto de la central. Estos importantes requerimientos de energía pueden ser reducidos aplicando un doble enfoque: en primer lugar, la optimización del proceso de captura y compresión para una operación más eficiente. En segundo lugar, la integración energética de la central térmica con la planta de captura para la recuperación de calores residuales. Esta segunda opción es el objeto de este proyecto. Los siguientes capítulos están dedicados al estudio y comparación de tres casos. Como caso de referencia, en el capítulo 7 se ha simulado una central térmica de vanguardia. A continuación, en el capítulo 8, se añadió una planta de captura y compresión de CO 2 convencional para analizar la caída de rendimiento y otros efectos de la planta de captura sobre la central térmica. Por último, en una serie de casos dentro del capítulo 9, se estudiaron posibles integraciones energéticas y utilización de calores residuales para aumentar la eficiencia de la central térmica con captura de CO 2. Flujos de energía entre las principales áreas de una central térmica con captura de CO 2 integrada. Fuente: Siemens [21] Los casos de optimización analizados fueron los siguientes: Integración I: Precalentamiento del aire de combustión mediante calor residual proveniente de la columna de desabsorción en el proceso de captura de CO 2 (ver figura 9.6). Integración II: Es posible utilizar parte del calor residual para precalentar agua en el ciclo de agua/vapor en la línea de precalentadores de baja presión LP1, LP2, LP3 y LP4. Así, es posible eliminar el primer precalentador y reducir el incremento de temperatura de LP2 añadiendo un intercambiador agua-agua para transferir el calor residual de la columna de desabsorción y el evacuado por el sistema de refrigeración del compresor. De este modo se reduce el sangrado de vapor necesario de la turbina de baja presión y se incrementa la potencia neta de la central (ver figura 9.12). v

7 Integración III: Al precalentar el aire de combustión con calor residual del proceso de captura de CO 2, el aire llega al precalentador de aire a una temperatura más elevada. Ahora, es posible utilizar parte de la energía remanente en los gases de la combustión no sólo para precalentar el aire sino para además incrementar la temperatura de una extracción de agua de la línea de baja presión, reduciendo así el sangrado necesario para operar los precalentadores de agua de baja presión (ver figura 9.19). Integración IV: Uso de la nueva tecnología de onda de choque para la compresión del CO 2. El estado de la técnica en compresión de CO 2 es el uso de compresores centrífugos de multieje, que tratan de seguir la línea de compresión isoterma y se acercan así al consumo mínimo. Estos compresores necesitan alrededor de cinco etapas con refrigeración intermedia para alcanzar presiones supercríticas de CO 2 (entre 100 y 150 bar). El CO 2 alcanza temperaturas cercanas a los 100 C tras cada etapa de compresión. El sistema de refrigeración evacua este calor haciendo circular un fluido refrigerante que alcanza temperaturas cercanas a 70 C. ayores temperaturas podrían dañar el compresor (Ver figura 9.24). Una nueva tecnología de compresión en estado de validación, desarrollada por la compañía estadounidense Ramgen R, promete elevados ratios de compresión y la posibilidad de elevar grandes flujos de CO 2 a presión de transporte en únicamente dos etapas. Las temperaturas que alcanza el CO 2 después de cada etapa son cercanas a 270 C. Esto permitiría un sistema de refrigeración donde el fluido refrigerador, que debería ser un aceite térmico o agua presurizada, podría alcanzar temperaturas mayores a 200 C. Esta elevada temperatura del calor evacuado del sistema de compresión hace que sea posible ceder parte de esta energía al ciclo de agua/vapor incluso en la línea de precalentadores de alta presión. La cuarta integración por tanto aplica esta nueva tecnología de compresión y tras detallado estudio se concluyó que la alternativa óptima en términos de eficiencia neta de la central es la adición de un intercambiador agua/aceite antes del desaireador y otro en la línea de precalentamiento de agua de baja presión. Integración V: Para regenerar el disolvente rico en CO 2 es necesario el uso de grandes cantidades de vapor. Por una serie de requerimientos del proceso de desabsorción del disolvente y otros factores a tener en cuenta, el vapor es extraído habitualmente del conducto de cruce de la etapa intermedia a la etapa de baja presión en la turbina. Este vapor se encuentra a temperaturas más elevadas que la necesaria para la regeneración. Por tanto, si se añade un intercambiador que transfiera parte de la energía contenida en el flujo extraído hacia el ciclo de agua/vapor, es posible incrementar discretamente la eficiencia de la central. Una vez concluido el proceso de integración energética, la central térmica con captura de CO 2 por post combustión queda simulada en la figura A continuación se muestra una serie gráficas con los principales resultados de este estudio: vi

8 Optimización del rendimiento neto de la central después de las integraciones propuestas. La central en estudio tiene un rendimiento neto del 45,9% sin proceso de captura. Optimización del rendimiento bruto de la central después de las integraciones propuestas. La central en estudio tiene un rendimiento bruto del 49,5% sin proceso de captura. Incremento de la potencia neta después de las integraciones propuestas. La central en estudio tiene una potencia neta de 556 W el sin proceso de captura y 414 W el en el caso CCS base. Incremento de la potencia bruta después de las integraciones propuestas. La central en estudio tiene una potencia bruta de 600 W el sin proceso de captura y 509 W el en el caso CCS base. vii

9 Conclusiones El proceso de captura por post combustión es actualmente la tecnología más prometedora dentro de las diferentes opciones en CCS. A pesar de ello, todavía se enfrenta a una serie de retos: incrementar la escala hasta los volúmenes de centrales comerciales y reducir el consumo energético para minimizar la penalización sobre el rendimiento neto de la central. Los resultados de este estudio muestran como al instalar un sistema de captura por post combustión, la extracción de vapor y energía eléctrica necesarias hacen caer la potencia neta de la central 142 W el desde 556 W el hasta los 414 W el. Esto supone una caída de rendimiento neto del 45,9% a un 34,2%, es decir, una caída cercana a 12 puntos porcentuales. ediante la integración energética realizada en este estudio es posible reducir esta penalización casi un 15% hasta tener una caída de rendimiento neto de 10 puntos porcentuales. Después del proceso de integración, la central llega a producir hasta 20 W el más comparándola con el caso de central térmica con captura no integrada. viii

