Strategic Plan Instituto de Astrofísica de Andalucía

Size: px
Start display at page:

Download "2014-2017 Strategic Plan Instituto de Astrofísica de Andalucía"

Transcription

1 Strategic Plan Instituto de Astrofísica de Andalucía

2 Editors: José M. Vílchez, Olga Muñoz and Martín A. Guerrero Close collaborators: Antxon Alberdi, Emilio Alfaro, Guillem Anglada, Carlos Barceló, Txitxo Benítez, Fernando Bordons, Alberto Castro-Tirado, Xuan Fang, Emilio José García, José Francisco Gómez, José Miguel Ibáñez, Luisa Lara, Antonio Carlos López, Manuel López Puertas, Susana Martín, Josefa Masegosa, Enrique Pérez, Julio Rodríguez, Rainer Schödel, Miguel Ángel Valverde y Lourdes Verdes- Montenegro. And important contributions by: Pedro Amado, Rosa de Castro, Bernd Funke, Francisco Gordillo, Isabel Márquez y Juan Carlos Suárez. Our acknowledgment to Isabel Guerrero for her careful revision of the style and language.

3 1. General Information 1.1 Identification Data of the Institute All data loaded from application Plan de Actuación. 1.2 Historical Background Foundational Objectives The chief aim of the Instituto de Astrofísica de Andalucía (IAA) is to research in Astronomy and Astrophysics. This research is undertaken from a multidisciplinary point of view including astronomical observations, theoretical and computational studies, and technological and instrumental activities Extended Historical Background The foundation of the IAA in 1975, as a center of the CSIC, concurred with the onset of the Spanish Astronomy. The rapid growth of the Spanish Astronomy at that time was motivated by the increasing interest of European countries with a long tradition in Astronomy to install their new telescopes in Spain. Existing and new UK, German, Sweden, and Netherlands telescopes were then based on Spanish sites with superb conditions for astronomical observations. Since then, the IAA is one of the Spanish reference centers for Astrophysics research.

4 IAA has been active in the field of astronomical observations using space probes, satellites, and major worldwide ground- based astronomical facilities. Its main scientific research covers major areas of Astrophysics ranging from solar system, stellar physics, star formation and interstellar medium physics, extragalactic astronomy, and cosmology. Thus the IAA research program covers the four fundamental questions defined in the Astronet Science Vision for European Astronomy (http://www.astronet- eu.org/?lang=en) where significant advances are expected. Since the IAA started operations, the design, technical study, and construction of instrumentation for space probes and satellites have been one of its major technological activities. In recent years, the design and integration of instrumentation for large ground- based telescopes has become a major priority and activity at the IAA to seize the new opportunities provided by Calar Alto and GTC. IAA operates two observatories: The Observatorio de Sierra Nevada (OSN) which is located in Loma de Dílar (Sierra Nevada, Granada) and started operations in Since 2003, the IAA is responsible for the scientific operation of the German- Spanish Astronomical Center (CAHA) in Calar Alto (Almería) jointly with the MPIA (Heidelberg, Germany). CAHA is an ICTS and represents the largest observatory in mainland Europe. IAA astronomers carry out their observational research using forefront facilities and instrumentation, among which is CAHA, GTC and the rest of telescopes in La Palma, ALMA, ESO VLT and La Silla telescopes, and space- borne telescopes and satellite missions. IAA works in intimate partnership with the University of Granada (UGR) within our post- graduate students program. Students are registered in PhD and Masters programs of the UGR, and also a significant number of IAA staff is involved in teaching activities at the university. 1.3 Location All data loaded from application Plan de Actuación.

