GASPI A PGAS API for Scalable and Fault Tolerant Computing

Size: px
Start display at page:

Download "GASPI A PGAS API for Scalable and Fault Tolerant Computing"

Transcription

1 GASPI A PGAS API for Scalable and Fault Tolerant Computing Specification of a general purpose API for one-sided and asynchronous communication and provision of libraries, tools, examples and best practices Release 1.0 in November 2012 Reported by J.-P. Weiß, Facing the Multicore-Challenge III, Sep 21, 2012

2 GASPI - Overview Funding Programme: ICT Research for Innovation Funding Focus: HPC Software for Scalable Parallel Computers Funding Code: 01IH11007A Funding Volume: 2 Million Euro Duration: June 1, May 31, 2014 Coordinator: Dr. Christian Simmendinger T-Systems SfR Pfaffenwaldring Stuttgart

3 Background and Motivation Current parallel software is mainly MPI-based Adaptation to current hardware has highlighted significant weaknesses which preclude scalability on heterogeneous multi-core systems MPI is huge, not very flexible due to backward compatibility New demands on programming models: flexible threading models support for data locality asynchronous communication manage storage subsystems with varying bandwidth and latency This "Multicore-Challenge stimulates the development of new programming models and programming languages and leads to new challenges for mathematical modeling and algorithms

4 GASPI - Motivation I GASPI targets extreme scalability in the exascale age Overcome the limitations of MPI (are there any?!) GASPI aims to initiate a paradigm shift From bulk-synchronous two-sided communication patterns towards an asynchronous communication and execution model GASPI challenges algorithms, implementations and applications Rethink your communication patterns! Reformulate towards an asynchronous data flow model GASPI provides multiple memory segments per GASPI process GASPI addresses heterogeneous machines

5 GASPI - Motivation II GASPI is not a new language Not like X10, UPC, Chapel GASPI is not a language extension Not like Co-Array Fortran GASPI complements existing languages with a PGAS API Very much like MPI GASPI supports multiple memory models Not like OpenShmem or Global Arrays GASPI can be combined with any threading model GASPI is not fixed to SPMD or MPMD style of execution

6 GASPI - Motivation III GASPI is fault tolerant It provides time-out mechanisms for all non-local procedures Failure detection can handle node failures and delayed responses Can check sanity of communication partners by state vectors GASPI can be adapted to shrinking or growing node sets GASPI leverages one-sided RDMA driven communication Implemented on top of the IB verbs layer and OFED stack Communication handled by the network infrastructure No involvement of CPU cores

7 GASPI Features I Processes, groups, ranks Multiple PGAS memory segments per process Dynamic support for heterogeneous systems (GPUs, MICs, ) One-sided communication primitives Asynchronous communication by remote read and write Handled by local queues, no copy operations into buffers Notification mechanisms for communication partners Passive communication When the sender may be unknown, two-sided semantics Fair distributed updates of globally shared parts of data

8 GASPI Features II Weak synchronization primitives Global atomics fetch_and_add, compare_and_swap Counters as globally shared variables or for synchronization Collective communication Allreduce, broadcast, barrier with group support User-defined global collectives Asynchronous versions provided Time-out mechanisms for non-blocking routines Enable fault tolerance

9 Project Activities I Specification of the GASPI standard for a PGAS API Ensure interoperability with MPI Take into account requirements of applications Provision of open-source GASPI implementation Portable high-performance library for one-sided and asynchronous communication Adaptation and further development of the Vampir performance analysis suite for the GASPI standard

10 Project Activities II Development efficient numerical libraries based on GASPI core functions; sparse and dense linear algebra routines, high level solvers, FEM code Verification through porting of complex, industry-oriented applications Evaluation, benchmarking and performance analysis Outreach to the HPC & Scientific Computing Community by information dissemination, formation of user groups, trainings and workshops

11 Key Objectives In a Partitioned Global Address Space every thread can read/write the entire global memory of an application. Scalability From bulk synchronous two sided communication patterns to asynchronous one-sided communication Fault Tolerance Timeouts in non-local operations, dynamic node sets Flexibility Support for multiple memory models, multiple segments, configurable hardware resources Versatility PGAS API - beyond the message passing model of MPI

