Modeling and analysis of dynamic properties of the hybrid transformer with MRC

Size: px
Start display at page:

Download "Modeling and analysis of dynamic properties of the hybrid transformer with MRC"

Transcription

1 Jcek KNEWK Zgew EYZK versy of Zelo or se of Elecrcl Egeerg Modelg d lyss of dymc properes of he hyrd rsformer wh M src hs pper dels wh he modellg d lyss of dymc properes of he hree-phse rsformer wh elecromgec d elecrc hyrd coplg The elecromgec coplg s relzed y mes of he coveol rsformer The elecrcl coplg s relzed y mes of mr-recce chopper M whch s sppled from lry secodry wdg of he rsformer hs pper here re descrpos of he proposed solo wh preseo of her modelg d lyss of her sc d dymc properes reszczee rykł doyczy modelow lzy sów dymczych rójfzowego rsformor prąd przemeego ze sprzężeem elekromgeyczym elekryczym hyrydowym przężee elekromgeycze relzowe jes przez kowecjoly rsformor przężee elekrycze relzowe jes przez serowk mrycowo-rekcyjy zsly z dodkowego zwoje wórego rsformor W rykle przedswoo ops dzł propoowego kłd z modelowem lzą włścwośc syczych dymczych Modelowe lz włścwośc dymczych rsformor hyrydowego z M Keywords: -hyrd rsformer; mr-recce chopper; dymcs; corol crc łow klczowe: rsformor hyrydowy serowk mrycowo-rekcyjy dymk kłd serow rodco The dymc ses elecrc sysems sch s fls fs lod chges swchg effecs geere for he cosmer desrle effecs lke volge sgs swell d errp [] he cse of sesve devces sch s compers rscevers devces medcl sysems errc spply prmeers cse flre or defecve devces [] he cse of g pls d fcores volge sgs d swells my cse very lrge fcl dmge The pplco of - coverer sg Plse Wh Modlo PWM corol sregy o ld secodry spply sorces volge sg d swell compesors d volge reglors mge he wed effecs of spply [] [5] The cocepo of sgle phse ew geero dsro rsformer s preseed [6] where coveol rsformer works ogeher wh polr mr coverer rc wh coveol rsformer d mr M or mr-recce M chopper hs wo coplgs hyrd coplg Elecromgec coplg s relzed y mes of he coveol rsformer d elecrc oe relzed y mes of mr coverer rom hs reso s clled hyrd rsformer HT gle phse d hree-phse opologes of HT ws descred [7] [] Becse he hyrd rsformers work s volge sg d swell compesors volge reglors d cos-volge reglors he dymc properes ly o fs respose o sorce volge chges s very mpor d desred chrcersc Ths pper preses hree-phse hyrd rsformer sg ck-oos ype mr-recce chopper Preseed hs pper here s descrpo of he proposed solo d lyss of her sc d dymc properes escrpo of he preseed HT Me crc chemc dgrm of he preseed hree-phse hyrd rsformer HT s show g s s vsle g he crc of he HT cos wo m s The frs oe s hree-phse coveol rsformer T wh wo secodry wdgs ech phse The secod oe s hree-phse ck-oos ype mrrecce chopper M - [] Prmry wdgs re Y-coecos The m secodry wdgs of T lso hve Y cofgros d y p fler re coeced wh he M - ecodry phse wdgs re coeced seres wh he reqred phse op coecors of M Op volges of HT re he sm of secodry volges p p p d phse op volges of he M The volges of he rsformer secodry wdgs d re eql p = 4/ d p = / respecvely T B g chemc dgrm of he hree-phse hyrd rsformer wh mr-recce chopper delzed volge me wveforms llsrg opero of preseed HT re show g 5 46 N 5 M - N N N g delzed volge me wveforms of preseed HTfor =6 Eemplry volge phsors of cosdered HT re show g 4 6 = + E N PZEĄ EEKTOTEHNZNY Elecrcl evew N N / 45

