Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015

Size: px
Start display at page:

Download "Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015"

Transcription

1 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Program/Semester: Status of the course: Responsible: Contact information: Hours per week, Assesment method ANDROID APPLICATION DEVELOPMENT Computer Science BSc, sem.5 (winter) Elective dr inż. Marcin Luckner Lc / Ex / L / P 1/-/2/- Course code --- ECTS 4 Objective: 1. Student gets knowledge required to develop market-ready application from scratch. 2. After the course students without assistance can keep learning how to create more advanced applications. Course description: 1. IDE/SDK introduction, Android Architecture. 2. Basic application structure and lifecycle. Connecting code with resources. 3. Multiple activities. Saving settings. Background tasks. 4. Network (Wi-Fi Direct, NFC, Bluetooth, Sockets). Files, dialogs, toasts. 5. Android Services. Android Broadcast Receivers. 6. Background services. 7. Content providers. Supporting multiple devices. 8. 2D/3D Graphics 9. Third source services. 10. Application publishing 11. Monetizing your application. 12. Meetings with professional developer. Required prerequisites: Java (Programming 3) Recommended: Assesment regulations: Final grade is based on a project created during the course.

2 Signature

3 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Program/Semester: Status of the course: Responsible: Contact information: Hours per week, Assesment method ASSEMBLERS Computer Science BSc sem.5 or 7 (winter) Elective dr hab. inż Jacek Misiurewicz tel 5441, room 447 WEiTI Lc/ Ex/ L / P 2 / 0/ 1/ 0 credit Course code --- ECTS 4 Objective: Insight to most popular microprocessors family architecture and assembly language: Intel x86, ARM. Ability to hybrid assembly language with high level language programming to improve program performance. Ability to program at the bare hardware level. Course description: Lectures: 1. Introduction to assembly languages. 2. Intel x86 microprocessors family architecture: registers, memory addressing modes, flags. 3. Intel x86 microprocessor instruction set: data transfer instructions, integer arithmetic, logical operations, shifts and rotations, jumps, loops, procedures and stack operations. 4. Assembly macro language. 5. Hybrid programming: manual optimization of inner loop, binding assembly language subroutines with C/C++, pure assembly executable interacting with OS. 6. Floating point unit architecture and instruction set. 7. Other architectures: ARM (Advanced RISC Machine) and examples of other ones 8. Specific features accelerators in different architectures. Tutorials: - Laboratories: (7x2 hours, some subjects take 2x2 hours) 1. Intel x86 simple assembly inner loop in a complex program 2. Intel x86 C/C++/OS interacting 3. Linux kernel driver in assembly language 4. Raspberry Pi (ARM) assembly program under Linux 5. Raspberry Pi bare bones program interacting with hardware Project: - Required prerequisites: Programming 1 (Fundamentals, C) Programming 2 (Object Oriented, C ++) Recommended: Operating Systems UNIX Fundamentals Assesment regulations: Labs contribute 50% to the total score Mid-term test: 25% End-term test: 25%. Lab assignments must be done during the semester (no redo during the session). A student must be present at least at 80% of lab exercises to be scored. Signature

4 Faculty of Mathematics and Information Science Acad. year 2014/2015 Course title: Discrete random processes. Analysis and simulation Field of the study/semester Computer Science BSc/Msc sem. (winter/summer semester) Course status Elective Responsible people: Dr hab. eng. Paweł J. Szabłowski Tel: Telephone, Hours per week Lc / E / L / P 2 / 1 / / 1 Code No ETCS 5 Course description: After necessary review of basic notions of probability theory and technic of simulation of sequences of i.i.d. observations, the lectures present first properties of simple branching processes. Next students are acquainted with a few properties of Poisson processes as well as with their generalizations like nonhomogeneous and composed Poisson processes. Then they are acquainted with two models of queuing systems: so called M/M/c with and without a queue and their characteristics. Finally we discuss basic properties of renewal processes including justification of so called excess time paradox. During tutorials they learn how to calculate certain number characteristics of the processes presented. Finally during laboratories they are supposed to simulate some of the processes they were acquainted with during the lectures and observe some of their properties. Required prerequisities: Calculus, Probability Reference books: 1. Sheldon Ross. 'Introduction to Probability Model s'. Harcourt Acad. Press, N.Y L. Kosten, 'Stochastic Theory of Service Systems ', Pergamon Press, N.Y Geoffrey Grimmett and David Stirzaker, 'One Thousan d Exercises in Probability', Oxford University Press, N.Y Assesment method: During the semester students are supposed to a. Participate in lectures b. Take part in 6 laboratory exercises and submit 5 re ports c. Take part in auditory exercises. c. Take part in final exam Each Laboratory report is graded from 0 to 4 points. Final exam will be graded from 0 to 20 points. Hence one can score 40 points at most. Points are c onverted to grades according to the following algorithm: C C B B+ >36 A.. (signature)

5 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2013/2014 Course: ENTERPRISE APPLICATIONS IN.NET FRAMEWORK Program/Semester: Computer Science BSc; sem. 5 Status of the course: elective Responsible: Contact information: Hours per week, Assesment method Karol Walędzik, MSc Lc / Ex / L / P 2/-/2/- credit Course code --- ECTS 4 Objective: Students of the course should become familiar with the most important contemporary concepts and technologies employed when developing.net Framework based enterprise applications for MS Windows system. Course description: The course should provide students with general knowledge about most important architectural choices and technologies available for relational database access and data manipulation (including object-relational mapping), business logic layer, communication in distributed environment and presentation layer implementation. Since students are expected to already be familiar with desktop application development solutions, more emphasis will be put on web-based technologies. While most of the course will concentrate on technologies delivered as part of the.net Framework, selected most popular external libraries (both developed at Microsoft and by third parties) will be briefly described as well. Laboratories will give students a possibility to demonstrate their practical understanding of the concepts presented during the lecture. Lectures: Most important enterprise applications architectural and design concepts, including: o good practices of object-oriented programming; o layered architecture and basic patterns for each application layer. Data access and manipulation technologies, including: o ADO.NET; o object-relational mapping; o LINQ-based technologies. Business logic implementation approaches, including: o most common architectural patterns; o Windows Workflow Foundation. Communication technologies, including: o Windows Communication Foundation; o XML web services basics. Web-based presentation technologies, including: o ASP.NET; o ASP.NET MVC; o Silverlight. Unit testing, including overview of Visual Studio Unit Testing Framework. Laboratories: Laboratories will consist of 3 or 4 tasks in the form of mini-projects developed in teams of two. Each project will demonstrate the students' proficiency with at least one selected.net Framework based technology. Each developed solution and its architecture will also have to be presented to other students.

6 Required prerequisites: Object oriented programming Programming 4 (Windows Programming) Relational databases Assesment regulations: The tasks performed as part of the laboratories will constitute the sole base for the final grade. Each mini-project will be scored based on the amount of technology proficiency demonstrated by its authors, its technical quality, design quality, adherence to good programming principles and, last but not least, quality of the presentation prepared for other course students. Any delay in project development will also negatively influence its score. Karol Walędzik

7 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Program/Semester: Status of the course: Responsible: Contact information: Hours per week, Assessment method INTRODUCTION TO EMBEDDED SYSTEMS Computer Science BSc, sem.5 Computer Science MSc - winter Elective Dr Piotr Zbigniew Wieczorek THE FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY, ROOM 259, PHONE , Lc / Ex / L / P 2/0/1/0 Course code --- ECTS 4 Objective: During course students get general information and knowledge on embedded system issues i.e. various architecture types, implementation techniques in modern microcontrollers and programmable circuits. Students also get familiar with the use of embedded systems in commercial and professional applications. Structural programming practice based on embedded systems and System on Chip solutions. Introduction to basic standards and requirements of embedded systems in industry i.e. automotive Practical skills in selection of particular embedded systems, their configuration, and implementations adapted to special applications. Course description: Definition of an embedded system and its advantage over a standard microprocessor based system. Differences in programming resulting from real time approach, specific hardware and operating system requirements. During course students familiarize themselves with specific issues on I/O peripherals connected to embedded systems such as LCDs, OLED displays, touchpads, ADC-DAC converters, servomotors. Some part of the course will be focused on the feedback between embedded system and the environment (i.e. control of servomotors according to feedback loop data from sensors and DAC-ADC converters). Lectures: Description of embedded systems philosophy and architecture based on modern microcontrollers. Explanation of typical parameters, capabilities, and limitations of single-chip microcontrollers and their comparison to typical microprocessors (peripherals integration, differences in I/O operation and control). Some practical (commercial) examples of modern embedded systems. Practical issues on connecting input/output (IO) devices to microcontrollers, examples of devices allowing the system to communicate with the environment. Data acquisition with use of ADC s, and the description of simple sensors and actuators. Basic information on microcontrollers communication systems TWI, SPI, I2C, RS485/232, and wireless standards. During lectures some examples of use of software tools for programming and configuration of embedded systems will be shown. Debug tools for embedded systems: online vs. offline debug techniques will be also discussed. Detailed hardware and software practical issues discussed during lectures: Real time and discrete time in embedded systems; Interrupts handling; Signals acquisition and processing; Information interchange between systems; Synchronization; Multitasking.