12 Project Partners Fraunhofer Gesellschaft e.v. Fraunhofer ITWM Fraunhofer SCAI T-Systems Solutions for Research GmbH Forschungszentrum Jülich Karlsruhe Institute of Technology Deutsches Zentrum für Luft- und Raumfahrt e.v. Institute of Aerodynamics and Flow Technology Institute of Propulsion Technology Technische Universität Dresden Center for Information Services and HPC Deutscher Wetterdienst scapos AG

13 Contributors Thomas Alrutz 1, Jan Backhaus 2, Thomas Brandes 3, Vanessa End 1, Thomas Gerhold 4, Alfred Geiger 1, Daniel Grünewald 5, Vincent Heuveline 6, Jens Jägersküpper 4, Andreas Knüpfer 7, Olaf Krzikalla 7, Edmund Kügeler 2, Carsten Lojewski 5, Guy Lonsdale 8, Ralph Müller-Pfefferkorn 7, Wolfgang Nagel 7, Lena Oden 5, Franz-Josef Pfreundt 5, Mirko Rahn 5, Michael Sattler 1, Mareike Schmidtobreick 6, Annika Schiller 9, Christian Simmendinger 1, Thomas Soddemann 3, Godehard Sutmann 9, Henning Weber 10, Jan-Philipp Weiß 2 1 T-Systems SfR, Stuttgart & Göttingen, 2 DLR, Institut für Antriebstechnik, Köln 3 Fraunhofer SCAI, Sankt Augustin 4 DLR, Institut für Aerodynamik und Strömungstechnik, Braunschweig & Göttingen 5 Fraunhofer ITWM, Kaiserslautern 6 Engineering Mathematics and Computing Lab (EMCL), KIT Karlsruhe 7 Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), TU Dresden 8 scapos AG, Sankt Augustin 9 Forschungszentrum Jülich 10 Deutscher Wetterdienst (DWD), Offenbach

Unified Performance Data Collection with Score-P

Unified Performance Data Collection with Score-P Unified Performance Data Collection with Score-P Bert Wesarg 1) With contributions from Andreas Knüpfer 1), Christian Rössel 2), and Felix Wolf 3) 1) ZIH TU Dresden, 2) FZ Jülich, 3) GRS-SIM Aachen Fragmentation

More information

A PGAS-based implementation for the unstructured CFD solver TAU

A PGAS-based implementation for the unstructured CFD solver TAU A PGAS-based implementation for the unstructured CFD solver TAU Christian Simmendinger T-Systems Solution for Research Pfaffenwaldring 38-40 70569 Stuttgart, Germany christian.simmendinger@tsystems.com

More information

GPI Global Address Space Programming Interface

GPI Global Address Space Programming Interface GPI Global Address Space Programming Interface SEPARS Meeting Stuttgart, December 2nd 2010 Dr. Mirko Rahn Fraunhofer ITWM Competence Center for HPC and Visualization 1 GPI Global address space programming

More information

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges Why should you care? What are they? Which are different from non-petascale? What has changed since

More information

Altix Usage and Application Programming. Welcome and Introduction

Altix Usage and Application Programming. Welcome and Introduction Zentrum für Informationsdienste und Hochleistungsrechnen Altix Usage and Application Programming Welcome and Introduction Zellescher Weg 12 Tel. +49 351-463 - 35450 Dresden, November 30th 2005 Wolfgang

More information

Performance Tools for System Monitoring

Performance Tools for System Monitoring Center for Information Services and High Performance Computing (ZIH) 01069 Dresden Performance Tools for System Monitoring 1st CHANGES Workshop, Jülich Zellescher Weg 12 Tel. +49 351-463 35450 September

More information

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications

More information

Advanced MPI. Hybrid programming, profiling and debugging of MPI applications. Hristo Iliev RZ. Rechen- und Kommunikationszentrum (RZ)

Advanced MPI. Hybrid programming, profiling and debugging of MPI applications. Hristo Iliev RZ. Rechen- und Kommunikationszentrum (RZ) Advanced MPI Hybrid programming, profiling and debugging of MPI applications Hristo Iliev RZ Rechen- und Kommunikationszentrum (RZ) Agenda Halos (ghost cells) Hybrid programming Profiling of MPI applications

More information

Scientific Computing Programming with Parallel Objects

Scientific Computing Programming with Parallel Objects Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore

More information

ParFUM: A Parallel Framework for Unstructured Meshes. Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008

ParFUM: A Parallel Framework for Unstructured Meshes. Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008 ParFUM: A Parallel Framework for Unstructured Meshes Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008 What is ParFUM? A framework for writing parallel finite element