2 46 PZEĄ EEKTOTEHNZNY Elecrcl evew N N / g Volge phsors of preseed HT s s vsle g d g he op volges of HT s sm of wo volges where: secodry volges of wdgs of T op volges of M - orol crc of he hyrd rsformer chemc lock dgrm of he corol crcs s show g 4 M pr of crc cos P reglor d PWM crc The feedck loop clde pek deecor [] g4 eerl schemc lock dgrm of he corol crc More deled schemc loc dgrm of he corol crc s show g 5 g5 chemc lock dgrm of he corol crc Eqo s descred he fco relzed y pek deecor [] cos s pek chemc lock dgrm of he PWM crc s show g 6 g6 PWM sgls crc s s vsle g 6 commo sregy s sed o PWM corol mehod wh ded me Ech phse s corolled depede y corol sgls orol sgls re fco of he refereces volge ref d lod volge g 5 Theorecl lyss c properes Theorecl lyss s sed o verged se spce mehod [5] verged se spce eqo geerl form c e descred: y B where: - vecor of he verged vrles verged se mr B verged p mr verged op mr verged p-op mr ccordg o verged se spce eqo of he cosdered crc of HT g mr form c e descred s: 4 d d d d d d d d d d d d B Tke o cco 4 s cosrced verged crc model of HT g 7 g7 Three-phse verged crc model of HT Oporsmers Bffers φ P Volge mesreme Trsformer ler mplfer Phse shfer rhmec crc mplfer rhmec crc eglor Volge lmer orol sgls Phse Phse Phse pek ref

3 ssmg symmercl d lced crc of preseed HT d sg d-q rsformo mehod 5 we c descre s sgle phse crc [9] [] [5] g 8 K 5 d q c where: K cos s cos cos s s g8 Eqvle schemc dgrm of HT verged crc model g 8 s dvded o for erml eworks pplyg he for-erml descrpo mehod d procedre descred y fgre 9 we o eqo 6 g9 Eqvle schemc dgrm of HT 6 TH TH TH HT- - / / TH TH de TH TH TH TH P cosrg HT HT HT HT c chrcerscs of preseed HT re show gs 5-7 he seco mlo d epermel es resls ymc properes s ssmed h ll vrles hve wo compoes: rg cos compoe [5] he verged vle he swchg perod T whch s mrked y pper cse leer d perro mrked y lower cse leer srddled y he symol ^ d ˆ ˆ ˆ d ˆ X ˆ Bˆ X B B ˆ where = for = = for = ccordg o he plce rsform for smll sgl se-spce eqo s epressed s d 4: sˆ s ˆ s Bˆ s s X B B ˆ s s s 4 ˆ ˆ olvg eqo d 4 we o 5 d 6 ˆ s 5 6 where: 7 9 s Bˆ s X B B s s s ˆ ˆ s ˆ ˆ s s s s d ˆ ˆˆ ˆ s ˆ s ˆ s s s ˆ ˆ s s ˆ s s ˆ ˆ ˆ 8 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ s s ˆ s s s The clclo d smlo es resls of he rse ses of he cosdered HT re show g 7 he seco mlo d epermel es resls ly Eqvle lock dgrm of cosdered hyrd rsformer s show g 7 TH where mr of hyrd prmeers -ype ccordce wh for erml heores we o: 8 H / Z HT HT 9 rg H rg HT HT / Z g Eqvle lock dgrm of preseed HT PZEĄ EEKTOTEHNZNY Elecrcl evew N N / 47

4 Trsmce of he M c e descred s: s s s M where lerzed chrcersc of M p fler rsmce M s km s s s Trsmce of P reglor s descred s 4 4 P s K P Error T s pek M 5 O s P s M s Error pek Tke o cco 5 d ssmg rsmce of pek deecor eql pek_de s = he m rsmce of crc show fgre c e descred s O HT s O error s 8 s s s s s Z M O M Tke o cco 8 dsoro rsmce c e descred s 9 g Epermel volge me wveforms for sep p y fcor from = o = 6 g Epermel volge me wveforms for sep dow y fcor from =6 o = 9 ds Z s s s O Tme wveforms of sep respose 6 d corol error 7 re show gs 8 d 9 respecvely mlo d epermel es resls The prmeers of he crc show g whch hs ee vesged re colleced he pped le The preseed resls hve ee oed for mchg codos descred y Z Epermel volge me wveforms drg sep p d sep dow of y fcor vle re show g d g respecvely s s vsle gs d respose of he lod volge drg sep p/dow of s very fs ms Epermel volge me wveforms drg sorce volge swell re show g g Epermel volge me wveforms drg 4% sorce over volge g4 Epermel volge me wveforms drg more he 5% sorce volge sg 48 PZEĄ EEKTOTEHNZNY Elecrcl evew N N /