8 Hands-on activities during lectures e.g. USB software implementation on Texas Instruments embedded board are also provided. Tutorials: Laboratories: During the laboratory activities students perform practical programming exercises on evaluation boards (STM, TI, and Atmel). Practical programming issues during laboratories might focus on: o IO devices/interfaces (LCD, touchpads etc.); o DC servo operation, actuator implementation; o Measurement of physical quantities with use of sensors integrated in an embedded system; o Implementation of a simple system with the physical feedback e.g. a simple robot which gathers information from sensors; Laboratories will be performed in pairs. Each laboratory stand will consist of a PC computer, development board with an embedded system, a DC supply, and a multimeter. Project: Required prerequisites: o Skills in structural programming preferably C language (Ansi C, GCC), o Skills in basics of electronics and physics, o Skills in basics of digital systems: logical gates, registers, memories (RAM, ROM), understanding of operation of a simple microprocessor and its particular parts (ALU, registers) Recommended: 1. The definitive guide to the ARM Cortex-M3. Joseph Yiu 2. C programming for the absolute beginner. Michael A. Vine 3. Configurable logic microcontroller : nonvolatile memory ATMEL products. Atmel Corporation,1998 Assessment regulations: Students are obliged to obtain at last 26 points to pass the course. Assessment contains of points collected during laboratories (max. 30 points) and a short written test (max. 20 points). Laboratories are supervised and graded. Each of five laboratories allows for collecting 0-6 points. Calculating of final mark is based on the sum of points collected during the semester. Signature

9 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Program/Semester: Status of the course: Responsible: Contact information: Hours per week, Assesment method LINUX FOR EMBEDDED SYSTEMS Computer Science BSc/MSc, sem.5 Computer Science MSc - winter Elective Wojciech Zabołotny, PhD ZUiSE, WEiTI, 7717, Lc / Ex / L / P 1/0/2/0 E Course code --- ECTS 4 Objective: Course description: Lectures: Introduction - Linux as OS for embedded systems Typical problems related to embedded systems differences between Linux for typical server or PC and Linux for an embedded system busybox and uclibc Building Linux for an embedded system possible approaches Adjustment of an existing distribution Building system from the scratch Linux bootoladers uboot, grub etc., different techniques for booting of development and production versions of the system Adaptation of the bootloader for particular hardware platform Use of Linux kernel with kexec feature to build more advanced loader Environments for building of Linux embedded systems OpenWRT,Open Embedded and Buildroot Presentation of Buildroot environment. Compilation of the simplest system for an emulated demonstration platform Optimization of the Linux kernel for the embedded system Proper selection of filesystems for an embedded system Selection of applications in the Buildroot environment to realize system with required functionalities Adjustment of the Buildroot environment and kernel for the particular hardware platform (board) Adding of own/additional applications to the Buildroot environment User interface in Linux based embedded systems Communication with displays, buttons, keyboard etc. Control via TCP/IP network Control via network or Bluetooth connection from the mobile phone Debugging of the Linux system on an embedded platform. Testing of the kernel and user-space applications Optimization of the system: problems specific for an embedded system, configuration minimizing risk of system corruption due to unexpected shutdown or power failure, optimization of FLASH memory wear. Laboratories: (10 3-hour sessions, 5 topics, each topic in 2 sessions the 1 st : introduction, the 2 nd : evaluation)

10 Introduction to the development session used in the laboratory Buildroot based compilation of the basic Linux system and starting it on the target platform Testing of different possibilities of system booting (internal FLASH memory, SD card, external USB disc, loading of the system image via network) Compilation of the system for an embedded system with required functionality (e.g. print server, multimedia server, etc.), its configuration and testing Compilation of the system with additional software added by the student. Testing of the system. Compilation and testing of the system optimized for use of particular peripheral devices. Configuration of the Linux system with OpenWRT environment, its compilation and testing on the development platform. Required prerequisites: Recommended: Assesment regulations: The final grade is based on the points obtained from the exam at the end of the semester (ca. 40% of points) and grades from laboratory sessions (ca. 60% of points). To pass the course student must earn at least 50% of points. Signature

11 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2013/2014 Course: PARALLEL PROCESSING Program/Semester: Computer Science BSc, sem. 5 Status of the course: Elective Responsible: Contact information: Hours per week, Assesment method...dr Felicja Okulicka-Dłużewska Lc / Ex / L / P 1/-/2/- exam Course code --- ECTS 4 Objective: The aim of the course is to give the knowledge on the basic rules of parallel programming and standard libraries Posix and MPI. The algorithms of distributed system management are presented. Additionally the parallel versions of numerical methods introduced for computation speed-up are given. After the course the student should: be able to implement a parallel algorithm using Posix be able to implement a parallel algorithm using MPI have knowledge on the algorithms of the distributed system management know the difference between the parallel and sequential numerical algorithms. Course description: Lectures: 1. Parallel machines. Basic definitions: process, thread, parallelizm 2. Synchronization problems: producer-consumer, readers-writers, 5 philosophers. 3. Processes synchronization in Posix. 4. Algorithms of scheduling 5. MPI Standard 6. Net distributed algorithms 7. Parallel linear algebra algorithms. Laboratories: 1. Processes synchronization in Posix. 2. Programming with MPI: process communication (blocking, unblocking, synchronized, asynchronized, point-to-point and collective) virtual topologies data structures in MPI groups of processes 3. Implementation of net distributed algorithms 4. Implementation parallel linear algebra algorithms. Required prerequisites: Unix, programming in C Recommended: 1. Barney, B., Introduction to Parallel Computing, https : //computing:llnl:gov/tutorials/parallel com p/ 2. Barney, B., Message Passing Interface (MPI), ht tps : //computing:llnl:gov/tutorials/mpi/ Assesment regulations: Student can have 50 point on labs and 50 point during exam. Only students who has at least 26 point after labs can attend the exam. To pass exam 26 point from 50 should be reached.

12 The final mark is the sum of the points from lab and exam. Signature

13 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: PROLOG - LOGIC PROGRAMMING AND APPLICATIONS Program/Semester: Computer Science BSc/MSc sem. 5 Status of the course: elective Responsible: dr inż. Andrzej Mazurkiewicz Contact information: Hours per week, Assessment method L / T / Lab / P 2/0/2/0 credit/exam Course code --- ECTS... Objective: to gain basic skills on Prolog programming as well as to see how can we apply it to practical problems in AI. In addition students should understand the theory underpinning the theoretical and practical logic programming. Course description: Lectures: 1. Deducibility, refutation, and inference rules. Introduction to programming in PROLOG (part 1). 2. Propositional and predicate logic. Introduction to programming in PROLOG (part 2).. 3. Modes, logical consequence, and satisfiability. Introduction to programming in PROLOG (part 2). 4. Clauses, Horn Clauses and SLD- resolution. Introduction to programming in PROLOG (part 3). 5. Lists and symbolic arithmetic. 6. Graph searching. 7. Applications of PROLOG to expert systems. 8. Solving with PROLOG logic puzzles. 9. Interfacing PROLOG with other software (C/C++, Python, Java, R, etc) 10. Interfacing PROLOG with other software (continued). 11. SLD-trees as a representation of the PROLOG program execution. 12. Soundness and completeness of SLD resolution. 13. More advanced PROLOG programming in AI. 14. Project discussion. Laboratories (linux with swi-prolog, C/C++, Java, Python-2, Python-3, R development environments): 1. Introduction to Programming in PROLOG. 2. Simple acyclic graph searching. 3. Symbolic arithmetic. 4. Lists and operations on lists. 5. Solving some logic puzzles. 6. Searching cyclic graphs (application to simulation and games). 7. Expert systems in PROLOG. 8. Interfacing PROLOG with other software.. 9. Database objects management and using information from existing databases. 10. Project work. Project: a) collection of simpler programs b) plus implementing in PROLOG a more advanced tasks (e.g. implementing database management operations as well as expert knowledge). Required prerequisites: basic skills in C/C++, Java, Python or other programming languages, basic relational database management skills, basic linux skills. Recommended: 1. The Art of Prolog, l. Sterling and E. Shapiro, MIT. 2. Prolog Programming for AI, I. Bratko, Addison Wesley. 3. Programming in Prolog, W. F. Clocksin and C. S. Mellish, Springer-Verlag. 4.

14 5. Assessment regulations: project 25%, labs 25% and exam 50% Marks: a) pts 3.0, b) pts 4.0, c) pts 5.0 Signature

15 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Program/Semester: Status of the course: Responsible: Contact information: Hours per week, Assessment method AGENT-SEMANTIC SYSTEMS AND APPLICATIONS Computer Science MSc, first or second semester Computer Engineering BE, 6 th or 7 th semester (matching the above) can be offered jointly to both groups elective Marcin Paprzycki, Ph.D., D.Sc. Maria Ganzha, Ph.D., D.Sc. Lc / Ex / L / P 2 / 0 / 1 / 1 Semester-long project Course code ECTS 4 Objective: The aim of the course is to introduce students to basic theoretical and practical issues involved in: (a) developing (distributed) agent systems (b) development of ontologies and their applications in semantic data processing (c) development of hybrid agent-semantic systems Course description: Lectures: 1. Introduction: software agents and agent systems Basic definitions and metaphores Critical analysis Software angents in applications Existing agent platforms; comparative analysis Formal and semi-formal methods for agent system modelling; Agent Modeling Language (AML) Methodologies and tools for agent system development JADE: agent system scalability experimental results 2. Ontologies and semantic data processing Basic definitions Languages for ontology demarcation: RDF, RDFS, OWL Overview of existed ontology: Dublin Core, FOAF, CYC, etc. Semantic databases: query languages. Semantic Web Reasoning, reasoners and languages 3. Applications 1. Personal agent case studies: Travel support system User profile: ontology, weighting preferences Supporting user decisions on the basis of semantic data processing Agents in virtual organization Semantic user profile Supporting user decisions on the basis of semantic data processing Agent-based decision support system for glider pilots

16 Utilization of software agents to collect, intelligently combine and apply in a context specific way data originating from multiple sources (including sensor data) Software agents as an approach to effectively combine multiple existing software artifacts Software agents as Grid / cloud middleware Agent-based system skeleton Ontologies in the system Development of agent-semantic system Laboratory: 1. JADE agent platform Platform structure and offered services Hello World, creation of the first agent Foundations of agent communication: message structure, Agent Communication Language (ACL) Agent mobility JADE Android agents residing on mobile devices 2. Ontologies and semantic data processing Protégé ontology creation Querying semantic data. Reasoning. Reasoning engines 3. Advanced agent communication involving ontology Project: Students select the project during the second meeting. The results of the project are: presentations, technical reports, working and well documented code. It is expected that the best projects can end-up as conference presentations and publications. It is also possible that research can be continued and extended to become the MS Thesis. Required prerequisites: - Object oriented programming (Java preferred) - Mathematical logic - Software Engineering Recommended literature: 1. Developing Multi-Agent System with JADE; F. Bellifemine, G. Caire, D. Greenwood, John Wiley & Sons, Developing Multi-Agent System with JADE; F. Bellifemine, G. Caire, D. Greenwood, John Wiley & Sons, Mohammad Essaaidi, Maria Ganzha, Marcin Paprzycki Software Agents, Agent Systems and Their Applications, IOS Press, Multiagent Systems and Applications: Volume 1: Practice and Experience, Ganzha, Maria and Jain, Lakhmi Berlin, Springer, 2013, Volume 45. XX, 278 p 5. Texts available at: 6. Explorer s Guide to the Semantic Web, T. B. Passin, MANNING, JADE documentation, 8. Protege Documentation, 9. Internet-based resources Assessment regulations: Students will be evaluated on three aspects of the project: (i) presentations, (ii) technical report, (iii) documented, working code.