10 aster Thesis Energetic Optimization of a Steam Cycle Power Plant for an Efficient Operation of a Post-combustion CO 2 Capture Plant ausgeführt zum Zwecke der Erlangung des akademischen Grades eines aster of Science unter Anleitung von Proj.Ass. Dipl.-Ing. Sebastian POSCH Univ.Prof. Dipl.-Ing. Dr.tech. arkus HAIDER E Institut für Energietechnik und Thermodynamik erstellt an der Technische Universität Wien Fakultät für aschinenwesen und Betriebswissenschaften von Ignacio GARCIA SANCHEZ-CERVERA e Claudio Coello adrid adrid Spain Wien, am

11 Agradecimientos Gracias en primer lugar a mis padres Eduardo y Lourdes, que con su inmenso cariño y generosidad han hecho posible esta inolvidable aventura en Viena. A ellos dedico este proyecto. Gracias a mis hermanos Eduardo, Lourdes y Jaime por su apoyo incondicional y la alegría que transmiten, a mi Anita por haber estado cada día tan lejos y a mi lado, y a los que empezaron como compañeros, ahora grandes amigos, con ellos he compartido tantas horas de bibliotecas y los mejores recuerdos de esta etapa de mi vida en la universidad. Por supuesto, agradezco especialmente a arkus Haider y Sebastian Posch, tutores de este proyecto en la Universidad Tecnológica de Viena, por todo lo que he aprendido gracias a ellos y por su decidida ayuda siempre que fue necesario. i

12 Abstract The post-combustion separation technology (PCC) is one out of three main types of CO 2 separation. PCC is mainly characterized by the fact that the intervention in the conventional power plant process is the smallest one compared to the other capture technologies. Furthermore postcombustion can be applied to the conventional power plant process as well as to a CO 2 -producing industry plant. Therefore for Austria s point of view, PCC is the most promising technology. A state-of-art coal-fired power plant retrofitted with a post-combustion CO 2 capture system was modeled with the process simulation tool EBSILON R Professional. The drastic CO 2 emissions reduction comes together with a significant net efficiency penalty. A series of simulations were carried out to find what further opportunity exists to reduce the impact of the capture system on net efficiency via astute integration of both plants. Within this thesis several heat integration measures were implemented and their results compared with the reference non integrated retrofitted power plant, showing a significant efficiency penalty reduction after heat integration. Resumen La separación por post-combustión (PCC) es una de las tres principales tecnologías para la Captura y Confinamiento de CO 2. Esta técnica se caracteriza por poder ser implementada en centrales térmicas convencionales, requiriendo en ellas el mínimo número de modificaciones comparado con las demás tecnologías de captura. ás allá, esta tecnología puede ser aplicada también a otras grandes industrias emisoras de CO 2. De este modo, la separación de CO 2 por post-combustión es, desde el punto de vista austriaco, la opción más prometedora. La substancial reducción de emisiones de CO 2 que este sistema posibilita, tiene como consecuencia directa una importante caída en el rendimiento neto de la central. A lo largo de este proyecto, llevado a cabo mediante el software comercial EBSILON R Professional, se ha simulado una central térmica de vanguardia alimentada por combustible carbón pulverizado, para su operación conjunta con un sistema de captura por post-combustión. La serie de simulaciones llevadas a cabo han demostrado como, a través de una astuta integración energética entre ambas; planta de captura y central térmica, es posible reducir la caída de rendimiento de una forma significativa y con ello los propios costes de reducción de emisiones. ii

13 Contents Contents 1. Introduction 1 2. Steam Cycle Power Plants The Rankine Cycle The Ideal Rankine Cycle The Externally Irreversible Rankine Cycle The Internaly Irreversible Rankine Cycle Efficiency and Heat Rate The Supercritical Pressure Cycle Design and Performance of Steam Power Plants Steam Generator Steam Turbines Condensate Feedwater System Steam Power Plant Development Carbon Capture and Storage Technology Overview of the CO 2 Capture and Storage and its Development Baseline Efficiencies and Emissions Reduction Capture Technology Oxyfuel Combustion Pre-combustion Post-combustion Capture Summary Compression Compression Strategies State of the Art CO 2 Compressors Compression Development. New Shockwave Technology CO 2 Transport CO 2 Storage Geological Storage Reservoirs Permanent Storage echanisms Storage Capacity in Europe Legal and Regulatory Frameworks Post-combustion Capture Technology The Basic Absorption Process Flue Gas Pre-treatment CO 2 Separation Solvent Regeneration Energy Consumption Thermal Energy Requirements Electric Energy Requirements Efficiency and Impact Over the Power Plant Process Operating Conditions Absorber Column Desorber Column Solvent Flow Rate odifications on the Steam Power Plant iii

14 Contents 4.5. Capture Ready Power Plants Potential for Process Optimization Introduction to the Simulation odel and Simulation with EBSILON Professional Basic Characteristics Working Environment Object Types Design ode Off-Design ode odel and Simulation of the Steam Power Plant Description of the Reference Power Plant Water/Steam Cycle Flue Gas Path odel and Simulation Water/Steam Cycle odel Flue Gas Path odel Baseload Simulation Partload Simulation odel and Simulation of the Steam Power Plant with Post-combustion Capture Capture Plant odel Boundary Conditions Cooling Requirements of the Capture Plant CO2 Compressor odel Baseload Simulation Partload Simulation Capture Plant Energy Consumption Plant Integration odel and Simulation Heat Sources in the Capture Plant Potential Integration Points in the Steam Power Plant Integration I: Air Pre-heating with Waste Heat Integration II: Waste Heat to LP Feedwater Line Integration III: Flue gas to LP Line Integration IV: Shockwave Compressor Further Integrations Integration V: Desuperheating Extracted Steam Capture Ready IP Turbine Final Results of the Optimization Conclusions and Outlook 98 List of Figures 102 List of Tables 103 References 104 A. APPENDIX I: Capture Plant EbsScript odel i iv