5 s s vsle g drg 4% volge swell he op volges hs cos vle ll he me Epermel volge me wveforms drg over 5% sorce volge sg re show g c chrcersc of volge mgde phse d p power fcor re show gs 5 7 he crc wh preseed HT he rge of chge of op volge s from 66 o more he g 5 phse shf ewee sorce d lod volge s csed y pssve elemes M srcre 4 H V / V lclo Eperme mlo g5 Mgde of volge rsmce s fco of he plse y fcor rg H rd g8 od volge drg 5% sep p of sorce volge 5% sep dow of sorce volge s s vsle gs 4 d 8 he rse se drg sorce volge sep p/dw s o ms Tme wveforms of corol error d sep respose of preseed HT re show gs 9 d respecvely mlo lclo pek Error 8 6 π/4 lclo Eperme mlo π/ g6 Phse of volge rsmce s fco of he plse y fcor λ lclo Eperme mlo g7 p power fcor depedg o y fcor g8 orol error g9 ep respose PZEĄ EEKTOTEHNZNY Elecrcl evew N N / 49

6 oclsos hs pper he resls of modelg lyss of hree phse hyrd rsformer sg ck-oos ype mr-recce chopper hs ee preseed Modelg of HT s sed o vergg mehod d for erml descrpo mehod eerlly he resls of he smlo vesgo cofrm he resls of heorecl sdy The rge of chge of op volge gves he possly of sg proposed HT for compeso of 5% sgs d over 5% swells of sorce volge rher reserch wll e focsed o deled lyss of o-lced crc lyss pped Tle rc prmeers Prmeer me vle p volge ro 4/ - p volge ro / - / M dcce mh / M cpcce µ Z od mpedce 6 Ω f s swchg freqecy 5 khz spply volge 5 V EEENE [] J Mlowć H skse: Effec of lod dymcs o power sysem dmpg EEE Trs o Power ysem Vol No pp -8 My 995 [] Z jokc J esme Vlme J Mlovc K ockm: esvy of persol comper o volge sgs d shor errpos EEE Trs o Power elvery vol No pp 75-8 J 5 [] E eloz P Prsed P Eje Mor O Moero-Herdez Km: lyss d desg of ew volge sg compesor for crcl lods elecrc power dysryo sysem EEE Trs o d pplcos vol 9 No4 pp4-5 Jly / g [4] O Moero-Herdez P Eje: pplco of oos c-c coverer o compese for volge sgs elecrc power dsro sysem Proc EEE TH Power Egeerg ocey Trsmsso d sro of pp [5] rm M K Mshr erphse - opology vor sg spporer EEE Tr o Power Elec vol 5 No e [6] E eloz P Eje Mor Pe: Ne geero dsro rsformer: o ddress power qly for crcl lods PE EEE vol pp66 7 Je [7] J K ewsk: gle phse hyrd rsformer sg mr coverer Wdomośc Elekroech 6 pp: Polsh [8] Z e d yc z k J K ews k: gle phse hyrd rsformer sg polr mr recce chopper Przegląd Elekroechczy 7-86 pp: 8-85 Polsh [9] e d yc z k Z Kews k J Modelg d lyss of hree-phse hyrd rsformer sg mr coverer omply Power Elecrocs - PE 7 5h erol oferece-workshop dńsk Polsk 7 dy 7 [] K ews k J edyc z k Z Modellg d lyss of hree-phse hyrd rsformer sg mr-recce chopper Przegląd Elekroechczy 9 r s -5 [] Kewsk J edyczk Z Kly M Ł kewsk M zcześ k P mplemeo of hree-phse hyrd rsformer sg mr chopper h Erope oferece o Power Elecrocs d pplcos EPE 9 Brcelo Hszp 9 [] Z edyc z k: PWM volge rsformg crcs versy of Zelo ór Press Zelo ór Polsh [] h H Y Jo H Hg : Trse respose of pek volge deecor for ssodl sgls EEE Trs o d Elecrocs vol 9 No erry 99 [4] T m Y H H ho: Trsformers s Eqvle rcs for wches: eerl Proofs d -Q Trsformo Bsed lyses EEE Trs o d pl vol6 No 4 Jly/g 99 [5] Mddlerock Ć k : eerl fed pproch o modelg swchg coverer power sges ec EEE PE76 pp hors: mgr ż Jcek Kewsk dr h ż Zgew edyczk prof Z versy of Zelo ór sy of Elecrcl Egeerg lpodgór Zelo ór Pold E-ml: 5 PZEĄ EEKTOTEHNZNY Elecrcl evew N N /

Numerical Solution of the Incompressible Navier-Stokes Equations

Numerical Solution of the Incompressible Navier-Stokes Equations Nmercl Solo of he comressble Ner-Sokes qos The comressble Ner-Sokes eqos descrbe wde rge of roblems fld mechcs. The re comosed of eqo mss cosero d wo momem cosero eqos oe for ech Cres eloc comoe. The deede