17 Signature

18 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Program/Semester: Status of the course: Responsible: Contact information: Hours per week, Assessment method AGENT SYSTEMS AND APPLICATIONS Computer Science MSc, first or second semester Computer Engineering BE, 6 th or 7 th semester (matching the above) can be offered jointly to both groups elective Maria Ganzha, Ph.D., D.Sc. Marcin Paprzycki, Ph.D., D.Sc. Lc / Ex / L / P 2 / 0 / 1 / 1 Semester-long project Course code ECTS 4 Objective: The aim of the course is to introduce students to basic theoretical and practical issues involved in design and implementation of software agents and (distributed / mobile) agent systems Course description: Lectures: 1. Introduction: software agents and agent systems 2. Agent frameworks/platforms 3. Basic approaches to development and management of software agents and multi-agent systems 4. Agent system development methodologies 5. Applications of software agents and agent systems 5.1. Software agents as Grid / cloud middleware 5.2. Personal agents case studies: Personal agents supporting needs of travelers (agent-semantic system) Personal agents supporting workers in a virtual organization (agent-semantic system) Agent-based decision support for glider pilots (agent-sensor system) 5.3. Agents in smart grids / micro grids 5.4. Agents in management of network resources 5.5. Agents in e-commerce Laboratories: 1. JADE agent platform 1.1. Platform structure and offered services 1.2. Hello World, creation of the first agent 1.3. Foundations of agent communication: message structure, Agent Communication Language (ACL) 1.4. Agent mobility 1.5. JADE Android agents residing on mobile devices Project: Students select the project during the second meeting. The results of the project are: presentations, technical reports, working and well documented code. It is expected that the best projects can end-up as conference presentations and publications. It is also possible that research can be continued and extended to become the MS Thesis. Required prerequisites: - Object oriented programming (Java preferred)

19 - Mathematical logic - Software Engineering Recommended literature: 1. Developing Multi-Agent System with JADE; F. Bellifemine, G. Caire, D. Greenwood, John Wiley & Sons, Mohammad Essaaidi, Maria Ganzha, Marcin Paprzycki Software Agents, Agent Systems and Their Applications, IOS Press, Multiagent Systems and Applications: Volume 1: Practice and Experience, Ganzha, Maria and Jain, Lakhmi Berlin, Springer, 2013, Volume 45. XX, 278 p 4. Texts available at: (and subpages) 5. JADE documentation, 6. Internet-based resources Assessment regulations: Students will be evaluated on three aspects of the project: (i) presentations, (ii) technical report, (iii) documented, working code. Signature

20 Faculty of Mathematics and Information Science 2010/2011 Course title COMPUTER FORENSICS Internal code no Program BSc Course type lectures Number of credit points 4 Placement (recommended) Placement in timetable summer semester (6 th ) Length 1 semester Hours per week 2/0/1/0 Status of the Course in the study program Elective Objective To deliver baselines (practical, bottom-oriented knowledge) of sound computer forensics practices enabling information technology and information security professionals to ensure the overall integrity and survivability of their IT infrastructure. Courses description Introduction to baselines of computer forensics - definitions, needs, requirements, legal and ethical aspects; investigation phases - preparations and start of an investigation, case study, analysis of evidence, documentation. The discovery, recovery, preservation, analysis and control of electronic evidence, presentation standards. Tools of trade ( (TCT, Sleuthkit, Autopsy, CF-oriented Linux distributions, solutions for other platforms, commercial tools, ediscovery). Booting processes, start disks, boot sectors and partitions, system loaders, preparing and using bootable CD/DVD and USB images. File systems (FAT, NTFS/NTFS5, EXT2/EXT3, USF1/USF2 etc.) - specifications, data structures, investigation techniques. Identifying data types, reconstruction and analysis of files and data areas in search for evidence, interpretation of system and application logs, proving break-ins. Investigation of live systems (Windows, Unix/Linux) and network data flows, searching for evidence at the Internet. Required prerequisites Electronic Principles Introduction to Digital Systems Operating Systems Computer Networks Assessment method Lectures: Two close notes tests in the middle and at the end of the semester (25 points each). 3 extra

21 points for attendance at lectures (roll-call at random 3 times during the semester). Labs: Five 3-hour labs starting with 10-minute short test, then strictly individual work with emphasis put on documentation. 5 x 10 points to earn. No retakes. No requirement to pass lecture tests and labs separately. Final score: Points earned at tests and labs sum up, min 51 points required to pass, linear grade scale (51-60 points for 3, points for 3,5 etc., points for 5). Reference books Harlan Carvey, Windows Forensic Analysis, SYNGRESS 2007 Keith J. Jones, Richard Bejtlish, Curtis W. Rose, Real Digital Forensics, Computer Security and Incident Response, Addison-Wesley 2006 Eoghan Casey, Digital Evidence and Computer Crime, Elsevier Academic Press 2004 Brian Carrier, File System Forensic Analysis, Addison-Wesley 2005 Barry J. Grundy, The Law Enforcement and Forensic Examiner's Introduction to Linux, LinuxLEO.com and other guides and manuals found at Internet repositories. Responsible person Magdalena Szeżyńska, Ph.D., CISA Signature

22 Faculty of Mathematics and Information Science Acad. year 2014/2015 Course title: Field of the study/semester Computer Science BSc/Msc sem. 6 BSc/1-3 MSc (summer semester) Course status Elective Responsible people: dr inż. Iwona Wróbel Telephone, Hours per week Course description: From Finite Element Method to Signal Analysis Lc / E / L / P 2 / 0 / 1 / 1 Code No ETCS 4 I. Finite element method and its applications 1. Finite elements, finite element space, simplex finite elements, rectangular finite elements. 2. Finite element interpolation and least-squares approximation. 3. Variational formulation of boundary value problems, the Lax-Milgram theorem. 4. Estimates for general finite element error. 5. Generalized (weak) derivatives, Sobolev spaces, examples of the Lax-Milgram problems in Sobolev spaces. 6. Finite element method for nonstationary problems. 7. Generating and solving linear systems in finite element method. 8. Applications of finite element method. II. Finite difference methods for initial value problems for ordinary differential equations 1. Deriving finite difference approximations. Local truncation error. Global error. 2. Stability, consistency, and convergence. 3. Euler's method, forward and backward. 4. Multistep methods. Runge-Kutta methods. 5. Variable step size methods. III. Finite difference methods for boundary value problems and initial value problems 1. Deriving finite difference approximations. Stability, consistency, and convergence. 2. Schemes for the boundary problem for the second order ordinary differential equation. 3. Schemes for the Dirichlet problem for the second order elliptic equation. 4. Schemes for the heat equation and the wave equation. IV. Splines 1. Linear, parabolic, and cubic splines. B-splines. 2. Spline interpolation. 3. Error estimation. 4. Splines in R 2. V. Numerical integration 1. Gauss type quadratures. 2. Clenshaw-Curtis quadratures. 3. Adaptive quadratures. 4. Numerical computation of indefinite integrals. 5. Error estimation. 6. Numerical integration in R 2. VI. Fast Fourier Transform (FFT) and its applications.

23 Required prerequisities: Linear algebra, Calculus, Differential Equations, N umerical Methods Reference books: 1. S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, Springer 2008, 2. P. G. Ciarlet, The finite element method for elliptic problems, North-Holland Pub. Comp., Amsterdam 1978 (SIAM, Philadelphia 2002), 3. G. Dahlquist, A. Björck, Numerical methods, New Jersey, 1974, 4. G. Golub, J. Ortega, Scientific Computing and Differential Equations, An Introduction to Numerical Methods, Academic Press, 1992, 5. D. Kincaid, W. Cheney, Numerical analysis, 3rd ed, American Mathematical Society, Providence, RI, 2002, 6. P. M. Prenter, Splines and variational methods, J.Wiley Pub.,New York 1989, G.Hammerlin, K-H. Hoffmann, Numerical Mathematics, Springer-Verlag 1991, 8. O. C. Zienkiewicz, The finite element method, McGraw Hill, London, 3rd ed., 1977, 9. O. C. Zienkiewicz, K. Morgan, Finite elements and approximation, J. Wiley & Sons, N.York, Assesment method: Final grade is based on the project and the test. The project must be completed before a fixed deadline. Any delay results in penalty points.. (signature)

24 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Network Operating Systems Program/Semester: Computer Science BSc/MSc, sem.4 (summer) Status of the course: Elective Responsible: Dr inż. Janusz Oleniacz (W.Fizyki PW) Contact information: Hours per week, Assesment method Lc / Ex / L / P 1/-/2/- Course code --- ECTS 4 Objective: Poznanie nowoczesnych sieciowych systemów operacyjnych oraz architektury nowych technologii opartych na usługach. Zdobycie doświadczenia w konfigurowaniu i administracji systemów i usług dla systemów z rodziny Linux i Microsoft Windows o różnej skali wydajności i roli klient lub serwer. Poznanie problemów związanych z ciągle rosnącymi potrzebami i wymaganiami jakości usług oraz metod ich rozwiązywania. Poznanie terminologii i standardów dla usług i protokołów sieciowych, jak też zagadnień bezpieczeństwa, wirtualizacji, administracji i testowania dla usług i sieciowych systemów operacyjnych, z uzupełnieniem o technologie gridowe i cloud computning. Course description: Wprowadzenie uporządkowanej, podbudowanej teoretycznie wiedzy ogólnej w zakresie architektury sieciowych systemów operacyjnych oraz technologii sieciowych, w tym usług sieciowych: 1. katalogowych (DAP/LDAP, Microsoft AD, Novell NDS) 2. innych, jak: DNS,DHCP, autentykacji, autoryzacji, uwierzytalniania (AAA) 3. warstwy aplikacji ( ,web,file, e.g. MS Exchange/sendmail, IIS/Apache, NFS) 4. multimedialnych (voice,video) oraz standardów protokołów i usług (IETF/RFC, ISO, ITU). Zapoznanie się z podstawowymi metodami, technikami i narzędziami stosowanymi przy rozwiązywaniu prostych zadań informatycznych z zakresu budowy systemów komputerowych, sieci komputerowych i technologii sieciowych oraz systemów wbudowanych, w tym zwłaszcza: 1. modelu OSI 2. architektury SOA, WCF (.NET), web-servisów (SOAP,WSDL etc) 3. nowych rozwiązań typu przetwarzania i usług w chmurze (cloud computing, Microsoft Azure itp.) 4. bezpieczeństwa systemów i usług (SE Linux, firewalle, IDS/IPS, iptables/isa Server, VPN, SSL/TLS/IPsec) 5. różnorodności systemów sieciowych (od najstarszych do najnowszych, mobilnych i eksperymentalnych- np.android,plan9) 6. technologii wirtualizacji i emulacji 7. wirtualizacji wszelkich zasobów jako podstawy technologii gridowych i chmurowych 8. testowania usług typu klient/serwer, klient/serwis, wydajności, zgodności 9. problemów integracji, współpracy i zarządzania (rola standardów) Lectures: 15h godzin wykładów z materiałami udostępnianymi przez stronę WWW przedmiotu.