15 1. Introduction 1. Introduction Climate change is one of this century s most serious challenges. And greenhouse effect is the main responsible, causing a gradual increase in the average planet temperatures. The Intergovernmental Panel on Climate Change [29] has remarked that keeping the rise in average total temperature below 2,4 C is the only way to avoid irreversible changes. Consensus is growing among researchers, policy makers and business leaders that concerted action will be needed to tackle rising greenhouse gas emissions. CO 2 is the greenhouse gas that makes the most significant contribution towards the greenhouse effect and therefore is the first target 1. The discussion is now turning to the practical issues of where and how emissions reduction can best be achieved, at what costs, and over what period of time. And to find the right answer, it will only be possible from a rigorous and realistic analysis of the current global trends in energy supply and consumption. Fossil fuels are the world s vital source of energy and will remain so for many years to come even under the most optimistic scenarios of low carbon technology development and deployment 2. With a strong expected growth in the world population from 6,5 billion in 2006 to 8,2 billions in 2030 and a rate of economic growth assumed to average 3,3% per year over the period 2006 to 2030, the expected increase on the global energy demand becomes a reality. oreover, the need to secure supply of a reliable and affordable energy and the long lasting resources of fossil fuels (especially coal) will lead not only to maintain but to an increase in oil, gas and coal 3 demand over the next decades. According to the IEA Energy Technology Perspectives 2008, this scenario will lead to an increase on the energy sector CO 2 emissions over 130% above 2005 levels, in the absence of new policies [29]. Carbon Capture and Storage: A Key Abatement Option In the Technology Roadmap for Carbon Capture and Storage, IEA assesses strategies for reducing GHGs emissions by 50% by 2050 compared to levels off 2005 (see figure 1.1). This report concludes that CCS will have to contribute by 20% of the total reductions to achieve stabilization of the atmospheric level of GHGs in the most cost effective manner. itigating emissions without CCS technologies, would suppose an increase in overall cost of 70%. Carbon capture and storage is therefore an essential part of the portfolio of solutions needed to achieve the global emissions reduction target [20]. Despite the main role that carbon capture and storage technology will play in this scenario, it is not ready yet for large scale and commercial application. To establish CCS as a mature and reliable technology, exhaustive research and development efforts are being done in all three main technical fields involving CCS. CO 2 transport technology benefits from the wide experience gained in gas transportation both by pipeline and by ship. The storage field, although is still in validation phase, involves similar technology to that employed by oil and gas industry for exploration and production of hydrocarbons. Finally, carbon capture still involves significant additional equipment and high energy-intensive processes. Thus, within the three areas, carbon capture has the major impact on energy consumption and economic investment, representing from 70 to 80% of the total costs of a 1 The BLUE ap scenario, established by the IEA, represents a guideline to reduce GHGs emissions 50% by 2050 compared with levels of According to the IEA, today fossil fuels represent more than 80% of the global primary energy supply and will remain essential in the world s primary energy mix accounting 80% by 2030, down slightly on today. 3 In the IEA World Energy Outlook 2008 coal continues to account for about half of fuel needs for power generation by

16 1. Introduction Figure 1.1: CCS reduction up to 20% in the lowest-cost mitigation scenario for 2050 carbon capture, transport and storage system [5]. Scaling up carbon capture, from pilot plants (less than 10Wel) to large commercial power plants (more than 100Wel) [9], and reducing overall efficiency penalty caused by the capture process are the two central challenges facing CCS. Within CCS, post-combustion separation is one of the carbon capture most promising techniques [5]. This technology is mainly characterized by small modifications in the power plant and the possibility for retrofitting existing power plants and large emitters as iron or concrete industry. Particularly for post-combustion, extensive integration between the power plant and the capture plant shows one of the highest potentials to reduce efficiency penalty [30]. This work is an attempt to show how a high integrated process can optimize overall efficiency of a pulverized coal-fired power plant operating with a post-combustion capture plant. For this study a state-of-art coal-fired power plant has been chosen. Developed by a joint research of plant constructors and operators, the Reference Power Plant North Rhine Westphalia (RPP NRW) [31] is a concept study for an ultra-supercritical 600W single unit designed for inland location and with net efficiency of 46%. The alternative software packages for the simulation were ASPEN Plus R and EBSILON R Professional 8.0. The first is designed to simulate chemical processes while the latter is optimal for energy and mass balancing of power plant processes. Since the aim of this study was the power plant integration, EBSILON R Professional 8.0 was selected. 2

17 2. Steam Cycle Power Plants 2. Steam Cycle Power Plants This chapter revises the basic characteristics and design of steam power plants. Starting from a theoretical approach it will reach the state-of-art process and equipment and finally, an outlook on the future development of steam power plants The Rankine Cycle Since the beginning of thermodynamics as a modern science, with the Carnot cycle as the highest efficiency hypothetical heat engine, Rankine cycle was conceived and readily accepted as the closest real solution to Carnot s cycle. Therefore it became the standard for steam power plants and remains so today. This section is focused to the analysis of the Rankine cycle, from its simplest ideal form to its more complex application present today in the state-of-art steam power plants. For its realization, the book Powerplant Technology of. El-Wakil [8] has been followed, as well as other relevant literature The Ideal Rankine Cycle Rankine cycle is a two-phase cycle usually represented by a T-S diagram and its most simplified flow diagram, both shown in the figure 2.1. Cycle B-1 is a saturated Rankine cycle with saturated steam entering the turbine,while B-1 represents a superheat Rankine cycle. Figure 2.1: Ideal Rankine cycle flow diagram and T-s diagram [8] Both cycles are ideally reversible and have the following processes: 1-2 or 1-2 : adiabatic reversible expansion through the turbine. usually in the two phase region. The exhaust vapor is 2-3 or 2-3 : constant temperature and pressure heat rejection in the condenser. 3

18 2. Steam Cycle Power Plants 3-4: adiabatic reversible compression by the feedwater pump of saturated liquid at the condenser pressure to subcooled liquid at the steam generator pressure. 4-1 or 4-1 : Constant pressure heat addition in the steam generator to saturated steam conditions in 4-1 or superheated steam in 4-1 The line 4-B represents bringing the subcooled liquid to a saturated liquid. This heat addition takes place in the economizer. The portion B-1, the phase change from saturated liquid to saturated steam, takes place in the boiler or evaporator. For superheat cycles the additional heat input at constant pressure represented by 1-1 is carried out within the steam generator by the superheater sections. These idealized processes are internally reversible without pressure losses in the piping, inefficiencies in turbine or in the pump, achieving the thermal efficiency shown in equation (2.1). The superheat cycle efficiency B-1 can be calculated the same way using 1 instead of 1. η th = W net = (h 2 h 1 ) (h 4 h 3 ) q A (h 1 h 4 ) (2.1) The Externally Irreversible Rankine Cycle External irreversibility is the result of the temperature differences between the primary heat source, the combustion gases from the steam generator furnace, and the working fluid; and the temperature differences between the condensing working fluid and the cooling medium. Figure 2.2: (a) External irreversibility with Rankine cycle. (b) External irreversibility with superheat Rankine cycle [8] Figure 2.2a represents with lines ab and cd, high temperature heat source and the cooling fluid. High average temperature differences between lines ab, cd and the working fluid, result in small and inexpensive steam generator, but also lead to high irreversibility and, hence, reduction in plant efficiency. Superheat There are a few possibilities to improve overall efficiency by reducing temperature differences between working fluid and the cooling system (see 2.2a). In contrast, irreversibility in the case of combustion gases can be reduced by the use of superheated steam. By heating up the working 4