More information

Chapter 4 Multiple-Degree-of-Freedom (MDOF) Systems. Packing of an instrument

Chapter 4 Multiple-Degree-of-Freedom (MDOF) Systems. Packing of an instrument Chaper 4 Mulple-Degree-of-Freedom (MDOF Sysems Eamples: Pacg of a srume Number of degrees of freedom Number of masses he sysem X Number of possble ypes of moo of each mass Mehods: Newo s Law ad Lagrage

More information

Tunable Survivable Spanning Trees Jose Yallouz, Ori Rottenstreich and Ariel Orda

Tunable Survivable Spanning Trees Jose Yallouz, Ori Rottenstreich and Ariel Orda Tble Svvble Spg Tees Jse Yllz, O Reseh d Ael Od Depe f Elel Egeeg Teh, Isel Ise f Tehlgy T ppe Peedgs f ACM Sges 2014 Qly f Seve (QS) The Iee ws develped s Bes Eff ewk. Wh s Qly f Seve (QS)? The lleve

More information

EXAMPLE 1... 1 EXAMPLE 2... 14 EXAMPLE 3... 18 EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH... 24 EXAMPLE 5 FLEXIBLE PRODUCT... 26

EXAMPLE 1... 1 EXAMPLE 2... 14 EXAMPLE 3... 18 EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH... 24 EXAMPLE 5 FLEXIBLE PRODUCT... 26 EXAMLE... A. Edowme... B. ure edowme d Term surce... 4 C. Reseres... 8. Bruo premum d reseres... EXAMLE 2... 4 A. Whoe fe... 4 B. Reseres of Whoe fe... 6 C. Bruo Whoe fe... 7 EXAMLE 3... 8 A.ure edowme...

More information

Dept. of Management and Commerce, Sikkim Manipal University, India. Dept. of Business Management, University of Calcutta, India

Dept. of Management and Commerce, Sikkim Manipal University, India. Dept. of Business Management, University of Calcutta, India ISSN : 2230-9519 (Ole) ISSN : 2231-2463 (Pr) IJMBS Vo l. 4, Is s u e 2, Ap r l - Ju e 2014 Sudy o he Uderwrg Cycle Per d Sscl Alyss of he Performces of he Id Publc No-lfe Isurce Compes he Ls Decde 1 Subhbh

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

In Going to my Naked Bed

In Going to my Naked Bed n Gg k B P Richrd Edwrds < n q n q < 5 g k sid sid mr g g k sid sid mr p i sw n t, pr < < d, k, prce, ful,, d, k, prce, ful,, n kg < k qh d, k, prce, ful,, s r lrd st k d, k, prce, qh ful,, s r wh g lrd

More information

Example What is the minimum bandwidth for transmitting data at a rate of 33.6 kbps without ISI?

Example What is the minimum bandwidth for transmitting data at a rate of 33.6 kbps without ISI? Emple Wh is he minimum ndwidh for rnsmiing d re of 33.6 kps wihou ISI? Answer: he minimum ndwidh is equl o he yquis ndwidh. herefore, BW min W R / 33.6/ 6.8 khz oe: If % roll-off chrcerisic is used, ndwidh

More information

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field ecure 4 nducon evew nducors Self-nducon crcus nergy sored n a Magnec Feld 1 evew nducon end nergy Transfers mf Bv Mechancal energy ransform n elecrc and hen n hermal energy P Fv B v evew eformulaon of

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Fr ag m e n tac i ó n y c o m p l e j i da d: a n á l i s i s d e l c a m b i o

Fr ag m e n tac i ó n y c o m p l e j i da d: a n á l i s i s d e l c a m b i o ss: 57606 Fr e o d Copey: y S r u c u r Che he Chco Reo Ecooy Fr e c ó y c o p e d d: á s s d e c o esrucur e ecooí de reó de Chco sdoro Roero Uversdd de Sev sdoro@us.es Er Deecher Uversy o Groe & Uversy

More information

Supply chain coordination in 2-stage-orderingproductionsystembased

Supply chain coordination in 2-stage-orderingproductionsystembased As Pcfc ndusrl Engneerng nd Mngemen Sysem Supply chn coordnon n -sge-orderngproduconsysembsed on demnd forecsng upde Esuko Kusukw eprmen of Elecrcl Engneerng nd nformon Sysems, OskPrefecure Unversy, Sk,