25 Tutorials: Dokumentacja dostępna przez internet, materiały z konferencji technologicznych. Laboratories: Szereg ćwiczeń praktycznie pokazujący działanie poszczególnych technologii sieciowych NOS. Większość w oparciu o maszyny wirtualne, lub inne zasoby dostępne zdalnie. Project: Przygotowanie 2 prezentacji (10-15min), pierwsza opisująca plan i technologie, druga efekty praktyczne jego realizacji. Required prerequisites: Wstępna wiedza o sieciach komputerowych, internecie i protokołach TCP/IP. Recommended: Strony WWW przedmiotu, konferencji tematycznie związanych i producentów rozwiązań. Assesment regulations: godziny kontaktowe - 50h; w tym obecność na wykładach 15h obecność na laboratoriach 30h konsultacje 5h przygotowanie do zajęć 55h, w tym przygotowanie do wykładów 10h przygotowanie projektu i do zajęć laboratoryjnych 45h Razem nakład pracy studenta 105h = 4 pkt. ECTS Ocena : z zadań wykonywanych podczas laboratorium 60 % ocena z projektu 40 % Signature

26 Faculty of Mathematics and Information Science Acad. year 2014/2015 Distributed Operating Systems Course title: Field of the study/semester Computer Science BSc/Msc sem. (winter/summer semester) Course status Elective Responsible people: Telephone, Hours per week Course description: Ewa Niewiadomska-Szynkiewicz, PhD, DSc Adam Kozakiewicz, PhD Tel: Lc / E / L / P 2 / 0 / 1 / 0 DOS Code No ETCS 4 Provides students with the distributed operating systems design and implementation. Lecture scope: 1. Introduction do distributed operating systems: definition, goals and architecture, hardware and software concepts, modern architectures. 2. Processes and threads, software agents, processes migration, load balancing algorithms. 3. Communication: layered protocols, client-server and peer-to-peer models, RPC, RMI, messagepassing and stream-oriented communication. 4. Synchronization: physical and logical time, time synchronization, distributed snapshot, election algorithms, distributed mutual exclusion, distributed transactions. 5. Naming: distributed name spaces, location services, aliases-identifiers-addresses, redirection. 6. Consistency and Replication: data-based and client-based consistency models, consistency protocols. 7. Fault Tolerance: types of faults, redundancy, reliable communication & RPC, virtual synchrony, distributed commit. 8. Security: terminology, service isolation and minimization, access control models, trust management, introduction to cryptography, public key infrastructure, secure protocols. 9. Distributed file systems: file systems implementation (NFS, Coda, Lustre, GFS) 10. Cluster systems: attributes, types of clusters, cluster systems implementations MOSIX, SSI, Kerrighed, queuing systems PBS. 11. Grid systems: attributes, implementations Unicore, Condor, Globus. Laboratory: Design and implementation of a distributed system, concentrating on consistency and fault tolerance. Work in realistic programming teams (3-4 students). Required prerequisities: Operating systems, elementary knowledge of data bases. Reference books: 1. A. S. Tanenbaum., M. van Steen, Distributed Systems. Principles and Paradigms, Prentice Hall 2002, 2006.

27 Assesment method: Two tests in the semester. Attendance at laboratory. Solving a problem at the laboratory.. (signature)

28 Course title Component Programming with Java EE Internal code no JavaEE Program MSc Course type lectures, lab Number of credit points 4 Placement (recommended) 1-4 semester Placement in timetable winter semester Length 1 semester Hours per week 1/0/2/0 Written Revised Status of the Course in the study program Objective Courses description elective Provide the students with the knowledge regarding component-based multilayer systems that separate business logic from presentation layer and use Java Enterprise Edition to define programming components. Discuss enterprise level solutions for maintenance and integration of software systems. The need for multilayer systems. The pros and cons of clientserver paradigm. Enterprise Java Beans and application servers. Local and remote interfaces. Selected design patterns. Connection pooling and the role of application servers. Java Persistence API and EJB-QL. Session beans. Asynchronous processing using message-driven components. Queue and publisher/subscriber model. The use of JNDI to access server s resources. The use of web services. WSDL and SOAP standards. REST style services. Introduction to BPEL. Selected solutions of modern web interface. Model-View-Controller pattern. Required prerequisites Assessment method short assignments prepared during the labs (100 points), at least 51 points are needed to pass Reference books Graham, Al. O Callaghan, A. Cameron Wills, Object-Oriented Methods Principles & Practice, Pearson Publication Limited, 2001 Weerawarana S. et al, Web Services Platform Architecture, Prentice Hall, 2005 Burke B., Monson-Haefel R., Enterprise JavaBeans 3.0, Helion 2007 Responsible person Maciej Grzenda

29 Wydział Matematyki i Nauk Informacyjnych PW academic year: 2014/2015 Course: Program/Semester: Status of the course: Responsible: Contact information: Hours per week, Assesment method NONLINEAR SYSTEMS AND GRAPHICS APPLICATIONS Computer Science MSc; winter elective Prof. Stanisław Janeczko Lc / Ex / L / P Course code ECTS 4 2/-/1/- credit NSGA Objective: Provide the students with the basic notions and methods of nonlinear dynamical systems, catastrophe theory and bifurcations, creating the geometrical models for various phenomena in social, economical, physical and life sciences, understanding mathematical description of phenomena in administration, stock market and ecology. Course description: Lectures: 1. Introduction to the theory of geometric models. a. Gradient vector fields, potentials and parameter spaces. 2. Classification of simple singularities and their unfoldings a. Simple local singularities of functions of type A k, D k, E k. b. Unfoldings of singularities. Morsifications of degenerated critical points of functions. 3. Algorithms for recognition of stationary surfaces for simple models. a. General description of stationary surfaces. b. Methods of elimination theory, resultants and discriminants. 4. Graphics of stable bifurcation sets and their metamorphoses. a. Graphical analysis of "fold", "cusp", "swallowtail", "butterfly", "hyperbolic umbilic", "elliptic umbilic", and "parabolic umbilic" elementary bifurcation sets. b. Families of intersections of higher dimensional bifurcation sets. 5. Applications of graphical analysis of stable stationary surfaces to some introductory models. a. Catastrophes in the stock market. b. Predictions of qualitative changement in nonlinear systems. c. Social modelling, formation of global opinions and attitudes. d. Phase transitions in ordered and semi-ordered structures. e. Multiplicity of perception and brain modelling. f. Visible contours, caustics and critical focusing of beams of rays. 6. Introduction to fractals and nonlinear dynamics. a. Iteration of maps, fixed pints, periodic orbits, feedback phenomenon, b. Attracting and repelling fixed points, stable and unstable orbits. c. Dynamics of the quadratic family. d. Iteration in the complex plane, Q c (z)=z 2 +c. Mandelbrot set, Julia sets. 7. Application of fractals. a. Logistic maps, population dynamics. b. Chaos in physical and economical systems. 8. Computer modelling of interacting systems (interaction of fractals). 6. Applications of discrete dynamical systems. 8. Examples of numerical simulations and computer graphics perspective. Laboratories: Instructions for graphical projects and algorithms Required prerequisites: CS 102, CS 206 Recommended: T. Poston, I. Stewart, Catastrophe Theory and its Applications, Pitman, London 1978

30 M.C. Tangora, Experiment and Theory in Computers in Geometry and Topology, Lecture Notes in Pure and Appl. Mathematics, 114, 1989, Marcel Dekker. E.C. Zeeman, Catastrophe Theory, Selected Papers , Addison-Wesley S. Janeczko, Wybrane Zagadnienia Teorii Katastrof, Oficyna Wyd. PW, Assesment regulations: Test in the end of term - 2h, presentation of the project Signature

31 Graphic Processors in Computational Applications https://e.mini.pw.edu.pl/en/print/ TRIAL z 1 MODE a valid license will remove this message. See the keywords property of this PDF for more information :13 Warsaw University of Technology Faculty of Mathematics and Information Science Course title Graphic Processors in Computational Applications Course code Lecturer dr inż. Krzysztof Kaczmarski, mgr inż. Przemysław Zdroik ECTS 4 Course coordinator dr inż. Krzysztof Kaczmarski Academic year Faculty unit Zakład Zastosowań Informatyki i Metod Numerycznych, MiNI PW Course type elective Programme bsc msc Mode of studies full time Course level basic Major computer science Speciality none Language of instruction English Semester (level 1) 6 Semester (level 2) 2 Assessment method credit Hours during semester 45 Teaching method Lect. Tut. Lab. Proj. Hours per week Standards Prerequisites Principles of parallel programming, C, C++ programming, algorithms and data structures Course content GPU architecture and comparison to CPU, multi-core processors, shared memory and cashe. Processes execution models: SIMD, MIMD, MISD, etc. CUDA nvidia library (CUDA lib, CUDA SDK) CUBLAS (BLAS) library. GPU algorithms: matrices and vectors operations, sorting, graphs searching and other graph algorithms, numerical methods. Objectives of the course Objective of this course is to learn architecture of multi-core processors their programming paradigm and applications. This course is based mostly on nvidia GPUs and CUDA library. Assessment regulations All projects are divided into three groups with different difficulty and credit. Each student has to prepare exactly two projects from the list. Grades: 50-60: 3, 61-70: 3.5, 71-80: 4.0, 81-90: 4.5, : 5.0. Recomended reading and software 1. CUDA ZONE Portal 2. CUBLAS Library 3. GPU Gems 3 Hubert Nguyen Addison-Wesley Professional (August 12, 2007) ISBN Patterns for Parallel Programming, Timothy G. Mattson, Beverly A. Sanders,Berna L. Massingill Addison-Wesley Professional; 1 edition (September 25, 2004) ISBN: Introduction to algprithms, Thomas H. Cormen et al. 6. Any literature on parallel programming and supercomputers [date] [signature] Project is co-financed by European Union within European Social Fund