19 2. Steam Cycle Power Plants fluid to 1 the average temperature difference between ae and B-1-1, figure 2.2b, decreases. Thus, superheating would improve the cycle thermal efficiency. oreover, superheated steam is necessary in real installations, due to the substantial damages that a steam with significant levels of moisture would produce to the blades of the turbine. Reheat An additional improvement in cycle efficiency with fossil fueled power plants can be achieved by the use of reheat. Figure 2.3 shows the simplified flow and T-s diagram of a Rankine cycle with one reheat stage. Figure 2.3: (a) Schematic of a Rankine cycle with superheat and reheat and (b) its respective T-s diagram [8] Reheat allows a second heat addition, resulting in an increase of the average temperature in which the heat is added to the working fluid and as a consequence an increase in the cycle efficiency. As in superheat, for practical application, reheat result also beneficial due to the drier steam conditions achieved at the turbine exhaust. Figure 2.4: Effect of reheat pressure ratio on efficiency, High pressure turbine exit temperature, and low pressure trubine exit quality [8] 5

20 2. Steam Cycle Power Plants The reheat pressure P 2 affects the cycle efficiency as it is shown in the figure 2.4. The efficiency improves as the reheat pressure P 2 is lowered and reaches a maximum at a pressure ratio P 2 /P 1 between 20 and 25 percent, where P 1 is the life steam pressure. Regeneration Regeneration represents a way to reduce average temperature differences and thus inefficiencies that occur prior to the boiling point in the economizer section, between lines be and 4B in figure 2.2b. The irreversibility could be eliminated if the feeding water enters the generator at B rather than at point 4. Figure 2.5: Ideal regeneration of a Rankine cycle [8] Figure 2.1 shows the ideal regeneration of a Rankine cycle, resulting what is called carnotization of the cycle. The ideal regeneration of a Rankine cycle would suppose continuous heat transference between the expanding steam and the feedwater line without bleeds. Transferring such amount of heat without the use of the steam latent heat would require a turbine shell with enormous surfaces between the expanding fluid and feedwater to enable the same heat transference. For this reason, ideal regeneration is not technically feasible. In practice, the compressed feedwater is heated in a finite number of steps by vapor bled from the turbine at selected stages, rather than continuously. Because the finite number of heating stages, the feedwater enters the steam generator at a point below B, making necessary an economizer section, tough one much smaller than the required without regeneration. Regeneration results in a reduction of power output but in a significant improvement in the overall thermal efficiency (η th ). For this reason, modern large steam power plants use between five and eight feedwater heating stages [8]. Higher number of stages is uneconomic since the efficiency increase due to an additional preheater becomes smaller. There are three types of feedwater heaters in use, these are: Open or direct-contact feedwater heaters In the open or direct-contact type feedwater heater the extracted steam is mixed directly with 6

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

OUTCOME 4 STEAM AND GAS TURBINE POWER PLANT. TUTORIAL No. 8 STEAM CYCLES

OUTCOME 4 STEAM AND GAS TURBINE POWER PLANT. TUTORIAL No. 8 STEAM CYCLES UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 4 STEAM AND GAS TURBINE POWER PLANT TUTORIAL No. 8 STEAM CYCLES 4 Understand the operation of steam and gas

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

Agenda. El gas natural en la generación eléctrica: Las centrales de ciclo combinado. 1 El grupo ALSTOM

Agenda. El gas natural en la generación eléctrica: Las centrales de ciclo combinado. 1 El grupo ALSTOM Agenda El gas natural en la generación eléctrica: Las centrales de ciclo combinado Bernard Tripod Marketing Manager 26/04/2007 POWER SYSTEMS 1 El grupo ALSTOM 2 Ciclo Combinado Concepto e características

More information

Feedwater and Steam System Components

Feedwater and Steam System Components Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Feedwater and Steam System Components

More information

4.1 Introduction. 4.2 Work. Thermodynamics

4.1 Introduction. 4.2 Work. Thermodynamics Thermodynamics 4-1 Chapter 4 Thermodynamics 4.1 Introduction This chapter focusses on the turbine cycle:thermodynamics and heat engines. The objective is to provide enough understanding of the turbine

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Steam Power Cycle, Steam Nozzle Good afternoon everybody.

More information

Carbon Dioxide (CO2) Capture at Coal-Fired Power Plants. Presented By Brian McNamara

Carbon Dioxide (CO2) Capture at Coal-Fired Power Plants. Presented By Brian McNamara Carbon Dioxide (CO2) Capture at Coal-Fired Power Plants Presented By Brian McNamara bmcnamara@kentlaw.edu What is CO2 Capture? A process consisting of separating CO2 from energy-related sources before

More information

FOSSIL FUEL FIRED BOILER PLANT CONFIGURATION R.A.

FOSSIL FUEL FIRED BOILER PLANT CONFIGURATION R.A. FOSSIL FUEL FIRED BOILER PLANT CONFIGURATION R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam, Boiler, Arrangement Contents 1. Introduction 1.1 Terminology

More information

Basics of Steam Generation

Basics of Steam Generation Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Basics of Steam Generation Sebastian

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

Putting a chill on global warming

Putting a chill on global warming Carbon capture and storage Putting a chill on global warming SABINE SULZER SULZER PUMPS MARKUS DUSS SULZER CHEMTECH Whenever fuel is burned, carbon dioxide (CO ) is emitted into the atmosphere. The subsequent

More information

DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual. Version 2.0 Beta DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

More information

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng Condensing Economizers Workshop Enbridge Gas, Toronto MENEX Boiler Plant Heat Recovery Technologies Prepared by: Jozo Martinovic, M A Sc, P Eng MENEX Innovative Solutions May 15, 2008 MENEX INC. 683 Louis