More information

Dynamic Magnification Factor of SDOF Oscillators under. Harmonic Loading

Dynamic Magnification Factor of SDOF Oscillators under. Harmonic Loading Dynmic Mgnificion Fcor of SDOF Oscillors under Hrmonic Loding Luis Mrí Gil-Mrín, Jun Frncisco Cronell-Márquez, Enrique Hernández-Mones 3, Mrk Aschheim 4 nd M. Psds-Fernández 5 Asrc The mgnificion fcor

More information

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B for uli With Rejoic Herts/ on mor ol dition # 10745-Z1 ime ortez Keyord ccompniment y effy Honoré INTRO With energy ( = c 88) Keyord * m7 B sus 4 B 7/B mj 9 /B SMPL B 7 *Without percussion, egin he 1995,

More information

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

We will begin this chapter with a quick refresher of what an exponent is.

We will begin this chapter with a quick refresher of what an exponent is. .1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for

More information

Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems

Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems Oulie Numericl Alysis oudry Vlue Prolems & PDE Lecure 5 Jeff Prker oudry Vlue Prolems Sooig Meod Fiie Differece Meod ollocio Fiie Eleme Fll, Pril Differeil Equios Recp of ove Exm You will o e le o rig

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Exam FM/2 Interest Theory Formulas

Exam FM/2 Interest Theory Formulas Exm FM/ Iere Theory Formul by (/roprcy Th collboro of formul for he ere heory eco of he SO Exm FM / S Exm. Th uy hee free o-copyrghe ocume for ue g Exm FM/. The uhor of h uy hee ug ome oo h uque o h o

More information

n Using the formula we get a confidence interval of 80±1.64

n Using the formula we get a confidence interval of 80±1.64 9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge

More information

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b]. Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,

More information

Unit 16 : Software Development Standards O b jec t ive T o p r o v id e a gu ide on ho w t o ac h iev e so f t wa r e p r o cess improvement through the use of software and systems engineering standards.

More information

Gray level image enhancement using the Bernstein polynomials

Gray level image enhancement using the Bernstein polynomials Buletiul Ştiiţiic l Uiersităţii "Politehic" di Timişor Seri ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS o ELECTRONICS d COMMUNICATIONS Tom 47(6), Fscicol -, 00 Gry leel imge ehcemet usig the Berstei polyomils

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA. D is trib u te d D e n ia l O f S e rv ic e EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

More information

Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A

Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A Heriti Opertors Defiitio: opertor is sid to be Heriti if it stisfies: A A Altertively clled self doit I QM we will see tht ll observble properties st be represeted by Heriti opertors Theore: ll eigevles

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

Journeys Common Core Spelling Activities. First Grade. Units 1, 2, 3, 4, 5,6 A full year of activities!

Journeys Common Core Spelling Activities. First Grade. Units 1, 2, 3, 4, 5,6 A full year of activities! Firs Grde Unis 1, 2, 3, 4, 5,6 A full yer of civiies! Shor 1.m 2. 3.s 4.mn 5.dd Criss Cross Words c Wrie ech word five imes ech Lesson 1 Wh is Pl? Hve fmily memer prin ou word serch wih his week s spelling

More information

Space Vector Pulse Width Modulation Based Induction Motor with V/F Control

Space Vector Pulse Width Modulation Based Induction Motor with V/F Control Interntionl Journl of Science nd Reserch (IJSR) Spce Vector Pulse Width Modultion Bsed Induction Motor with V/F Control Vikrmrjn Jmbulingm Electricl nd Electronics Engineering, VIT University, Indi Abstrct:

More information

R e t r o f i t o f t C i r u n i s g e C o n t r o l

R e t r o f i t o f t C i r u n i s g e C o n t r o l R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function Ieaoa Joa of Scece ad Eee Reeach IJSER Vo Ie Decembe -4 5687 568X Geeazed Dffeece Seece Sace O Semomed Sace B Ocz Fco A.Sahaaa Aa ofeo G Ie of TechooCombaoeIda. Abac I h aewe defe he eece ace o emomed

More information

HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES

HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES Department Suffix Organization Academic Affairs and Dean of Faculty, VP AA 1100 Admissions (Undergraduate) AD 1330 Advanced Ceramics, Colorado Center for--ccac

More information

7.2 Analysis of Three Dimensional Stress and Strain

7.2 Analysis of Three Dimensional Stress and Strain eco 7. 7. Aalyss of Three Dmesoal ress ad ra The cocep of raco ad sress was roduced ad dscussed Par I.-.5. For he mos par he dscusso was cofed o wo-dmesoal saes of sress. Here he fully hree dmesoal sress