32 Oracle Database Administration https://e.mini.pw.edu.pl/en/print/ TRIAL z 2 MODE a valid license will remove this message. See the keywords property of this PDF for more information :16 Warsaw University of Technology Faculty of Mathematics and Information Science Course title Oracle Database Administration Course code Lecturer mgr Rafal Maczewski ECTS 4 Course coordinator mgr Rafal Maczewski Academic year Faculty unit Zakład Zastosowań Informatyki i Metod Numerycznych, MiNI PW Course type elective Programme bsc msc Mode of studies full time Course level moderate Major computer science Speciality none Language of instruction English Semester (level 1) 6 Semester (level 2) 2 Assessment method exam Hours during semester 30 Teaching method Lect. Tut. Lab. Proj. Hours per week Standards Prerequisites Databases Course content The course trains in tasks typical to Oracle database administration: administering database users, disk space, privileges, doing database backups recovering database after serious failures (for example: disk or computer failures) optimizing SQL statements tuning Oracle database At the end of the course students should be able to: Objectives of the course create and manage schema objects such as: tables, views, indexes, sequences, synonyms create and manage tablespaces, move data and indexes between tablespaces, manage and optimize space used by a table or index identify database files: control files, data files, online redo logs, parameter file, archived logs do offline and online backup (backups when the database is open) use backup to recover the database after some files have been lost due to hardware failure or human error set up standby database system with two computers: primary database that is used by all users, and standby database which is tracking changes to the primary database and can be activated when the primary database fails analyze SQL statement execution plan, create indexes to optimize a way SQL statement is executed, and provide optimizer hints tune Oracle database parameters Assessment regulations Each laboratory except the first starts with a test assessing previously discussed topisc. The duration of the test varies between 15 and 90 minutes depending on the complexity of the task. During the test students can use their notes, books, access internet (with the exception of using , instant messaging applications and other forms of communication). Each test is graded on the scale from 0 to 10 points. The remaining time on the laboratory is spent on practicing topics discussed on the lecture. In order to qualify for the exam, student must score more than 50% of points from all tests after excluding one test with the worst result. Students who score over 90% of points from all tests after excluding one worst result, are excused from the exam and get an "A" mark. The final exam takes place in the laboratory room. The final exam is graded on the scale from 0 to 100 points. The final mark is assigned based on the sum of points from the exam and all laboratories after excluding one worst result: over 90% of points - A over 80% of points - B+ over 70% of points - B over 60% of points - C+ over 50% of points - C 50% of points or less - Failed Recomended reading and software Oracle documentation available online at Toad freeware edition - freeware application that is useful to Oracle administrators and programmers [date] [signature]

33 Oracle Database Administration https://e.mini.pw.edu.pl/en/print/ TRIAL z 2 MODE a valid license will remove this message. See the keywords property of this PDF for more information :16 Project is co-financed by European Union within European Social Fund

34 Data Mining https://e.mini.pw.edu.pl/en/print/ TRIAL z 1 MODE a valid license will remove this message. See the keywords property of this PDF for more information :18 Warsaw University of Technology Faculty of Mathematics and Information Science Course title Data Mining Course code Lecturer dr inż. Krzysztof Bryś ECTS 4 Course coordinator dr inż. Krzysztof Bryś Academic year Faculty unit Zespół Dydaktyczny, MiNI PW Course type elective Programme bsc msc Mode of studies full time Course level basic Major computer science Speciality none Language of instruction English Semester (level 1) 7 Semester (level 2) 3 Assessment method credit Hours during semester 45 Teaching method Lect. Tut. Lab. Proj. Hours per week Standards Prerequisites Computer Statistics Course content Data Mining model and methods Objectives of the course The course introduces principles and techniques of data mining. It emphasizes the advantages and disadvantages of using these methods in real world systems, and provides hands-on experience. Assessment regulations Lab: project (max 40 pts) max 20pts for documentation and max 20pts for computer implementation, preparation of data sets and tests, presentation. Lecture: multiple choice test (max 60pts) 20 questions, +3 pts for each correct mark, -3 pts for each wrong mark. Both parts (project and test) have to be passed. (at least 21 pts for the lab and at least 31 pts for the test). Final grade:51-60 pts = 3.0, pts = 3.5, pts = 4.0, pts = 4.5, pts = 5.0. Recomended reading and software 1. M. Berry, G. Linoff, Mastering Data Mining, John Wiley & Sons, U. Fayyad, G.Piatetsky-Shapiro, P. Smyth, R.Uthurusamy, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, N. Indurkhya, S.M. Weiss, Predictive Data Mining: A Practical Guide, Morgan Kaufmann,1997. [date] [signature] Project is co-financed by European Union within European Social Fund

35 Wydział Matematyki i Nauk Informacyjnych PW r.ak. 2013/2014 Przedmiot: Kierunek/Semestr: Rodzaj przedmiotu Prowadzący: Zakład, telefon, Tygodniowy wymiar godzin i sposób zaliczenia BIOINFORMATYKA Informatyka / studia II st. sem. letni Przedmiot obieralny dr Joanna Sasin-Kurowska 1/0/2/0 Kod przedmiotu ECTS 4 Cel przedmiotu / efekty kształcenia: Bioinformatyka to interdyscyplinarna dziedzina, której celem jest przetwarzanie i analiza danych biologicznych. Obejmuje ona budowę, rozwój i zastosowanie metod obliczeniowych, służących do badania struktury, funkcji, ewolucji genów, białek, jak również całych genomów. Ważnym celem bioinformatyki, szczególnie w ostatnich latach (w związku z coraz powszechniejszym zastosowaniem w biologii molekularnej tzw. technik wysokoprzepustowych), jest rozwój metod wykorzystywanych do zarządzania ogromnymi ilościami danych, zawartymi w biologicznych i medycznych bazach danych, oraz ich eksploracji (ang. data mining). W trakcie zajęć studenci zostaną zaznajomieni z metodami algorytmicznymi, technikami analizy porównawczej i statystycznej, które są stosowane do powyższych zagadnień. Program przedmiotu: Program wykładu: 1. Wprowadzenie. Formaty i pochodzenie analizowanych danych. Krótki zarys ich znaczenia biologicznego. Przegląd najważniejszych baz danych. 2. Analiza danych sekwencyjnych- algorytmy porównywania sekwencji, zastosowanie programowania dynamicznego, ukrytych łańcuchów Markowa, statystyczna ocena dopasowania sekwencji 3. Algorytmy szybkiego wyszukiwania informacji z sewkencyjnych baz danych 4. Ewolucja molekularna - odtwarzanie najbardziej prawdopodobnych ścieżek ewolucji na podstawie istniejących danych molekularnych. Metody klasyfikacji oparte na na rozkładach prawdopodobieństwa oraz na nieparametrycznej estymacji rozkładów prawdopodobieństwa. Zastosowanie drzew klasyfikacyjnych. 5. Najważniejsze metody do przewidywania struktur trzeciorzędowych i funkcji białek na podstawie sekwencji. 6. Analiza ekspresji genów. Zastosowanie metod rzutowania i wykrywania zmiennych ukrytych do analizy mikromacierzy. 7. Biologia systemowa. Algorytmy przewidywania i badania złożonych oddziaływań występujących w systemach biologicznych. 8. Metody eksploracji niesekwencyjnych baz danych, w tym danych bibliograficznych, klinicznych, struktur molekularnych czy ścieżek metabolicznych i oddziaływań pomiędzy cząsteczkami biologicznymi. 9. Wykorzystanie języków programowania do omawianych wcześniej zagadnień (Python/R). Program laboratorium 1. Wprowadzenie do biologicznych baz danych. 2. Wprowadzenie do języka programowania Python. 3. Budowa uliniowień sekwencji aminokwasowych i nukleotydowych z użyciem biblioteki BioPython. 4. Testowanie wybranego algorytmu szybkiego wyszukiwania informacji z sewkencyjnych baz danych z użyciem biblioteki BioPython

36 5. Zastosowanie metod klasyfikacji opartych na rozkładach prawdopodobieństwa oraz na nieparametrycznej estymacji rozkładów prawdopodobieństwa do odtwarzania ewolucji molekularnej. 6. Budowa modeli struktur trzeciorzędowych białek na podstawie sekwencji. 7. Wprowadzenie do środowiska R. 8. Analiza ekspresji genów. Analizy mikromacierzy z zastosowaniem bibliotek dostępnych w R. 10. Metody eksploracji niesekwencyjnych baz danych, w tym danych bibliograficznych, klinicznych, struktur molekularnych czy ścieżek metabolicznych i oddziaływań pomiędzy cząsteczkami biologicznymi. Przedmioty poprzedzające / wymagania wstępne: statystyka bazy danych algorytmy i struktury danych Literatura podstawowa: (zgodnie z wymogami Państwowej Komisji Akredytacyjnej wylistowana literatura musi znajdować się w zasobach biblioteki głównej PW, w przypadku braku danej pozycji należy ją zastąpić inną) Higgs P.G., Attwood T.K., Bioinformatyka i ewolucja molekularna, PWN, 2012 Xiong J., Podstawy bioinformatyki, WUW, 2009 Tramontano A., Introduction to bioinformatics, Chapman & Hall/CRC,cop Regulamin zaliczenia przedmiotu: Zaliczenie laboratoriów z przedmiotu na podstawie rozliczenia z 3 projektów (60%). Zaliczenie wykładów na podstawie wyników kolokwium (40%).. (podpis)