More information

HPC enabling of OpenFOAM R for CFD applications

HPC enabling of OpenFOAM R for CFD applications HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,

More information

Equalizer. Parallel OpenGL Application Framework. Stefan Eilemann, Eyescale Software GmbH

Equalizer. Parallel OpenGL Application Framework. Stefan Eilemann, Eyescale Software GmbH Equalizer Parallel OpenGL Application Framework Stefan Eilemann, Eyescale Software GmbH Outline Overview High-Performance Visualization Equalizer Competitive Environment Equalizer Features Scalability

More information

Kriterien für ein PetaFlop System

Kriterien für ein PetaFlop System Kriterien für ein PetaFlop System Rainer Keller, HLRS :: :: :: Context: Organizational HLRS is one of the three national supercomputing centers in Germany. The national supercomputing centers are working

More information

Sourcery Overview & Virtual Machine Installation

Sourcery Overview & Virtual Machine Installation Sourcery Overview & Virtual Machine Installation Damian Rouson, Ph.D., P.E. Sourcery, Inc. www.sourceryinstitute.org Sourcery, Inc. About Us Sourcery, Inc., is a software consultancy founded by and for

More information

- An Essential Building Block for Stable and Reliable Compute Clusters

- An Essential Building Block for Stable and Reliable Compute Clusters Ferdinand Geier ParTec Cluster Competence Center GmbH, V. 1.4, March 2005 Cluster Middleware - An Essential Building Block for Stable and Reliable Compute Clusters Contents: Compute Clusters a Real Alternative

More information

Apache Hama Design Document v0.6

Apache Hama Design Document v0.6 Apache Hama Design Document v0.6 Introduction Hama Architecture BSPMaster GroomServer Zookeeper BSP Task Execution Job Submission Job and Task Scheduling Task Execution Lifecycle Synchronization Fault

More information

MPI / ClusterTools Update and Plans

MPI / ClusterTools Update and Plans HPC Technical Training Seminar July 7, 2008 October 26, 2007 2 nd HLRS Parallel Tools Workshop Sun HPC ClusterTools 7+: A Binary Distribution of Open MPI MPI / ClusterTools Update and Plans Len Wisniewski

More information

Programming Languages for Large Scale Parallel Computing. Marc Snir

Programming Languages for Large Scale Parallel Computing. Marc Snir Programming Languages for Large Scale Parallel Computing Marc Snir Focus Very large scale computing (>> 1K nodes) Performance is key issue Parallelism, load balancing, locality and communication are algorithmic

More information

PGAS, Global Arrays, and MPI-3 How do they fit together? Brad Chamberlain Chapel Team, Cray Inc. Global Arrays Technical Meeting May 7, 2010

PGAS, Global Arrays, and MPI-3 How do they fit together? Brad Chamberlain Chapel Team, Cray Inc. Global Arrays Technical Meeting May 7, 2010 PGAS, Global Arrays, and MPI-3 How do they fit together? Brad Chamberlain Chapel Team, Cray Inc. Global Arrays Technical Meeting May 7, 2010 Disclaimer This talk s contents should be considered my personal

More information

Performance Evaluation of the RDMA over Ethernet (RoCE) Standard in Enterprise Data Centers Infrastructure. Abstract:

Performance Evaluation of the RDMA over Ethernet (RoCE) Standard in Enterprise Data Centers Infrastructure. Abstract: Performance Evaluation of the RDMA over Ethernet (RoCE) Standard in Enterprise Data Centers Infrastructure Motti Beck Director, Marketing motti@mellanox.com Michael Kagan Chief Technology Officer michaelk@mellanox.com

More information

Towards a Comprehensive Accounting Solution in the Multi-Middleware Environment of the D-Grid Initiative

Towards a Comprehensive Accounting Solution in the Multi-Middleware Environment of the D-Grid Initiative Towards a Comprehensive Accounting Solution in the Multi-Middleware Environment of the D-Grid Initiative Jan Wiebelitz Wolfgang Müller, Michael Brenner, Gabriele von Voigt Cracow Grid Workshop 2008, Cracow,

More information

HPC performance applications on Virtual Clusters

HPC performance applications on Virtual Clusters Panagiotis Kritikakos EPCC, School of Physics & Astronomy, University of Edinburgh, Scotland - UK pkritika@epcc.ed.ac.uk 4 th IC-SCCE, Athens 7 th July 2010 This work investigates the performance of (Java)