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

M Official Bologna S e m inar Joint d e gr e e s- A H allm ar k of t h e E u r op e an H igh e r E d u cat ion A r e a? R e s u l t s o f q u e s t i o n n a i r e s e n t t o B o l o g n a F o l l o w

More information

P R O C E S S O L I C I T A T Ó R I O n º. 0 033/ 2013. E D I T A L D E P R E G Ã O P R E S E N C I A L n º. 0010/ 2 0 1 3

P R O C E S S O L I C I T A T Ó R I O n º. 0 033/ 2013. E D I T A L D E P R E G Ã O P R E S E N C I A L n º. 0010/ 2 0 1 3 P R O C E S S O L I C I T A T Ó R I O n º. 0 033/ 2013 E D I T A L D E P R E G Ã O P R E S E N C I A L n º. 0010/ 2 0 1 3 1 P R E Â M B U L O 1. 1 O M u n i c í p i o d e L a j e a d o G r a n d e / S

More information

Quick Reference Guide: One-time Account Update

Quick Reference Guide: One-time Account Update Quick Reference Guide: One-time Account Updte How to complete The Quick Reference Guide shows wht existing SingPss users need to do when logging in to the enhnced SingPss service for the first time. 1)

More information

An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level

An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level Jourl of Iformto Assurce Securty 1 (28) 1-15 A Itegrte Hoeypot Frmework for Proctve Detecto, Chrcterzto Rerecto of DDoS Attcks t ISP level Ajl Sr R. C. Josh 1 1 I Isttute of Techology Roorkee, Roorkee,

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

SPARK QUENCHERS EFFECT OF SPARK QUENCHER

SPARK QUENCHERS EFFECT OF SPARK QUENCHER Sprk Quenchers re esily selectble electronic components designed to prevent or substntilly minimize the occurrence of rcing nd noise genertion in rely nd switch contcts. EFFECT OF SPARK QUENCHER Arc suppression

More information

Generator stability analysis - Fractional tools application

Generator stability analysis - Fractional tools application Generor by ny - Frcon oo ppcon Auhor : Ocvn ENACHEANU Dephne RIU Nco RETIERE SDNE Grenobe -67 Oune. Eecrc nework cone. Frcon moeng o ynchronou mchne. Se pce repreenon n by conon o ynchronou mchne neger

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

tariff guide EFFECTIVE DATE 1 April 2013

tariff guide EFFECTIVE DATE 1 April 2013 tariff guide EFFEIVE DATE 1 April 2013 Delivering peace of mind UCH Logistics is a dynamic, customer focused provider of specialist transport services to the airfreight industry. Having been established

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

Payor Sheet for Medicare Part D/ PDP and MA-PD

Payor Sheet for Medicare Part D/ PDP and MA-PD Payor Specification Sheet for MEDICARE PART D/PDP AND MA-PD PRIME THERAPEUTICS LLC CLIENTS JANUARY 1, 2006 (Page 1 of 8) BIN: PCN: See BINs on page 2 (in bold red type) See PCNs on page 2 (in bold red

More information

Masters Mens Physique 45+

Masters Mens Physique 45+ C G x By, F, hysq, Bk Chpshps Ap, Cv Cy, Cf Mss Ms hysq + Fs Ls Css Ov Css s G MC Chpk M+ W M+/MC y Bs 9 8 9 9 8 B O'H 8 9 8 S Rs 8 8 9 h K 9 D Szwsk 8 9 8 9 9 G M+ h D Ly Iz M+ 8 M R : : C G x By, F,

More information

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 -

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 - E ffic a c y o f S e le c tiv e M y e lo id L in e a g e L e u c o c y te D e p le tio n in P y o d e r m a G a n g re n o su m a n d P so r ia sis A sso c ia te d w ith In fla m m a to r y B o w e l D

More information

ON YOUR TURN: ROLLING AND MOVING

ON YOUR TURN: ROLLING AND MOVING E8 IF CV Monopoly.pdf // O YOU : LG MOVG I M J. I I W O PY O GE OU. W WH? oll the dice. If you roll doubles, move the amount shown. If you don t roll doubles and it is your fir or second try to get out

More information

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s). Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method Interntionl Journl of Applictions of Fuzzy Sets nd Artificil Intelligence ISSN - Vol. - A Note on Complement of Trpezoidl Fuzzy Numers Using the α-cut Method D. Stephen Dingr K. Jivgn PG nd Reserch Deprtment