37 Advanced Artificial Intelligence https://e.mini.pw.edu.pl/en/print/ TRIAL z 2 MODE a valid license will remove this message. See the keywords property of this PDF for more information :23 Warsaw University of Technology Faculty of Mathematics and Information Science Course title Advanced Artificial Intelligence Course code Lecturer dr hab. inz Jaroslaw Arabas ECTS 4 Course coordinator dr hab. inz Jaroslaw Arabas Academic year Faculty unit Wydzial Elektroniki i Technik Informacyjnych, Instytut Systemow Elektronicznych, Zaklad Sztucznej Inteligencji Course type elective Programme bsc msc Mode of studies full time Course level advanced Major computer science Speciality ai Language of instruction English Semester (level 1) 7 Semester (level 2) 3 Assessment method exam Hours during semester 45 Teaching method Lect. Tut. Lab. Proj. Hours per week Standards Prerequisites Artificial Intelligence Fundamentals Lecture syllabus Course content 1. Definitions of learning tasks and optimization tasks. Learning from data: basic idea. 2. Supervised learning: nonlinear regression. Nonlinear models - multilayer perceptrons, RBF. 3. Methods to improve learning - bagging and boosting 4. Classification in Rn as a specific form of the regression task. Applying perceptrons for the classification 5. Support Vector Machine - linear version 6. Support Vector Machine - nonlinear version. Kernel SVM. 7. Learning classification for discrete data - overview of methods 8. Refinements of the ID3 methods - pruning decision trees. Random forests. 9. Memory beased models of regression and classification. k-nn classifier 10. Data clustering. k-means method 11. Linear Vector Quantization Scope of the project Students apply and test one of the methods introduced during the lecture. To formulate real-life problems as tasks of Artificial Intelligence To apply methods that are appropriate for the problem Objectives of the course To capture relationships between Artificial Intelligence and Databases, Desision Support Systems, Computer Aided Design To apply and test algorithms Grading is based on the total sum of points, where maximum is 100 Assessment regulations Up to 50 points can be achieved for the project, and up to 50 points - for the exam The exam is in a written form, takes 105 minutes, students are expected to solve several tasks of various grade of difficulty. Notes and books are allowed. Points are the base for the final grading according to the following rule: [range which contains number of points] ->grade 0-50->2, >3, >3.5, >4, >4.5, >5 G. Luger, Artificial intelligence Z. Michalewicz, D. Fogel: How to solve it: modern heuristics Recomended reading and software [date] [signature] Project is co-financed by European Union within European Social Fund

38 Advanced Artificial Intelligence https://e.mini.pw.edu.pl/en/print/ TRIAL z 2 MODE a valid license will remove this message. See the keywords property of this PDF for more information :23

39 Fractals https://e.mini.pw.edu.pl/en/print/ TRIAL z 2 MODE a valid license will remove this message. See the keywords property of this PDF for more information :24 Warsaw University of Technology Faculty of Mathematics and Information Science Course title Fractals Course code Lecturer dr Robert Małysz ECTS 4 Course coordinator dr Robert Małysz Academic year Faculty unit MiNI PW Course type elective Programme msc Mode of studies full time Course level basic Major computer science Speciality none Language of instruction English Semester (level 1) Semester (level 2) 2 Assessment method credit Hours during semester 45 Teaching method Lect. Tut. Lab. Proj. Hours per week Standards Prerequisites analysis, linear algebra and geometry, programming, (measure theory, computer graphics, functional analysis, stochastic processes) Course content Classical fractals and definitions of dimension 1. Classical fractals (Sierpiński gasket, Cantor set, Koch curve, Julii sets) 2. the Minkowski dimension, packing dimension 3. the Hausdorff dimension, Hausdorff measure, properties of dimensions Deterministic fractals 4. IFS-Iterated function system IFS, the Hutchinson operator, the Banach theorem 5. Dimension of self-similar and self-affine fractals 6. Fractal interpolation functions, Peano curve, the Weierstrass functions 7. Dimension and properties of fractal interpolations functions 8. Fractal surfaces (e.g. bilinear fractal interpolation surfaces), properties and dimension 9. Julii sets and the Mandelbrot set Random fractals and self-similar stochastic processes 10. Random fractals, modifications of deterministic fractals 11. the Brown motions, fractional Brownian motions-fbm, self-similar processes 12. the Frostmann theorem, the Hausdorff dimension of self-similar processes and fractional Brownian motions Applications of fractal geometry 13. Fractal landscapes 14. Fractal compression 15. the Hurst exponent, applications of fractal geometry in economy and physics, scaling laws tbd Objectives of the course Assessment regulations Students will create computer programs based on lectures. The list of programs is on website Recomended reading and software 1. Barnsley, B. - Fractals everywhere, Acad. Press Inc., Falconer, K. - Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Mandelbrot, B.B. - Fractals and Scaling in Finance. Springer Massopust, P - Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, Peitgen, O., Jurgens, H., Saupe, D. - Fraktale PWN Peters, E.E. - Fractal Markets Analysis. John Wiley & Sons, Skarbek, Wł. - Metody reprezentacji obrazów cyfrowych Akademicka Oficyna Wydawnicza 1993 [date] [signature]

40 Fractals https://e.mini.pw.edu.pl/en/print/ TRIAL z 2 MODE a valid license will remove this message. See the keywords property of this PDF for more information :24 Project is co-financed by European Union within European Social Fund

Computer Forensics introduction part A

Computer Forensics introduction part A Computer Forensics introduction part A Dr. Magdalena Szeżyńska, CISA Institute of Electronic Systems WUT m.szezynska@elka.pw.edu.pl Summer 2016 Digital Forensic Investigation Concepts A digital investigation

More information

MEng, BSc Applied Computer Science

MEng, BSc Applied Computer Science School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions

More information

MEng, BSc Computer Science with Artificial Intelligence

MEng, BSc Computer Science with Artificial Intelligence School of Computing FACULTY OF ENGINEERING MEng, BSc Computer Science with Artificial Intelligence Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give

More information

Division of Mathematical Sciences

Division of Mathematical Sciences Division of Mathematical Sciences Chair: Mohammad Ladan, Ph.D. The Division of Mathematical Sciences at Haigazian University includes Computer Science and Mathematics. The Bachelor of Science (B.S.) degree

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

Computer and Information Sciences

Computer and Information Sciences Computer and Information Sciences Dr. John S. Eickmeyer, Chairperson Computers are no longer huge machines hidden away in protected rooms and accessible to only a few highly-trained individuals. Instead,

More information

Computer Science. 232 Computer Science. Degrees and Certificates Awarded. A.S. Degree Requirements. Program Student Outcomes. Department Offices

Computer Science. 232 Computer Science. Degrees and Certificates Awarded. A.S. Degree Requirements. Program Student Outcomes. Department Offices 232 Computer Science Computer Science (See Computer Information Systems section for additional computer courses.) We are in the Computer Age. Virtually every occupation in the world today has an interface

More information

Doctor of Philosophy in Computer Science

Doctor of Philosophy in Computer Science Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects

More information

M.S. Computer Science Program

M.S. Computer Science Program M.S. Computer Science Program Pre-requisite Courses The following courses may be challenged by sitting for the placement examination. CSC 500: Discrete Structures (3 credits) Mathematics needed for Computer

More information

CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING

CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING MAJOR: DEGREE: COMPUTER SCIENCE MASTER OF SCIENCE (M.S.) CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING The Department of Computer Science offers a Master of Science

More information

Master of Science (M.S.), Major in Software Engineering

Master of Science (M.S.), Major in Software Engineering Texas State University 1 Master of Science (M.S.), Major in Software Engineering Admission Policy For information regarding admission application requirements and deadlines, please visit The Graduate College

More information

Department of Computer Science

Department of Computer Science 82 Advanced Biochemistry Lab II. (2-8) The second of two laboratory courses providing instruction in the modern techniques of biochemistry. Experiments are performed on the isolation, manipulation and

More information

B.Sc. in Computer Information Systems Study Plan

B.Sc. in Computer Information Systems Study Plan 195 Study Plan University Compulsory Courses Page ( 64 ) University Elective Courses Pages ( 64 & 65 ) Faculty Compulsory Courses 16 C.H 27 C.H 901010 MATH101 CALCULUS( I) 901020 MATH102 CALCULUS (2) 171210

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

James B. Fenwick, Jr., Program Director and Associate Professor Ph.D., The University of Delaware FenwickJB@appstate.edu

James B. Fenwick, Jr., Program Director and Associate Professor Ph.D., The University of Delaware FenwickJB@appstate.edu 118 Master of Science in Computer Science Department of Computer Science College of Arts and Sciences James T. Wilkes, Chair and Professor Ph.D., Duke University WilkesJT@appstate.edu http://www.cs.appstate.edu/

More information

Master of Science in Computer Science Information Systems

Master of Science in Computer Science Information Systems Master of Science in Computer Science Information Systems 1. General Admission Requirements. Admission to Graduate Studies (see graduate admission requirements). 2. Program Admission. In addition to meeting

More information

2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce

2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce 2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge

More information

Poznan University of Technology Faculty of Electrical Engineering

Poznan University of Technology Faculty of Electrical Engineering Poznan University of Technology Faculty of Electrical Engineering Contact Person: Pawel Kolwicz Vice-Dean Faculty of Electrical Engineering pawel.kolwicz@put.poznan.pl List of Modules Academic Year: 2015/16

More information

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent

More information

COURSE TITLE COURSE DESCRIPTION

COURSE TITLE COURSE DESCRIPTION COURSE TITLE COURSE DESCRIPTION CS-00X COMPUTING EXIT INTERVIEW All graduating students are required to meet with their department chairperson/program director to finalize requirements for degree completion.

More information

Department of Computer Science

Department of Computer Science 113 Department of Computer Science Chairperson: Nasri, Ahmad H. Professor: Nasri, Ahmad H. Associate Professors: Attie, Paul C.; Karam, Marcel R.; Turkiyyah, George M. Assistant Professors: Abu Salem,

More information

Bachelor of Science in Information Technology. Course Descriptions

Bachelor of Science in Information Technology. Course Descriptions Bachelor of Science in Information Technology Course Descriptions Year 1 Course Title: Calculus I Course Code: MATH 101 Pre- Requisite(s): This course introduces higher mathematics by examining the fundamental

More information

Computer Science. Computer Science 207. Degrees and Certificates Awarded. A.S. Computer Science Degree Requirements. Program Student Outcomes

Computer Science. Computer Science 207. Degrees and Certificates Awarded. A.S. Computer Science Degree Requirements. Program Student Outcomes Computer Science 207 Computer Science (See Computer Information Systems section for additional computer courses.) We are in the Computer Age. Virtually every occupation in the world today has an interface

More information

Master of Science in Computer Science

Master of Science in Computer Science Master of Science in Computer Science Background/Rationale The MSCS program aims to provide both breadth and depth of knowledge in the concepts and techniques related to the theory, design, implementation,

More information

University of Nicosia, Cyprus

University of Nicosia, Cyprus University of Nicosia, Cyprus Course Code Course Title ECTS Credits COMP-513 Computer Networks and 10 Web Technologies Department Semester Prerequisites Computer Science Spring None Type of Course Field

More information

DIABLO VALLEY COLLEGE CATALOG 2014-2015

DIABLO VALLEY COLLEGE CATALOG 2014-2015 COMPUTER SCIENCE COMSC The computer science department offers courses in three general areas, each targeted to serve students with specific needs: 1. General education students seeking a computer literacy

More information

One LAR Course Credits: 3. Page 4

One LAR Course Credits: 3. Page 4 Course Descriptions Year 1 30 credits Course Title: Calculus I Course Code: COS 101 This course introduces higher mathematics by examining the fundamental principles of calculus-- functions, graphs, limits,

More information

THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals

THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals Full Marks 100 (Theory 75, Practical 25) Introduction to Computers :- What is Computer?