More information

Data Centric Systems (DCS)

Data Centric Systems (DCS) Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems

More information

Advancing Applications Performance With InfiniBand

Advancing Applications Performance With InfiniBand Advancing Applications Performance With InfiniBand Pak Lui, Application Performance Manager September 12, 2013 Mellanox Overview Ticker: MLNX Leading provider of high-throughput, low-latency server and

More information

HPC Software Requirements to Support an HPC Cluster Supercomputer

HPC Software Requirements to Support an HPC Cluster Supercomputer HPC Software Requirements to Support an HPC Cluster Supercomputer Susan Kraus, Cray Cluster Solutions Software Product Manager Maria McLaughlin, Cray Cluster Solutions Product Marketing Cray Inc. WP-CCS-Software01-0417

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

Intel Ethernet Switch Converged Enhanced Ethernet (CEE) and Datacenter Bridging (DCB) Using Intel Ethernet Switch Family Switches

Intel Ethernet Switch Converged Enhanced Ethernet (CEE) and Datacenter Bridging (DCB) Using Intel Ethernet Switch Family Switches Intel Ethernet Switch Converged Enhanced Ethernet (CEE) and Datacenter Bridging (DCB) Using Intel Ethernet Switch Family Switches February, 2009 Legal INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION

More information

Kommunikation in HPC-Clustern

Kommunikation in HPC-Clustern Kommunikation in HPC-Clustern Communication/Computation Overlap in MPI W. Rehm and T. Höfler Department of Computer Science TU Chemnitz http://www.tu-chemnitz.de/informatik/ra 11.11.2005 Outline 1 2 Optimize

More information

Mellanox HPC-X Software Toolkit Release Notes

Mellanox HPC-X Software Toolkit Release Notes Mellanox HPC-X Software Toolkit Release Notes Rev 1.2 www.mellanox.com NOTE: THIS HARDWARE, SOFTWARE OR TEST SUITE PRODUCT ( PRODUCT(S) ) AND ITS RELATED DOCUMENTATION ARE PROVIDED BY MELLANOX TECHNOLOGIES

More information

Storage at a Distance; Using RoCE as a WAN Transport

Storage at a Distance; Using RoCE as a WAN Transport Storage at a Distance; Using RoCE as a WAN Transport Paul Grun Chief Scientist, System Fabric Works, Inc. (503) 620-8757 pgrun@systemfabricworks.com Why Storage at a Distance the Storage Cloud Following

More information

Access to the Federal High-Performance Computing-Centers

Access to the Federal High-Performance Computing-Centers Access to the Federal High-Performance Computing-Centers rabenseifner@hlrs.de University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Slide 1 TOP 500 Nov. List German Sites,

More information

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?

More information

Pedraforca: ARM + GPU prototype

Pedraforca: ARM + GPU prototype www.bsc.es Pedraforca: ARM + GPU prototype Filippo Mantovani Workshop on exascale and PRACE prototypes Barcelona, 20 May 2014 Overview Goals: Test the performance, scalability, and energy efficiency of

More information

Resource Utilization of Middleware Components in Embedded Systems

Resource Utilization of Middleware Components in Embedded Systems Resource Utilization of Middleware Components in Embedded Systems 3 Introduction System memory, CPU, and network resources are critical to the operation and performance of any software system. These system

More information

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications 7 th escar Embedded Security in Cars Conference November 24 25, 2009, Düsseldorf Dr.-Ing. Olaf Henniger, Fraunhofer SIT Darmstadt Hervé

More information

SHARED HASH TABLES IN PARALLEL MODEL CHECKING

SHARED HASH TABLES IN PARALLEL MODEL CHECKING SHARED HASH TABLES IN PARALLEL MODEL CHECKING IPA LENTEDAGEN 2010 ALFONS LAARMAN JOINT WORK WITH MICHAEL WEBER AND JACO VAN DE POL 23/4/2010 AGENDA Introduction Goal and motivation What is model checking?

More information

Beyond Embarrassingly Parallel Big Data. William Gropp www.cs.illinois.edu/~wgropp

Beyond Embarrassingly Parallel Big Data. William Gropp www.cs.illinois.edu/~wgropp Beyond Embarrassingly Parallel Big Data William Gropp www.cs.illinois.edu/~wgropp Messages Big is big Data driven is an important area, but not all data driven problems are big data (despite current hype).