More information

THE MELLIN-BARNES TYPE CONTOUR INTEGRAL REPRESENTATION OF A NEW MITTAG-LEFFLER TYPE E-FUNCTION

THE MELLIN-BARNES TYPE CONTOUR INTEGRAL REPRESENTATION OF A NEW MITTAG-LEFFLER TYPE E-FUNCTION AMRICAN JOURNA OF MATHMATICA SCINC AND APPICATIONS 2(2) Jly-December 24 ISSN : 232-497X pp. 37-4 TH MIN-BARNS TYP CONTOUR INTGRA RPRSNTATION OF A NW MITTAG-FFR TYP -FUNCTION Sy Btter d Se Mommed Fsl Deprtmet

More information

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment 31 Itertol Jourl of Cotrol, Yog-Shk Automto, Km d Keum-Shk d Systems, Hog vol. 2, o. 3, pp. 31-318, September 24 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet Yog-Shk Km d Keum-Shk

More information

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS? WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

proxy cert request dn, cert, Pkey, VOMS cred. (short lifetime) certificate: dn, ca, Pkey mod_ssl pre-process: parameters->

proxy cert request dn, cert, Pkey, VOMS cred. (short lifetime) certificate: dn, ca, Pkey mod_ssl pre-process: parameters-> Overview of the New S ec u rity M od el WP6 Meeting V I D t G R I D C o nf er enc e B r c el o ne, 1 2-1 5 M y 2 0 0 3 Overview focus is on VOMS C A d e t il s r e in D 7. 6 Se cur it y D e sig n proxy

More information

TCP Congestion Control Method of Improving Friendliness over Satellite Internet

TCP Congestion Control Method of Improving Friendliness over Satellite Internet CP Cnesn Cnrl Med f Imprvn Frendlness ver Selle Inerne Hrys Ob, Sn Nsm, nd Kenj Isd Hrsm Cy nversy Grde Scl f Infrmn Scences Hrsm, Jpn b@, nsm@ne.nf., sd@ rsm-c.c.jp Absrc e nmber f wreless Inerne servce

More information

M I L I TARY SPEC I F I CAT I ON A I RPLANE STRENGTH ANO R I G I D I TY OATA AND REPORTS

M I L I TARY SPEC I F I CAT I ON A I RPLANE STRENGTH ANO R I G I D I TY OATA AND REPORTS mm L - A - 88688 ( AS ) ANENOMENT 24 MAY 99 M L TARY SPEC F CAT ON A RPLANE STRENGTH ANO R G D TY OATA AND REPORTS Th s amendmen t f o r ms a pa r t o f M L - A - 8868, da t ed 20 Ma y 987, and s app r

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II Lecure 4 Curves and Surfaces II Splne A long flexble srps of meal used by drafspersons o lay ou he surfaces of arplanes, cars and shps Ducks weghs aached o he splnes were used o pull he splne n dfferen

More information

Small Businesses Decisions to Offer Health Insurance to Employees

Small Businesses Decisions to Offer Health Insurance to Employees Smll Businesses Decisions to Offer Helth Insurnce to Employees Ctherine McLughlin nd Adm Swinurn, June 2014 Employer-sponsored helth insurnce (ESI) is the dominnt source of coverge for nonelderly dults

More information

IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING

IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Itertol Jourl of Advces Egeerg & Techolog, J., 05. IJAET ISSN: 96 IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Frcsco Zrgoz Huert.

More information

DT Filter Application

DT Filter Application DT Flter Applcato These otes explore the use of DT flters to remove a terferece ( ths case a sgle toe) from a audo sgal. Image that you are the your home recordg studo ad have just recorded what you feel

More information

Churches on the Digital Cloud. Sponsored by Fellowship Technologies a partner in LifeWay s Digital Church initiative

Churches on the Digital Cloud. Sponsored by Fellowship Technologies a partner in LifeWay s Digital Church initiative Churches on the Digitl Clou Sponsore by Fellowship Technologies prtner in LifeWy s Digitl Church inititive 2 Methoology A strtifie, rnom smple of Protestnt churches were contcte. The smple ws strtifie

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

Analyzing and Evaluating Query Reformulation Strategies in Web Search Logs

Analyzing and Evaluating Query Reformulation Strategies in Web Search Logs Alyg d Evlutg Query Reformulto Strteges We Serch Logs Jeff Hug Uversty of Wshgto Iformto School ckm09@jeffhug.com Efthms N. Efthmds Uversty of Wshgto Iformto School efthms@u.wshgto.edu ABSTRACT Users frequetly

More information

T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r.