More information

Masters in Human Computer Interaction

Masters in Human Computer Interaction Masters in Human Computer Interaction Programme Requirements Taught Element, and PG Diploma in Human Computer Interaction: 120 credits: IS5101 CS5001 CS5040 CS5041 CS5042 or CS5044 up to 30 credits from

More information

Course Descriptions. preparation.

Course Descriptions. preparation. Course Descriptions CS 101 Intro to Computer Science An introduction to computer science concepts and the role of computers in society. Topics include the history of computing, computer hardware, operating

More information

HPC Wales Skills Academy Course Catalogue 2015

HPC Wales Skills Academy Course Catalogue 2015 HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses

More information

Computer Science Course Descriptions Page 1

Computer Science Course Descriptions Page 1 CS 101 Intro to Computer Science An introduction to computer science concepts and the role of computers in society. Topics include the history of computing, computer hardware, operating systems, the Internet,

More information

Please consult the Department of Engineering about the Computer Engineering Emphasis.

Please consult the Department of Engineering about the Computer Engineering Emphasis. COMPUTER SCIENCE Computer science is a dynamically growing discipline. ABOUT THE PROGRAM The Department of Computer Science is committed to providing students with a program that includes the basic fundamentals

More information

DEGREE PLAN INSTRUCTIONS FOR COMPUTER ENGINEERING

DEGREE PLAN INSTRUCTIONS FOR COMPUTER ENGINEERING DEGREE PLAN INSTRUCTIONS FOR COMPUTER ENGINEERING Fall 2000 The instructions contained in this packet are to be used as a guide in preparing the Departmental Computer Science Degree Plan Form for the Bachelor's

More information

Computer Science. General Education Students must complete the requirements shown in the General Education Requirements section of this catalog.

Computer Science. General Education Students must complete the requirements shown in the General Education Requirements section of this catalog. Computer Science Dr. Ilhyun Lee Professor Dr. Ilhyun Lee is a Professor of Computer Science. He received his Ph.D. degree from Illinois Institute of Technology, Chicago, Illinois (1996). He was selected

More information

AQA GCSE in Computer Science Computer Science Microsoft IT Academy Mapping

AQA GCSE in Computer Science Computer Science Microsoft IT Academy Mapping AQA GCSE in Computer Science Computer Science Microsoft IT Academy Mapping 3.1.1 Constants, variables and data types Understand what is mean by terms data and information Be able to describe the difference

More information

Masters in Computing and Information Technology

Masters in Computing and Information Technology Masters in Computing and Information Technology Programme Requirements Taught Element, and PG Diploma in Computing and Information Technology: 120 credits: IS5101 CS5001 or CS5002 CS5003 up to 30 credits

More information

Masters in Networks and Distributed Systems

Masters in Networks and Distributed Systems Masters in Networks and Distributed Systems Programme Requirements Taught Element, and PG Diploma in Networks and Distributed Systems: 120 credits: IS5101 CS5001 CS5021 CS4103 or CS5023 in total, up to

More information

Course Descriptions. CS 101 Intro to Computer Science

Course Descriptions. CS 101 Intro to Computer Science Course Descriptions CS 101 Intro to Computer Science An introduction to computer science concepts and the role of computers in society. Topics include the history of computing, computer hardware, operating

More information

Study Plan for the Bachelor Degree in Computer Information Systems

Study Plan for the Bachelor Degree in Computer Information Systems Study Plan for the Bachelor Degree in Computer Information Systems The Bachelor Degree in Computer Information Systems/Faculty of Information Technology and Computer Sciences is granted upon the completion

More information

PCCC PCCC Course Description

PCCC PCCC Course Description Course Description CIS 101 Computer Concepts and Applications 3 credits (formerly Introduction to Computers and Information Processing) Introduces a variety of topics in computers and computing including

More information

Masters in Advanced Computer Science

Masters in Advanced Computer Science Masters in Advanced Computer Science Programme Requirements Taught Element, and PG Diploma in Advanced Computer Science: 120 credits: IS5101 CS5001 up to 30 credits from CS4100 - CS4450, subject to appropriate

More information

Masters in Artificial Intelligence

Masters in Artificial Intelligence Masters in Artificial Intelligence Programme Requirements Taught Element, and PG Diploma in Artificial Intelligence: 120 credits: IS5101 CS5001 CS5010 CS5011 CS4402 or CS5012 in total, up to 30 credits

More information

Distributed Operating Systems Introduction

Distributed Operating Systems Introduction Distributed Operating Systems Introduction Ewa Niewiadomska-Szynkiewicz and Adam Kozakiewicz ens@ia.pw.edu.pl, akozakie@ia.pw.edu.pl Institute of Control and Computation Engineering Warsaw University of

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

IC 1101 Basic Electronic Practice for Electronics and Information Engineering

IC 1101 Basic Electronic Practice for Electronics and Information Engineering 7. INDUSTRIAL CENTRE TRAINING In the summer between Year 1 and Year 2, students will undergo Industrial Centre Training I in the Industrial Centre (IC). In the summer between Year 2 and Year 3, they will

More information

Computer Science. Requirements for the Major (updated 11/13/03)

Computer Science. Requirements for the Major (updated 11/13/03) Computer Science Faculty: Knox Chair; Komagata,, Martinovic, Neff, Sampath, Wolz Faculty from mathematics with joint teaching appointments in computer science: Conjura, Greenbaun, Iannone The computer

More information

Computer Science. Computer Science 213. Faculty and Offices. Degrees and Certificates Awarded. AS Computer Science Degree Requirements

Computer Science. Computer Science 213. Faculty and Offices. Degrees and Certificates Awarded. AS Computer Science Degree Requirements Computer Science 213 Computer Science (See Computer Information Systems section for additional computer courses.) Degrees and Certificates Awarded Associate in Science Degree, Computer Science Certificate

More information

COMPUTER SCIENCE. FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa

COMPUTER SCIENCE. FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa COMPUTER SCIENCE Computer Science is the study of computer programs, abstract models of computers, and applications of computing.

More information

CURRICULUM VITAE EDUCATION:

CURRICULUM VITAE EDUCATION: CURRICULUM VITAE Jose Antonio Lozano Computer Science and Software Development / Game and Simulation Programming Program Chair 1902 N. Loop 499 Harlingen, TX 78550 Computer Sciences Building Office Phone:

More information

Database Management (120 ЕCTS)

Database Management (120 ЕCTS) Study program Faculty Cycle Database Management (120 ЕCTS) Contemporary Sciences and Technologies Postgraduate ECTS 120 Offered in Tetovo Description of the program The study program aims are: Career To

More information

Masters in Information Technology

Masters in Information Technology Computer - Information Technology MSc & MPhil - 2015/6 - July 2015 Masters in Information Technology Programme Requirements Taught Element, and PG Diploma in Information Technology: 120 credits: IS5101

More information

Example of Standard API

Example of Standard API 16 Example of Standard API System Call Implementation Typically, a number associated with each system call System call interface maintains a table indexed according to these numbers The system call interface

More information

DIGITAL FORENSICS SPECIALIZATION IN BACHELOR OF SCIENCE IN COMPUTING SCIENCE PROGRAM

DIGITAL FORENSICS SPECIALIZATION IN BACHELOR OF SCIENCE IN COMPUTING SCIENCE PROGRAM DIGITAL FORENSICS SPECIALIZATION IN BACHELOR OF SCIENCE IN COMPUTING SCIENCE PROGRAM Proposed Program Title: Bachelor of Science in Computing Science- Specialization in Digital Forensics Specialization

More information

Course Syllabus For Operations Management. Management Information Systems

Course Syllabus For Operations Management. Management Information Systems For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization

More information

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina Graduate Co-op Students Information Manual Department of Computer Science Faculty of Science University of Regina 2014 1 Table of Contents 1. Department Description..3 2. Program Requirements and Procedures

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2015/6 - August 2015 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008 Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report

More information

SOFTWARE ENGINEERING PROGRAM

SOFTWARE ENGINEERING PROGRAM SOFTWARE ENGINEERING PROGRAM PROGRAM TITLE DEGREE TITLE Master of Science Program in Software Engineering Master of Science (Software Engineering) M.Sc. (Software Engineering) PROGRAM STRUCTURE Total program

More information

INFORMATION TECHNOLOGY PROGRAM

INFORMATION TECHNOLOGY PROGRAM INFORMATION TECHNOLOGY PROGRAM The School of Information Technology offers a two-year bachelor degree program in Information Technology for students having acquired an advanced vocational certificate.

More information

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY AUTUMN 2016 BACHELOR COURSES

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY AUTUMN 2016 BACHELOR COURSES FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY Please note! This is a preliminary list of courses for the study year 2016/2017. Changes may occur! AUTUMN 2016 BACHELOR COURSES DIP217 Applied Software

More information

Department of Computer Science

Department of Computer Science Department of Computer Science Ali Sekmen, PhD 2, Chair 005, McCord Hall 615-963-5712 Faculty: K. Al Nasr, W. Chen, E. Erdemir, M. Hayes, H. Miao, T. Rogers, G. Shao, F. Yao General Statement: The Department

More information

School of Computer Science

School of Computer Science Computer Science Honours Level 2013/14 August 2013 School of Computer Science Computer Science (CS) Modules CS3051 Software Engineering SCOTCAT Credits: 15 SCQF Level 9 Semester: 1 This module gives a

More information

COURSE CATALOG. BS Networking and System Administration

COURSE CATALOG. BS Networking and System Administration COURSE CATALOG BS Networking and System Administration Program Overview Networking, the technology of interconnecting computing devices so information can flow between them, includes the design, deployment,

More information

EVAT - Emblitz Varsity Associate Trainee Program - Embedded Systems Design

EVAT - Emblitz Varsity Associate Trainee Program - Embedded Systems Design EVAT - Emblitz Varsity Associate Trainee Program - Embedded Systems Design Product Number: EVAT 001 This fully interactive self study course of embedded system design teaches the basic and advanced concepts

More information

Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce

Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge of Computer Science

More information

COMPUTER SCIENCE/ COMPUTER NETWORKING AND TECHNOLOGIES (COSC)

COMPUTER SCIENCE/ COMPUTER NETWORKING AND TECHNOLOGIES (COSC) COMPUTER SCIENCE/ COMPUTER NETWORKING AND TECHNOLOGIES (COSC) Computer Science (COSC) courses are offered by the School of Information Arts and Technologies within the Yale Gordon College of Liberal Arts.