More information

Cluster, Grid, Cloud Concepts

Cluster, Grid, Cloud Concepts Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of

More information

Middleware. Peter Marwedel TU Dortmund, Informatik 12 Germany. technische universität dortmund. fakultät für informatik informatik 12

Middleware. Peter Marwedel TU Dortmund, Informatik 12 Germany. technische universität dortmund. fakultät für informatik informatik 12 Universität Dortmund 12 Middleware Peter Marwedel TU Dortmund, Informatik 12 Germany Graphics: Alexandra Nolte, Gesine Marwedel, 2003 2010 年 11 月 26 日 These slides use Microsoft clip arts. Microsoft copyright

More information

The Design and Implementation of Scalable Parallel Haskell

The Design and Implementation of Scalable Parallel Haskell The Design and Implementation of Scalable Parallel Haskell Malak Aljabri, Phil Trinder,and Hans-Wolfgang Loidl MMnet 13: Language and Runtime Support for Concurrent Systems Heriot Watt University May 8,

More information

PRIMERGY server-based High Performance Computing solutions

PRIMERGY server-based High Performance Computing solutions PRIMERGY server-based High Performance Computing solutions PreSales - May 2010 - HPC Revenue OS & Processor Type Increasing standardization with shift in HPC to x86 with 70% in 2008.. HPC revenue by operating

More information

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS Performance 1(6) HIGH PERFORMANCE CONSULTING COURSE OFFERINGS LEARN TO TAKE ADVANTAGE OF POWERFUL GPU BASED ACCELERATOR TECHNOLOGY TODAY 2006 2013 Nvidia GPUs Intel CPUs CONTENTS Acronyms and Terminology...

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems

David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM

More information

Seminarbeschreibung. Windows Server 2008 Developing High-performance Applications using Microsoft Windows HPC Server 2008.

Seminarbeschreibung. Windows Server 2008 Developing High-performance Applications using Microsoft Windows HPC Server 2008. Seminarbeschreibung Windows Server 2008 Developing High-performance Applications using Microsoft Windows HPC Server 2008 Einleitung: In dieser Schulung lernen die Entwickler - High-Performance Computing

More information

Manjrasoft Market Oriented Cloud Computing Platform

Manjrasoft Market Oriented Cloud Computing Platform Manjrasoft Market Oriented Cloud Computing Platform Aneka Aneka is a market oriented Cloud development and management platform with rapid application development and workload distribution capabilities.

More information

The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud.

The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. White Paper 021313-3 Page 1 : A Software Framework for Parallel Programming* The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. ABSTRACT Programming for Multicore,

More information

Parallel Processing over Mobile Ad Hoc Networks of Handheld Machines

Parallel Processing over Mobile Ad Hoc Networks of Handheld Machines Parallel Processing over Mobile Ad Hoc Networks of Handheld Machines Michael J Jipping Department of Computer Science Hope College Holland, MI 49423 jipping@cs.hope.edu Gary Lewandowski Department of Mathematics

More information

Implementing MPI-IO Shared File Pointers without File System Support

Implementing MPI-IO Shared File Pointers without File System Support Implementing MPI-IO Shared File Pointers without File System Support Robert Latham, Robert Ross, Rajeev Thakur, Brian Toonen Mathematics and Computer Science Division Argonne National Laboratory Argonne,

More information

Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging

Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging

More information

Symmetric Multiprocessing

Symmetric Multiprocessing Multicore Computing A multi-core processor is a processing system composed of two or more independent cores. One can describe it as an integrated circuit to which two or more individual processors (called

More information

InfiniBand Software and Protocols Enable Seamless Off-the-shelf Applications Deployment

InfiniBand Software and Protocols Enable Seamless Off-the-shelf Applications Deployment December 2007 InfiniBand Software and Protocols Enable Seamless Off-the-shelf Deployment 1.0 Introduction InfiniBand architecture defines a high-bandwidth, low-latency clustering interconnect that is used

More information

Introduction to the TAU Performance System

Introduction to the TAU Performance System Introduction to the TAU Performance System Leap to Petascale Workshop 2012 at Argonne National Laboratory, ALCF, Bldg. 240,# 1416, May 22-25, 2012, Argonne, IL Sameer Shende, U. Oregon sameer@cs.uoregon.edu

More information

Understanding applications using the BSC performance tools

Understanding applications using the BSC performance tools Understanding applications using the BSC performance tools Judit Gimenez (judit@bsc.es) German Llort(german.llort@bsc.es) Humans are visual creatures Films or books? Two hours vs. days (months) Memorizing