More information

Richard Vesel, Global Power Generation, February 2012 Introduction to Heat Rate & Controllable Losses February 2012 PGEE Workshop

Richard Vesel, Global Power Generation, February 2012 Introduction to Heat Rate & Controllable Losses February 2012 PGEE Workshop Richard Vesel, Global Power Generation, February 2012 Introduction to Heat Rate & Controllable Losses February 2012 PGEE Workshop October 29 2009 Slide 1 Heat Rate & Plant Efficiency Efficiency: Electrical

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 STEAM POWER CYCLES

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 STEAM POWER CYCLES ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 STEAM POWER CYCLES When you have completed this tutorial you should be able to do the following. Explain

More information

CONDENSERS AND CONDENSER COOLING SYSTEMS

CONDENSERS AND CONDENSER COOLING SYSTEMS CONDENSERS AND CONDENSER COOLING SYSTEMS INTRODUCTION Conventional cooling methods of thermal power plants are extremely water intensive processes. Once-through cooling needs large natural bodies of water

More information

Deaerator White Paper for use with Industrial/Commercial and Institutional Boilers ABMA. representing the best of the boiler industry

Deaerator White Paper for use with Industrial/Commercial and Institutional Boilers ABMA. representing the best of the boiler industry Deaerator White Paper for use with Industrial/Commercial and Institutional Boilers ABMA. representing the best of the boiler industry Page 1 of 7 Deaerator White Paper for use with Industrial/Commercial

More information

CO2 Capture Technologies. 7 8 September, 2011 Abu Dhabi, UAE

CO2 Capture Technologies. 7 8 September, 2011 Abu Dhabi, UAE UNFCCC Technical workshop on modalities and procedures for carbon dioxide capture and storage in geological formations as clean development mechanism project activity CO2 Capture Technologies 7 8 September,

More information

En esta guía se encuentran los cursos que se recomiendan los participantes en la implementación de un SGEn en dependencias del Gobierno Federal.

En esta guía se encuentran los cursos que se recomiendan los participantes en la implementación de un SGEn en dependencias del Gobierno Federal. En esta guía se encuentran los cursos que se recomiendan los participantes en la implementación de un SGEn en dependencias del Gobierno Federal. Las lecciones se agrupan en 5 cursos dirigidos cada participante

More information

CHEPTER-3 EFFECT OF OPERATING VARIABLES ON THERMAL EFFICIENCY OF COMBINED CYCLE POWER PLANT

CHEPTER-3 EFFECT OF OPERATING VARIABLES ON THERMAL EFFICIENCY OF COMBINED CYCLE POWER PLANT CHEPTER-3 EFFECT OF OPERATING VARIABLES ON THERMAL EFFICIENCY OF COMBINED CYCLE POWER PLANT 3.1 THERMAL EFFICIENCY OF THE COMBINED CYCLE: - In combined cycle power plants if power in gas turbine and steam

More information

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following.

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following. THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

Superheaters and Reheaters

Superheaters and Reheaters Superheaters and Reheaters Superheaters are one of the most important accessories of boiler that improves the thermal efficiency. In super heaters there should not be any fins as it increases the thermal

More information

UNIT-III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

UNIT-III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE UNIT-III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE Pure Substance A Pure substance is defined as a homogeneous material, which retains its chemical composition even though there may be a change

More information

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Supercritical CO2 Power Cycle Symposium September 9-10, 2014 Pittsburg, Pennsylvania USA Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Dr. Leonid Moroz, Dr. Maksym

More information

There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum

There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum THERMODYNAMIC CYCLES There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum 1. Gas power cycles a) Carnot cycle

More information

UTILITY BOILER SYSTEMS (OPERATING MANUALS ) BOILER SYSTEMS

UTILITY BOILER SYSTEMS (OPERATING MANUALS ) BOILER SYSTEMS Page 1 of 64 1.0 PURPOSE BOILER SYSTEMS Two utility boilers are designed to supply 125,000 lbs/hr each of superheated steam to maintain the Super High Pressure Steam Header at 1500 psig. They are to be

More information

C H A P T E R T W O. Fundamentals of Steam Power

C H A P T E R T W O. Fundamentals of Steam Power 35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

More information

Best Choice BENSON BOILER. Excellent performance features make the Benson boiler the most widely used type of once-through boiler

Best Choice BENSON BOILER. Excellent performance features make the Benson boiler the most widely used type of once-through boiler BENSON BOILER Best Choice Excellent performance features make the Benson boiler the most widely used type of once-through boiler by JOACHIM FRANKE and RUDOLF KRAL Power for generations BENSON BOILER Best

More information

1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle?

1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle? 1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle? 3. For fixed maximum and minimum temperatures, what are the effect of

More information

GAS TURBINE EFFICIENCY IMPROVEMENT BY INLET AIR-COOLING IN SUSTAINABLE ENERGY SYSTEM

GAS TURBINE EFFICIENCY IMPROVEMENT BY INLET AIR-COOLING IN SUSTAINABLE ENERGY SYSTEM GAS TURBINE EFFICIENCY IMPROVEMENT BY INLET AIR-COOLING IN SUSTAINABLE ENERGY SYSTEM Omid Zainali 1* and Saeed Karimi Alavijeh 2 National Iranian Gas Company (NIGC), Assaluyeh, Bushehr, Iran 1* National

More information

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

More information

Cambridge IGCSE. www.cie.org.uk

Cambridge IGCSE. www.cie.org.uk Cambridge IGCSE About University of Cambridge International Examinations (CIE) Acerca de la Universidad de Cambridge Exámenes Internacionales. CIE examinations are taken in over 150 different countries

More information

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1 Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

More information

Steam Generation Efficiency Module Blowdown Losses Section

Steam Generation Efficiency Module Blowdown Losses Section Steam End User Training Steam Generation Efficiency Module Blowdown Losses Section Slide 1 Blowdown Losses Module This section will discuss blowdown loss and its affect on boiler efficiency. [Slide Visual

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Steam turbine power generation is a Rankine Cycle, best plotted on a temperature/entropy [T/s] diagram : Critical Point

Steam turbine power generation is a Rankine Cycle, best plotted on a temperature/entropy [T/s] diagram : Critical Point Cogeneration Thermodynamics Revisited Dr Mike Inkson and Ben Misplon Thermal Energy Systems Abstract Whilst most engineers understand that higher HP steam conditions result in a more efficient power station,

More information

UNIT 2 STEAM POWER PLANT

UNIT 2 STEAM POWER PLANT UNIT 2 STEAM POWER PLANT Steam Power Plant Structure 2.1 Introduction Objectives 2.2 Basic Consideration in the Analysis of Power Cycles 2.3 Steam Generator 2.4 Super Heater 2.5 Feed Water Heater 2.6 Furnaces

More information

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units.