More information

DIRECT PH.D. (POST B.S.) IN COMPUTER SCIENCE PROGRAM

DIRECT PH.D. (POST B.S.) IN COMPUTER SCIENCE PROGRAM DIRECT PH.D. (POST B.S.) IN COMPUTER SCIENCE PROGRAM OVERVIEW ADMISSION REQUIREMENTS PROGRAM REQUIREMENTS OVERVIEW FOR THE DIRECT PH.D. IN COMPUTER SCIENCE The Direct Ph.D. in Computer Science program

More information

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours. (International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models

More information

Information and Communications Technology Courses at a Glance

Information and Communications Technology Courses at a Glance Information and Communications Technology Courses at a Glance Level 1 Courses ICT121 Introduction to Computer Systems Architecture This is an introductory course on the architecture of modern computer

More information

CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014)

CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014) CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014) CSTA Website Oracle Website Oracle Contact http://csta.acm.org/curriculum/sub/k12standards.html https://academy.oracle.com/oa-web-introcs-curriculum.html

More information

Chapter 6, The Operating System Machine Level

Chapter 6, The Operating System Machine Level Chapter 6, The Operating System Machine Level 6.1 Virtual Memory 6.2 Virtual I/O Instructions 6.3 Virtual Instructions For Parallel Processing 6.4 Example Operating Systems 6.5 Summary Virtual Memory General

More information

Computer Information Systems (CIS)

Computer Information Systems (CIS) Computer Information Systems (CIS) CIS 113 Spreadsheet Software Applications Prerequisite: CIS 146 or spreadsheet experience This course provides students with hands-on experience using spreadsheet software.

More information

Computer Science. Master of Science

Computer Science. Master of Science Computer Science Master of Science The Master of Science in Computer Science program at UALR reflects current trends in the computer science discipline and provides students with a solid theoretical and

More information

LONG BEACH CITY COLLEGE MEMORANDUM

LONG BEACH CITY COLLEGE MEMORANDUM LONG BEACH CITY COLLEGE MEMORANDUM DATE: May 5, 2000 TO: Academic Senate Equivalency Committee FROM: John Hugunin Department Head for CBIS SUBJECT: Equivalency statement for Computer Science Instructor

More information

CSC475 Distributed and Cloud Computing Pre- or Co-requisite: CSC280

CSC475 Distributed and Cloud Computing Pre- or Co-requisite: CSC280 Computer Science Department http://cs.salemstate.edu CSC475 Distributed and Cloud Computing Pre- or Co-requisite: CSC280 4 cr. Instructor: TBA Office: location Phone: (978) 542-extension Email: TBA@salemstate.edu

More information

Core Courses Seminar (0-2) Non-credit Ph.D. Thesis (0-1) Non-credit Special Studies (8-0) Non-credit. Elective Courses

Core Courses Seminar (0-2) Non-credit Ph.D. Thesis (0-1) Non-credit Special Studies (8-0) Non-credit. Elective Courses İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF COMPUTER ENGINEERING JOINT DOCTORAL PROGRAM IN COMPUTER SCIENCE AND ENGINEERING Core Courses CENG 590 CENG 600 CENG

More information

Contents The College of Information Science and Technology 2011-2012 Undergraduate Course Descriptions

Contents The College of Information Science and Technology 2011-2012 Undergraduate Course Descriptions Contents The College of Information Science and Technology 2011-2012 Undergraduate Course Descriptions Information Science & Systems Courses INFO 101 - Introduction to Information Technology Introduces

More information

Gildart Haase School of Computer Sciences and Engineering

Gildart Haase School of Computer Sciences and Engineering Gildart Haase School of Computer Sciences and Engineering Metropolitan Campus I. Course: CSCI 6638 Operating Systems Semester: Fall 2014 Contact Hours: 3 Credits: 3 Class Hours: W 10:00AM 12:30 PM DH1153

More information

Master Degree Program in Computer Science (CS)

Master Degree Program in Computer Science (CS) Master Degree Program in Computer Science (CS) Students holding Bachelor s degree in Computer Science are accepted as graduate students, after meeting the general requirements stated below. Applicants

More information

School of Computer Science

School of Computer Science School of Computer Science Head of School Professor S Linton Taught Programmes M.Sc. Advanced Computer Science Artificial Intelligence Computing and Information Technology Information Technology Human

More information

Department of Computer Science

Department of Computer Science The University of Texas at San Antonio 1 Department of Computer Science The Department of Computer Science offers a Bachelor of Science degree in Computer Science and a Minor in Computer Science. Admission

More information

Description of the program

Description of the program Study program Faculty Cycle Business Informatics Contemporary Sciences and Technologies Undergraduate ECTS 180 Offered in Tetovo and Skopje Description of the program The three-year curricula (Bachelor

More information

Ministry of Manpower Colleges of Technology Information Technology Department List of IT Department Courses with Prerequisite and brief description

Ministry of Manpower Colleges of Technology Information Technology Department List of IT Department Courses with Prerequisite and brief description 1 ITNT4102 2 ITDB 4200 Ad-Hoc Wireless Mobile Networking Advance Database Techniques ITNT3203 and ITNT3102 ITDB 4102 Networking II, Logic Design Oracle Fundamental 3 ITAD1100 Advanced IT Skills FPIT0001

More information

GUJARAT TECHNOLOGICAL UNIVERSITY Computer Engineering (07) BE 1st To 8th Semester Exam Scheme & Subject Code

GUJARAT TECHNOLOGICAL UNIVERSITY Computer Engineering (07) BE 1st To 8th Semester Exam Scheme & Subject Code GUJARAT TECHNOLOGICAL UNIVERSITY Computer Engineering (07) BE 1st To 8th Semester Scheme & EVALUATION SCHEME Continuous (Theory) (E) Evaluation Practical (I) (Practical) (E) Process(M) MAX MIN MAX MIN

More information

Course Title: ITAP 4371: E-Commerce. Semester Credit Hours: 3 (3,0)

Course Title: ITAP 4371: E-Commerce. Semester Credit Hours: 3 (3,0) Course Title: ITAP 4371: E-Commerce Semester Credit Hours: 3 (3,0) I. Course Overview The primary objective of this course is to expose students to the advanced use of information technology in the design

More information

e-code Academy Information Security Diploma Training Discerption

e-code Academy Information Security Diploma Training Discerption e-code Academy Information Security Diploma Training 2015 I. CONTENTS II. INTRODUCTION... 2 OVERVIEW... 2 COPYRIGHTS AND TRADEMARKS... 2 III. OBJECTIVE... 3 LIST OF POSTGRADUATE COURSES... 3 FIRST SEMESTER

More information

School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg ELEN3024 Communication Fundamentals

School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg ELEN3024 Communication Fundamentals School Information of Electrical and Engineering School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg ELEN3024 Communication Fundamentals Course Brief and Outline:

More information

The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations

The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations Leonardo Journal of Sciences ISSN 1583-0233 Issue 9, July-December 2006 p. 125-136 The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations Department of Mechanical

More information

COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis)

COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* COME 27 Advanced Object Oriented Programming 5 COME 21 Data Structures and Algorithms COME 22 COME 1 COME 1 COME

More information

Description of the program

Description of the program Study program Faculty Cycle Software Engineering Contemporary Sciences and Technologies Postgraduate ECTS 120 Offered in Tetovo Description of the program The Masters programme in Software Engineering

More information

Undergraduate Major in Computer Science and Engineering

Undergraduate Major in Computer Science and Engineering University of California, Irvine 2015-2016 1 Undergraduate Major in Computer Science and Engineering On This Page: Overview Admissions Requirements for the B.S. in Computer Science and Engineering Sample

More information

Integrated Communication Systems

Integrated Communication Systems Integrated Communication Systems Courses, Research, and Thesis Topics Prof. Paul Müller University of Kaiserslautern Department of Computer Science Integrated Communication Systems ICSY http://www.icsy.de

More information

COURSE CATALOGUE 2013-2014

COURSE CATALOGUE 2013-2014 COURSE CATALOGUE 201-201 Field: COMPUTER SCIENCE Programme: Bachelor s Degree Programme in Computer Science (Informatics) Length of studies: years (6 semesters) Number of ECTS Credits: 180 +0 for the B.Sc.

More information

Universitatea de Medicină şi Farmacie Grigore T. Popa Iaşi Comisia pentru asigurarea calităţii DISCIPLINE RECORD/ COURSE / SEMINAR DESCRIPTION

Universitatea de Medicină şi Farmacie Grigore T. Popa Iaşi Comisia pentru asigurarea calităţii DISCIPLINE RECORD/ COURSE / SEMINAR DESCRIPTION Universitatea de Medicină şi Farmacie Grigore T. Popa Iaşi Comisia pentru asigurarea calităţii DISCIPLINE RECORD/ COURSE / SEMINAR DESCRIPTION 1. Information about the program 1.1. UNIVERSITY: GRIGORE

More information

Diablo Valley College Catalog 2014-2015

Diablo Valley College Catalog 2014-2015 Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,

More information

CGI-based applications for distributed embedded systems for monitoring temperature and humidity

CGI-based applications for distributed embedded systems for monitoring temperature and humidity CGI-based applications for distributed embedded systems for monitoring temperature and humidity Grisha Spasov, Nikolay Kakanakov Abstract: The paper discusses the using of Common Gateway Interface in developing

More information

Information Systems. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences.

Information Systems. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Information Systems Dr. Haesun Lee Professor Dr. Haesun Lee is a Professor of Computer Science. She received her Ph.D. degree from Illinois Institute of Technology, Chicago, Illinois (1997). Her primary

More information

Operating Systems 4 th Class

Operating Systems 4 th Class Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science

More information