More information

Hari Subramoni. Education: Employment: Research Interests: Projects:

Hari Subramoni. Education: Employment: Research Interests: Projects: Hari Subramoni Senior Research Associate, Dept. of Computer Science and Engineering The Ohio State University, Columbus, OH 43210 1277 Tel: (614) 961 2383, Fax: (614) 292 2911, E-mail: subramoni.1@osu.edu

More information

Principles and characteristics of distributed systems and environments

Principles and characteristics of distributed systems and environments Principles and characteristics of distributed systems and environments Definition of a distributed system Distributed system is a collection of independent computers that appears to its users as a single

More information

A Multi-layered Domain-specific Language for Stencil Computations

A Multi-layered Domain-specific Language for Stencil Computations A Multi-layered Domain-specific Language for Stencil Computations Christian Schmitt, Frank Hannig, Jürgen Teich Hardware/Software Co-Design, University of Erlangen-Nuremberg Workshop ExaStencils 2014,

More information

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) A Data Driven Science Gateway for Computational Workflows

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) A Data Driven Science Gateway for Computational Workflows Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) A Data Driven Science Gateway for Computational Workflows (richard.grunzke@tu-dresden.de) Introduction MoSGrid Science Gateway - Simple and

More information

HIGH PERFORMANCE COMPUTING COMPETENCE CENTER BADEN-WÜRTTEMBERG

HIGH PERFORMANCE COMPUTING COMPETENCE CENTER BADEN-WÜRTTEMBERG HIGH PERFORMANCE COMPUTING COMPETENCE CENTER BADEN-WÜRTTEMBERG Contents High Performance Computing Competence Center Baden-Württemberg (hkz-bw)... 4 Vector Parallel Supercomputer NEC SX-6X... 8 Massively

More information

OFA Training Program. Writing Application Programs for RDMA using OFA Software. Author: Rupert Dance Date: 11/15/2011. www.openfabrics.

OFA Training Program. Writing Application Programs for RDMA using OFA Software. Author: Rupert Dance Date: 11/15/2011. www.openfabrics. OFA Training Program Writing Application Programs for RDMA using OFA Software Author: Rupert Dance Date: 11/15/2011 www.openfabrics.org 1 Agenda OFA Training Program Program Goals Instructors Programming

More information

Why Compromise? A discussion on RDMA versus Send/Receive and the difference between interconnect and application semantics

Why Compromise? A discussion on RDMA versus Send/Receive and the difference between interconnect and application semantics Why Compromise? A discussion on RDMA versus Send/Receive and the difference between interconnect and application semantics Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400

More information

Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory. The Nation s Premier Laboratory for Land Forces UNCLASSIFIED

Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory. The Nation s Premier Laboratory for Land Forces UNCLASSIFIED Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory 21 st Century Research Continuum Theory Theory embodied in computation Hypotheses tested through experiment SCIENTIFIC METHODS

More information

Advanced Computer Networks. High Performance Networking I

Advanced Computer Networks. High Performance Networking I Advanced Computer Networks 263 3501 00 High Performance Networking I Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Outline Last week: Wireless TCP Today:

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance 11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu

More information

Performance Tools for Parallel Java Environments

Performance Tools for Parallel Java Environments Performance Tools for Parallel Java Environments Sameer Shende and Allen D. Malony Department of Computer and Information Science, University of Oregon {sameer,malony}@cs.uoregon.edu http://www.cs.uoregon.edu/research/paracomp/tau

More information

Multicore Parallel Computing with OpenMP

Multicore Parallel Computing with OpenMP Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large

More information

OpenMosix Presented by Dr. Moshe Bar and MAASK [01]

OpenMosix Presented by Dr. Moshe Bar and MAASK [01] OpenMosix Presented by Dr. Moshe Bar and MAASK [01] openmosix is a kernel extension for single-system image clustering. openmosix [24] is a tool for a Unix-like kernel, such as Linux, consisting of adaptive

More information

COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook)

COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) Vivek Sarkar Department of Computer Science Rice University vsarkar@rice.edu COMP

More information

Process Replication for HPC Applications on the Cloud

Process Replication for HPC Applications on the Cloud Process Replication for HPC Applications on the Cloud Scott Purdy and Pete Hunt Advised by Prof. David Bindel December 17, 2010 1 Abstract Cloud computing has emerged as a new paradigm in large-scale computing.