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units. COGENERATION 1. INTRODUCTION... 1 2. TYPES OF COGENERATION SYSTEMS... 2 3. ASSESSMENT OF COGENERATION SYSTEMS... 10 4. ENERGY EFFICIENCY OPPORTUNITIES... 14 5. OPTION CHECKLIST... 16 6. WORKSHEETS... 17

More information

4 th EU Sout Africa Clean Coal Working Group Meeting

4 th EU Sout Africa Clean Coal Working Group Meeting 4 th EU Sout Africa Clean Coal Working Group Meeting Hybrid Concentrated Solar Power (CSP) Concept Case Study for the Medupi Power Stationy Falk Hoffmeister Head of Sales and Business Development. Dr.

More information

Chapter 3. Fossil-fuel steam Generators

Chapter 3. Fossil-fuel steam Generators Chapter 3 Fossil-fuel steam Generators Introduction Steam generators are mainly used in both fossil-and nuclearfuel electric generation power plants. Main components are: a. Economizer b. Boiler c. Super

More information

UNIT 5 REFRIGERATION SYSTEMS

UNIT 5 REFRIGERATION SYSTEMS UNIT REFRIGERATION SYSTEMS Refrigeration Systems Structure. Introduction Objectives. Vapour Compression Systems. Carnot Vapour Compression Systems. Limitations of Carnot Vapour Compression Systems with

More information

Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle

Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle INL/CON-05-00740 PREPRINT Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle Geothermal Resources Council Annual Meeting Greg Mines October 2005 This is a preprint of a paper intended for publication

More information

Training programme on Energy Efficient technologies for climate change mitigation in Southeast Asia. Cogeneration

Training programme on Energy Efficient technologies for climate change mitigation in Southeast Asia. Cogeneration Training programme on Energy Efficient technologies for climate change mitigation in Southeast Asia Cogeneration Session Agenda: Cogeneration Introduction Types of steam turbine cogeneration system Types

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Status of carbon capture and storage technologies Conclusions from a new STV prestudy

Status of carbon capture and storage technologies Conclusions from a new STV prestudy Status of carbon capture and storage technologies Conclusions from a new STV prestudy Sebastian Teir Presented at the Clean coal-seminar, arranged by Fortum and STV, 4.3.2009, Espoo Contents of the prestudy

More information

Making Coal Use Compatible with Measures to Counter Global Warming

Making Coal Use Compatible with Measures to Counter Global Warming Making Use Compatible with Measures to Counter Global Warming The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 2 million tons of coal per year at eight coal-fired power

More information

Process Integration Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Process Integration Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Process Integration Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Module - 6 Integration and placement of equipment Lecture - 4 Placement of Heat Engine,

More information

HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3

HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3 HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- BY MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3 SYNOPSIS JP Steel Plantech Co. has developed Hybrid system for EAF off-gas heat recovery, with EAF

More information

Sales Management Main Features

Sales Management Main Features Sales Management Main Features Optional Subject (4 th Businesss Administration) Second Semester 4,5 ECTS Language: English Professor: Noelia Sánchez Casado e-mail: noelia.sanchez@upct.es Objectives Description

More information

CIUDEN experiences in CO2 capture by oxycombustion CIUDEN experiencias en captura de CO2 por oxicombustón

CIUDEN experiences in CO2 capture by oxycombustion CIUDEN experiencias en captura de CO2 por oxicombustón CIUDEN experiences in CO2 capture by oxycombustion CIUDEN experiencias en captura de CO2 por oxicombustón P. Otero 1, I. Alvarez 1, J.A. Gutierrez *1 1 Fundacion Ciudad de la Energia, Ciuden, II Avda.

More information

Chilled Ammonia Scrubber for CO 2 Capture

Chilled Ammonia Scrubber for CO 2 Capture November, 2006 Chilled Ammonia Scrubber for CO 2 Capture Sean Black Environmental Control Systems Bringing you a World of Experience in Clean Air Solutions Core Competencies Two core businesses: Power

More information

Super critical coal fired plant requirements and the Grid Code. Paper by E.ON UK

Super critical coal fired plant requirements and the Grid Code. Paper by E.ON UK Super critical coal fired plant requirements and the Grid Code Paper by E.ON UK Introduction Super critical coal fired plant is one of the leading options for replacement of the opted out of LPCD thermal

More information

BIOMASS LOOKING FOR EFFICIENT UTILIZATION THE REHEAT CONCEPT. Jaroslav Lahoda Olaf Arndt Walter Hanstein. Siemens Power Generation (PG)

BIOMASS LOOKING FOR EFFICIENT UTILIZATION THE REHEAT CONCEPT. Jaroslav Lahoda Olaf Arndt Walter Hanstein. Siemens Power Generation (PG) BIOMASS LOOKING FOR EFFICIENT UTILIZATION THE REHEAT CONCEPT Jaroslav Lahoda Olaf Arndt Walter Hanstein Siemens Power Generation (PG) Brno, Czech Republic & Görlitz, Germany BIOMASS LOOKING FOR EFFICIENT

More information

ICT education and motivating elderly people

ICT education and motivating elderly people Ariadna; cultura, educación y tecnología. Vol. I, núm. 1, jul. 2013 htpp://ariadna.uji.es 3 RD International Conference on Elderly and New Technologies pp. 88-92 DOI: http://dx.doi.org/10.6035/ariadna.2013.1.15

More information

Advanced combustion technology for a bioethanol plant. Ole Hedegaard Madsen

Advanced combustion technology for a bioethanol plant. Ole Hedegaard Madsen Advanced combustion technology for a bioethanol plant Ole Hedegaard Madsen ohm@volund.dk Babcock & Wilcox Vølund A/S A subsidiary of The Babcock & Wilcox Company www.volund.dk Denmark Introduction Alternative

More information

LINIO COLOMBIA. Starting-Up & Leading E-Commerce. www.linio.com.co. Luca Ranaldi, CEO. Pedro Freire, VP Marketing and Business Development