T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r. D a t a b a n k m r in g R a p p o r t M Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-0009 0 V o o r z ie n in g N ie u w la

More information

Resource Management Model of Data Storage Systems Oriented on Cloud Computing

Resource Management Model of Data Storage Systems Oriented on Cloud Computing Resorce Maagemet Model of Data Storage Systems Oreted o Clod Comptg Elea Kaa, Yry Korolev Sat Petersbrg Electrotechcal Uversty "LETI" (ETU), Sat Petersbrg, Rssa {leaaa, yryg}@gmalcom Abstract Ths artcle

More information

The Design of a Forecasting Support Models on Demand of Durian for Domestic Markets and Export Markets by Time Series and ANNs.

The Design of a Forecasting Support Models on Demand of Durian for Domestic Markets and Export Markets by Time Series and ANNs. The 2 d RMUTP Ieraoal Coferece 2010 Page 108 The Desg of a Forecasg Suppor Models o Demad of Dura for Domesc Markes ad Expor Markes by Tme Seres ad ANNs. Udomsr Nohacho, 1* kegpol Ahakor, 2 Kazuyosh Ish,

More information

Using Hidden Markov Model for Stock Day Trade Forecasting

Using Hidden Markov Model for Stock Day Trade Forecasting Usg Hdde Mrkv Mdel fr Sck Dy rde Frecsg We-Chh s A- Che Isue f Ifrm Mgeme l Ch ug Uversy Hschu w m@m.cu.edu.w Asrc Arud he wrld he Hdde Mrkv Mdels HMM re he ms ppulr mehds he mche lerg d sscs fr mdelg

More information

AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981. P. A. V a le s, Ph.D.

AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981. P. A. V a le s, Ph.D. AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981 P. A. V a le s, Ph.D. SYNOPSIS Two in d ep en d en t tre a tm e n t g ro u p s, p a r t ic ip

More information

2D TRANSFORMATIONS (Contd.)

2D TRANSFORMATIONS (Contd.) AML7 CAD LECURE 5 D RANSFORMAIONS Con. Sequene of operons, Mr ulplon, onenon, onon of operons pes of rnsforon Affne Mp: A p φ h ps E 3 no self s lle n ffne Mp f leves renr onons nvrn. 3 If β j j,, j E

More information

B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g S y s te m

B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g S y s te m Symposium on Public Transportation in Indian Cities with Special focus on Bus Rapid Transit (BRT) System New Delhi 20-21 Jan 2010 B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g

More information

Mr. Kepple. Motion at Constant Acceleration 1D Kinematics HW#5. Name: Date: Period: (b) Distance traveled. (a) Acceleration.

Mr. Kepple. Motion at Constant Acceleration 1D Kinematics HW#5. Name: Date: Period: (b) Distance traveled. (a) Acceleration. Moion Consn Accelerion 1D Kinemics HW#5 Mr. Kepple Nme: De: Period: 1. A cr cceleres from 1 m/s o 1 m/s in 6.0 s. () Wh ws is ccelerion? (b) How fr did i rel in his ime? Assume consn ccelerion. () Accelerion

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Quick Guide to Lisp Implementation

Quick Guide to Lisp Implementation isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled S-epressions. The representtion o n S-epression n e roken into two piees, the

More information

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS 0 MATHCOUNTS LECTURES (0) RATIOS, RATES, AND PROPORTIONS BASIC KNOWLEDGE () RATIOS: Rtios re use to ompre two or more numers For n two numers n ( 0), the rtio is written s : = / Emple : If 4 stuents in

More information

ESNV. Runways: Runway 10 Takeoff length: 1502, Landing length: 1502 Runway 28 Takeoff length: 1502, Landing length: 1260

ESNV. Runways: Runway 10 Takeoff length: 1502, Landing length: 1502 Runway 28 Takeoff length: 1502, Landing length: 1260 ESNV irport information: ountry: Sweden ity: oordinates: N 64 34.7', E016 50.4 Elevation: 1140 ustoms: Fuel: 100LL, Jet 1 RFF: T 4 during SKE TF, other times O/R hours: See NOTM Runways: Runway 10 Takeoff

More information

Repeated multiplication is represented using exponential notation, for example:

Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

More information

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof AnaNEvans@virginia.edu http://people.virginia.

10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof AnaNEvans@virginia.edu http://people.virginia. Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof AaNEvas@vrga.edu http://people.vrga.edu/~as5k/

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information