More information

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery Ismail Oukid*, Daniel Booss, Wolfgang Lehner*, Peter Bumbulis, and Thomas Willhalm + *Dresden University of Technology SAP AG + Intel GmbH

More information

Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp

Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp Welcome! Who am I? William (Bill) Gropp Professor of Computer Science One of the Creators of

More information

Performance Monitoring of Parallel Scientific Applications

Performance Monitoring of Parallel Scientific Applications Performance Monitoring of Parallel Scientific Applications Abstract. David Skinner National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory This paper introduces an infrastructure

More information

Application Performance Analysis Tools and Techniques

Application Performance Analysis Tools and Techniques Mitglied der Helmholtz-Gemeinschaft Application Performance Analysis Tools and Techniques 2012-06-27 Christian Rössel Jülich Supercomputing Centre c.roessel@fz-juelich.de EU-US HPC Summer School Dublin

More information

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory Graph Analytics in Big Data John Feo Pacific Northwest National Laboratory 1 A changing World The breadth of problems requiring graph analytics is growing rapidly Large Network Systems Social Networks

More information

HP ProLiant SL270s Gen8 Server. Evaluation Report

HP ProLiant SL270s Gen8 Server. Evaluation Report HP ProLiant SL270s Gen8 Server Evaluation Report Thomas Schoenemeyer, Hussein Harake and Daniel Peter Swiss National Supercomputing Centre (CSCS), Lugano Institute of Geophysics, ETH Zürich schoenemeyer@cscs.ch

More information

Porting the Plasma Simulation PIConGPU to Heterogeneous Architectures with Alpaka

Porting the Plasma Simulation PIConGPU to Heterogeneous Architectures with Alpaka Porting the Plasma Simulation PIConGPU to Heterogeneous Architectures with Alpaka René Widera1, Erik Zenker1,2, Guido Juckeland1, Benjamin Worpitz1,2, Axel Huebl1,2, Andreas Knüpfer2, Wolfgang E. Nagel2,

More information

Appendix 1 ExaRD Detailed Technical Descriptions

Appendix 1 ExaRD Detailed Technical Descriptions Appendix 1 ExaRD Detailed Technical Descriptions Contents 1 Application Foundations... 3 1.1 Co- Design... 3 1.2 Applied Mathematics... 5 1.3 Data Analytics and Visualization... 8 2 User Experiences...

More information

HPC ABDS: The Case for an Integrating Apache Big Data Stack

HPC ABDS: The Case for an Integrating Apache Big Data Stack HPC ABDS: The Case for an Integrating Apache Big Data Stack with HPC 1st JTC 1 SGBD Meeting SDSC San Diego March 19 2014 Judy Qiu Shantenu Jha (Rutgers) Geoffrey Fox gcf@indiana.edu http://www.infomall.org

More information

GridSolve: : A Seamless Bridge Between the Standard Programming Interfaces and Remote Resources

GridSolve: : A Seamless Bridge Between the Standard Programming Interfaces and Remote Resources GridSolve: : A Seamless Bridge Between the Standard Programming Interfaces and Remote Resources Jack Dongarra University of Tennessee and Oak Ridge National Laboratory 2/25/2006 1 Overview Grid/NetSolve

More information

MPICH FOR SCI-CONNECTED CLUSTERS

MPICH FOR SCI-CONNECTED CLUSTERS Autumn Meeting 99 of AK Scientific Computing MPICH FOR SCI-CONNECTED CLUSTERS Joachim Worringen AGENDA Introduction, Related Work & Motivation Implementation Performance Work in Progress Summary MESSAGE-PASSING

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC

Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC Goals of the session Overview of parallel MATLAB Why parallel MATLAB? Multiprocessing in MATLAB Parallel MATLAB using the Parallel Computing

More information

Software Development around a Millisecond

Software Development around a Millisecond Introduction Software Development around a Millisecond Geoffrey Fox In this column we consider software development methodologies with some emphasis on those relevant for large scale scientific computing.