LINIO COLOMBIA. Starting-Up & Leading E-Commerce. www.linio.com.co. Luca Ranaldi, CEO. Pedro Freire, VP Marketing and Business Development LINIO COLOMBIA Starting-Up & Leading E-Commerce Luca Ranaldi, CEO Pedro Freire, VP Marketing and Business Development 22 de Agosto 2013 www.linio.com.co QUÉ ES LINIO? Linio es la tienda online #1 en Colombia

More information

GUIDANCE NOTE 16 CHP SCHEME HEAT OUTPUTS

GUIDANCE NOTE 16 CHP SCHEME HEAT OUTPUTS GUIDANCE NOTE 16 CHP SCHEME HEAT OUTPUTS Qualifying Heat Outputs GN16.1 CHP Qualifying Heat Output (CHP QHO ) is the registered amount of useful heat supplied annually from a CHP Scheme (MWh th ). It is

More information

LESSON 1. HEAT EXCHANGERS

LESSON 1. HEAT EXCHANGERS LESSON 1. HEAT EXCHANGERS 1 Contents (I) Definition. Classification. Regenerators. Mixers or direct contact heat exchangers. Packed bed heat exchangers (Intercambiadores de lecho compacto). Direct flame

More information

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 1 (2014), pp. 1-8 Research India Publications http://www.ripublication.com/ijame.htm A Review on Power Generation

More information

Energy : ṁ (h i + ½V i 2 ) = ṁ(h e + ½V e 2 ) Due to high T take h from table A.7.1

Energy : ṁ (h i + ½V i 2 ) = ṁ(h e + ½V e 2 ) Due to high T take h from table A.7.1 6.33 In a jet engine a flow of air at 000 K, 00 kpa and 30 m/s enters a nozzle, as shown in Fig. P6.33, where the air exits at 850 K, 90 kpa. What is the exit velocity assuming no heat loss? C.V. nozzle.

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Marwa M. Abdulmoneim 1, Magdy A. S. Aboelela 2, Hassen T. Dorrah 3 1 Master Degree Student, Cairo University, Faculty

More information

Natural Gas Conversions of Existing Coal-Fired Boilers

Natural Gas Conversions of Existing Coal-Fired Boilers White Paper MS-14 Natural Gas Conversions of Existing Coal-Fired s Authors: F.J. Binkiewicz Jr., P.E. R.J. Kleisley B.E. McMahon J.E. Monacelli D.A. Roth D.K. Wong Babcock & Wilcox Power Generation Group,

More information

Lesson 10 Vapour Compression Refrigeration Systems

Lesson 10 Vapour Compression Refrigeration Systems Lesson 0 Vapour Compression Refrigeration Systems Version ME, II Kharagpur he specific objectives of the lesson: his lesson discusses the most commonly used refrigeration system, ie Vapour compression

More information

Heat Exchangers in Boilers

Heat Exchangers in Boilers Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Heat Exchangers in Boilers Sebastian

More information

MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA

MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA 26 MASAKI IIJIMA *1 TATSUTO NAGAYASU *2 TAKASHI KAMIJYO *3 SHINSUKE NAKATANI

More information

Application in coal fired power stations

Application in coal fired power stations Application in coal fired power stations Application in coal fired power stations Australian coal fired power station Integration into coal fired power plants Energy penalty of PCC Cost electricity and

More information

Heat recovery checklist and briefing note

Heat recovery checklist and briefing note Heat recovery checklist and briefing note This document should enable you to undertake an initial assessment to determine whether using heat recovery could be a feasible option for your building. The recovery

More information

6.5 Simple Vapor Compression Refrigeration System:

6.5 Simple Vapor Compression Refrigeration System: 6.5 Simple Vapor ompression Refrigeration System: A simple vapor compression refrigeration system consists of the following equipments: i) ompressor ii) ondenser iii) Expansion valve iv) Evaporator. B

More information

Steam Boiler Working principle and Types of Boiler

Steam Boiler Working principle and Types of Boiler Steam Boiler Working principle and Types of Boiler Definition of Boiler Steam boiler or simply a boiler is basically a closed vessel into which water is heated until the water is converted into steam at

More information

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

EAST NEW YORK COMMUNITY PLAN ZONING PROPOSAL

EAST NEW YORK COMMUNITY PLAN ZONING PROPOSAL EAST NEW YORK COMMUNITY PLAN ZONING PROPOSAL PROPUESTA DE ZONIFICACION DEPARTMENT OF CITY PLANNING Plans for a mix of LAND USES across the city and neighborhoods Planifica para una mezcla de USOS DE SUELOS

More information

ALONE. small scale solar cooling device Project No TREN FP7EN 218952. Project No TREN/FP7EN/218952 ALONE. small scale solar cooling device

ALONE. small scale solar cooling device Project No TREN FP7EN 218952. Project No TREN/FP7EN/218952 ALONE. small scale solar cooling device Project No TREN/FP7EN/218952 ALONE small scale solar cooling device Collaborative Project Small or Medium-scale Focused Research Project DELIVERABLE D5.2 Start date of the project: October 2008, Duration:

More information

Recover Heat from Boiler Blowdown Water

Recover Heat from Boiler Blowdown Water Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC and its contractor, Southern California Gas

More information

OPPORTUNITIES FOR HEAT RATE REDUCTIONS IN EXISTING COAL- FIRED POWER PLANTS: A STRATEGY TO REDUCE CARBON CAPTURE COSTS

OPPORTUNITIES FOR HEAT RATE REDUCTIONS IN EXISTING COAL- FIRED POWER PLANTS: A STRATEGY TO REDUCE CARBON CAPTURE COSTS CONFERENCE PROCEEDINGS OPPORTUNITIES FOR HEAT RATE REDUCTIONS IN EXISTING COAL- FIRED POWER PLANTS: A STRATEGY TO REDUCE CARBON CAPTURE COSTS by Edward K. Levy, Nenad Sarunac, and Carlos Romero Energy

More information

Increasing the evaporation temperature with the help of an internal heat exchanger

Increasing the evaporation temperature with the help of an internal heat exchanger Increasing the evaporation temperature with the help of an internal heat exchanger A. TAMBOVTSEV (a), H. QUACK (b) (a,b) Technische Universität Dresden, D-01062, Dresden, Germany (a) Fax: (+49351) 463-37247,

More information

NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED BOILER AND INCINERATION TECHNOLOGY

NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED BOILER AND INCINERATION TECHNOLOGY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED

More information

Chapter 11, Problem 18.