More information

White Paper Solarflare High-Performance Computing (HPC) Applications

White Paper Solarflare High-Performance Computing (HPC) Applications Solarflare High-Performance Computing (HPC) Applications 10G Ethernet: Now Ready for Low-Latency HPC Applications Solarflare extends the benefits of its low-latency, high-bandwidth 10GbE server adapters

More information

Multi-Threading Performance on Commodity Multi-Core Processors

Multi-Threading Performance on Commodity Multi-Core Processors Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction

More information

Petascale Software Challenges. Piyush Chaudhary piyushc@us.ibm.com High Performance Computing

Petascale Software Challenges. Piyush Chaudhary piyushc@us.ibm.com High Performance Computing Petascale Software Challenges Piyush Chaudhary piyushc@us.ibm.com High Performance Computing Fundamental Observations Applications are struggling to realize growth in sustained performance at scale Reasons

More information

2.1 What are distributed systems? What are systems? Different kind of systems How to distribute systems? 2.2 Communication concepts

2.1 What are distributed systems? What are systems? Different kind of systems How to distribute systems? 2.2 Communication concepts Chapter 2 Introduction to Distributed systems 1 Chapter 2 2.1 What are distributed systems? What are systems? Different kind of systems How to distribute systems? 2.2 Communication concepts Client-Server

More information

Objective 1.2 Cloud Computing, Internet of Services and Advanced Software Engineering

Objective 1.2 Cloud Computing, Internet of Services and Advanced Software Engineering Cloud Computing, Internet of Services and Advanced Software Engineering Arian Zwegers European Commission Information Society and Media Directorate General Software & Service Architectures and Infrastructures

More information

Titolo del paragrafo. Titolo del documento - Sottotitolo documento The Benefits of Pushing Real-Time Market Data via a Web Infrastructure

Titolo del paragrafo. Titolo del documento - Sottotitolo documento The Benefits of Pushing Real-Time Market Data via a Web Infrastructure 1 Alessandro Alinone Agenda Introduction Push Technology: definition, typology, history, early failures Lightstreamer: 3rd Generation architecture, true-push Client-side push technology (Browser client,

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware

More information

Cray Gemini Interconnect. Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak

Cray Gemini Interconnect. Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak Cray Gemini Interconnect Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak Outline 1. Introduction 2. Overview 3. Architecture 4. Gemini Blocks 5. FMA & BTA 6. Fault tolerance

More information

Managing and Using Millions of Threads

Managing and Using Millions of Threads Managing and Using Millions of Threads A ew Paradigm for Operating/Runtime Systems Hans P. Zima Jet Propulsion Laboratory California Institute of Technology, Pasadena, California Today s High End Computing

More information

Mellanox Academy Online Training (E-learning)

Mellanox Academy Online Training (E-learning) Mellanox Academy Online Training (E-learning) 2013-2014 30 P age Mellanox offers a variety of training methods and learning solutions for instructor-led training classes and remote online learning (e-learning),

More information

UCX Unified Communication - X Framework

UCX Unified Communication - X Framework UCX Unified Communication - X Framework Background MXM Developed by Mellanox Technologies HPC communication library for InfiniBand devices and shared memory Primary focus: MPI, PGAS UCCS Developed by ORNL,

More information

Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner

Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner Research Group Scientific Computing Faculty of Computer Science University of Vienna AUSTRIA http://www.par.univie.ac.at

More information

Operating System for the K computer

Operating System for the K computer Operating System for the K computer Jun Moroo Masahiko Yamada Takeharu Kato For the K computer to achieve the world s highest performance, Fujitsu has worked on the following three performance improvements

More information

Microsoft SMB 2.2 - Running Over RDMA in Windows Server 8

Microsoft SMB 2.2 - Running Over RDMA in Windows Server 8 Microsoft SMB 2.2 - Running Over RDMA in Windows Server 8 Tom Talpey, Architect Microsoft March 27, 2012 1 SMB2 Background The primary Windows filesharing protocol Initially shipped in Vista and Server

More information

www.thinkparq.com www.beegfs.com

www.thinkparq.com www.beegfs.com www.thinkparq.com www.beegfs.com KEY ASPECTS Maximum Flexibility Maximum Scalability BeeGFS supports a wide range of Linux distributions such as RHEL/Fedora, SLES/OpenSuse or Debian/Ubuntu as well as a

More information

Automatic Tuning of HPC Applications for Performance and Energy Efficiency. Michael Gerndt Technische Universität München

Automatic Tuning of HPC Applications for Performance and Energy Efficiency. Michael Gerndt Technische Universität München Automatic Tuning of HPC Applications for Performance and Energy Efficiency. Michael Gerndt Technische Universität München SuperMUC: 3 Petaflops (3*10 15 =quadrillion), 3 MW 2 TOP 500 List TOTAL #1 #500

More information