Chapter 11, Problem 18. Chapter 11, Problem 18. Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and 10 C at a rate of 0.12 kg/s, and it leaves at 0.7 MPa and 50 C. The refrigerant is

More information

Esystem = 0 = Ein Eout

Esystem = 0 = Ein Eout AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

More information

Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1:

Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1: PART 1: CO 2 Commercial refrigeration has been in the environmental spotlight for more than a decade, especially as leakage studies have revealed the true effects of hydrofluorocarbon (HFC) emissions.

More information

Mohan Chandrasekharan #1

Mohan Chandrasekharan #1 International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

More information

ORC TURBOGENERATOR TYPE CHP - Organic Rankine Cycle Turbogenerator fed by thermal oil, for the combined production of electric energy and heat -

ORC TURBOGENERATOR TYPE CHP - Organic Rankine Cycle Turbogenerator fed by thermal oil, for the combined production of electric energy and heat - Doc. : 08C00031_e Date : 10.02.2009 Page : 1 / 9 ORC TURBOGENERATOR TYPE CHP - Organic Rankine Cycle Turbogenerator fed by thermal oil, for the combined production of electric - (Preliminary) Doc. : 08C00031_e

More information

SUPERHEATING OF STEAM (steam separating arrangements in boilers F22B 37/26)

SUPERHEATING OF STEAM (steam separating arrangements in boilers F22B 37/26) CPC - F22G - 2016.11 F22G SUPERHEATING OF STEAM (steam separating arrangements in boilers F22B 37/26) This subclass covers general aspects of, or methods for, generating superheated steam. Methods of steam

More information

Assessment of Solar-Coal Hybrid Electricity Power Generating Systems 13

Assessment of Solar-Coal Hybrid Electricity Power Generating Systems 13 Journal of Energy and Power Engineering 6 (2012) 12-19 D DAVID PUBLISHING Assessment of Solar-Coal Hybrid Electricity Power Generating Systems Moses Tunde Oladiran 1, Cheddi Kiravu 1 and Ovid Augustus

More information

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT Radu-Cristian DINU, Ion MIRCEA, Emilia-Marinela DINU University of Craiova, Faculty of Electrotechnique, Electroputere S.A., Craiova rcdinu@elth.ucv.ro,

More information

Understanding of OHDR and its repercussions on over all operation of super critical power plant

Understanding of OHDR and its repercussions on over all operation of super critical power plant Understanding of OHDR and its repercussions on over all operation of super critical power plant Rahul Pachouri M.Tech.Student (Thermal System & Design) SRCEM,MORENA (M.P) India Devendra Dandotiya Assistant

More information

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with

More information

TORRESOL ENERGY PRESS DOSSIER 2014

TORRESOL ENERGY PRESS DOSSIER 2014 TORRESOL ENERGY PRESS DOSSIER 2014 Torresol Energy the future of solar thermal energy Gemasolar the world s most innovative commercial solar plant Valle 1 and Valle 2 Spain s largest ever sequential construction

More information

A Technical and Economic Assessment of Geothermal Aided Power Generation

A Technical and Economic Assessment of Geothermal Aided Power Generation A Technical and Economic Assessment of Geothermal Aided Power Generation Masters by Research Thesis Jiyun Qin The University of Adelaide The School of Mechanical Engineering May 2013 i Abstract With the

More information

Esystem = 0 = Ein Eout

Esystem = 0 = Ein Eout AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

More information

Working Fluid Developments for HT Heat Pumps and ORC Systems at. Renewable Energy, Heating and Cooling Applications. Contents

Working Fluid Developments for HT Heat Pumps and ORC Systems at. Renewable Energy, Heating and Cooling Applications. Contents Working Fluid Developments for HT Heat Pumps and ORC Systems at Renewable Energy, Heating and Cooling Applications -Created by- Chillventa 2010 July 2010 Contents Waste Heat Recovery What does it mean?

More information

Development and Application of a Dynamic Simulation Model for a Drum Type Boiler with Turbine Bypass System

Development and Application of a Dynamic Simulation Model for a Drum Type Boiler with Turbine Bypass System Development and Application of a Dynamic Simulation Model for a Drum Type Boiler with Turbine Bypass System W.J. Peet Babcock & Wilcox Cambridge, Ontario, Canada T.K.P. Leung Babcock & Wilcox Cambridge,

More information

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h Reference System for a Power Plant Based on Biomass Gasification and SOFC Richard Toonssen, Nico Woudstra, Adrian H.M. Verkooijen Delft University of Technology Energy Technology, Process & Energy department

More information

Proving Energy Efficiency in Manufacturing Delivers Serious ROI. By Anoosheh M. Oskouian

Proving Energy Efficiency in Manufacturing Delivers Serious ROI. By Anoosheh M. Oskouian Proving Energy Efficiency in Manufacturing Delivers Serious ROI By Anoosheh M. Oskouian 562-997-0233 www.shipandshore.com Ship & Shore offers solutions and recommendations for effective methods to reduce

More information

REFINING / PETROCHEMICAL ENERGY COSTS REDUCTION BY USING AN ON-LINE SIMULATOR AND OPTIMIZER

REFINING / PETROCHEMICAL ENERGY COSTS REDUCTION BY USING AN ON-LINE SIMULATOR AND OPTIMIZER REFINING / PETROCHEMICAL ENERGY COSTS REDUCTION BY USING AN ON-LINE SIMULATOR AND OPTIMIZER Sebastián Cúneo, Oscar Santollani, Carlos Ruiz, Jorge Mamprin Soteica Latinoamérica S.A., Alvarez Thomas 796,

More information

- Know basic of refrigeration - Able to analyze the efficiency of refrigeration system -

- Know basic of refrigeration - Able to analyze the efficiency of refrigeration system - Refrigeration cycle Objectives - Know basic of refrigeration - Able to analyze the efficiency of refrigeration system - contents Ideal Vapor-Compression Refrigeration Cycle Actual Vapor-Compression Refrigeration

More information

Fisher. Power Solutions Control valves engineered to improve your plant performance.

Fisher. Power Solutions Control valves engineered to improve your plant performance. Fisher Power Solutions Control valves engineered to improve your plant performance. 6 Fisher Power Solutions The Condensate System Condensate Pump Recirculation Valve As one of the most critical pieces

More information