5 1.4 Structure and Management The IAA management structure is summarized as follows. The IAA has a Director, a Manager, a Science Vicedirector, and a Technology Vicedirector. The scientific staff is distributed among four research Departments: Extragalactic Astronomy (DAE Departamento de Astronomía Extragaláctica) Stellar Physics (DFS Departamento de Física Estelar) Radioastronomy and Galactic Structure (DREG Departamento de Radioastronomía y Estructura Galáctica) Solar System (DSS Departamento del Sistema Solar). There are also a number of Service Units: Administration Services (SA Servicios de Administración) Computing Center (CC Centro de Cálculo) Unit for Instrumental Development and Technological Support (UDIT Unidad de Desarrollo Instrumental y Apoyo Tecnológico) Sierra Nevada Observatory (OSN Observatorio de Sierra Nevada) Outreach and Communications (UDC Unidad de Divulgación y Comunicación). The IAA has three internal advisory committees. The Comité de Dirección is held on a weekly basis by the Director, Vicedirectors, and Manager to coordinate their activity. The Junta de Instituto is a consulting council formed by the Director, Manager, Vice- directors, Department chairs, and four additional IAA members who represent the personnel. It meets monthly. The Claustro Científico is a scientific assembly including all staff scientists. We envisage the creation of an external Scientific Advisory Committee to review the IAA activity and to provide advice for future actions. Moreover, there is also a number of ad hoc committees such as the ones for external action and visibility of IAA, and for education and academics. Besides the IAA headquarters in Granada, the IAA operates two observatories, namely, the OSN in Granada, which is one of our service units, and the Spanish- German Astronomical Center at Calar Alto, Almería (CAHA), whose operation is shared at 50% with the MPIA in Heidelberg, (Germany), with a director named according to the agreement signed between the Max- Planck Gesellschaft and the CSIC. 1.5 Research Groups All data loaded from application Plan de Actuación.

6 1.6 Services Administration Services [010] Name of the Service: Administration Services (SA Unidad de Servicios de Administración) [020] Service Category: Management [030] Scientific Responsible: Director (Prof. José M. Vílchez) [040] Technical Responsible: Fernando Bordons Mesonero [050] Service Description: The SA unit provides global administration to human and goods resources of the IAA. It supplies the IAA with an effective management support for the increasing research activity. To achieve this scope, the SA unit is aided by computing tools used by a well- trained and highly organized team. Presently, the SA unit staff consists of one general manager and 11 people taking care of different responsibilities and duties: payments (1), contracts (2), human resources (1), management of research and technological projects (3), library services (2), and building maintenance and services (3). The SA of the IAA envisages a long- term plan to redesign its structure in order to reinforce three areas: administration, finances, and scientific projects. [060] Service Webpage: [070] Service Realm: Internal [080] Does the Service have ISO Certificates?: NO [090] Is the service included in the CSIC network of scientific-technical Services?: [100] Internal Revenue (k euros): not applicable [110] Revenue to Other CSIC Centers CSIC (k euros): -- [120] Revenue to Universities (k euros): --

7 [130] Revenue to Private Companies (k euros): -- [140] Number of groups users of the Service: All IAA scientific groups and service units. [150] Staff Trained in the use of equipment : 14 people Computer Center [010] Name of the Service: Computer Center (CC) [020] Service Category: Technical Maintenance [030] Scientific Responsible: Science vice- director (Dr. Martín A. Guerrero) [040] Technical Responsable: José Ruedas [050] Service Description: The Computer Center (CC Centro de Cálculo) is responsible for the service and management of all computer and communication services of the IAA. These are essential services for the research projects, management services, and collaboration with enterprises. The CC is also in charge of providing support to all IAA computer users. In the last years, the technological and scientific challenges afforded by the CC have allowed the IAA to consolidate its communication and scientific computing facilities. Two important milestones have been achieved during the past PA : - The IAA is now an important node of RedIRIS- NOVA, the fast, high capacity optical fiber network connecting all regional communication networks and most important research center in Spain with international academic networks. The IAA CC provides communication services to all CSIC centers in Granada and to the Sierra Nevada Observatory. - Following the deployment of a distributed computing infrastructure by CSIC, the so- called GRID- CSIC, the IAA CC has turned it into a supercomputing facility by boosting the performance and throughput of this infrastructure. This is aimed to facilitate the accomplishment of scientific projects requiring computing resources beyond the capabilities of a single user or research group to IAA and CSIC scientists, but it is also offered to the Spanish and International scientific communities. One of the objectives of this infrastructure is Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD), an interdisciplinary subfield of computer science involving the computational process of discovering patterns in large data sets using methods in between artificial intelligence, machine learning, statistics, and database systems. The CC is a critical unit in order to grant the flawless function of the technical resources demanded by the IAA research activity and its technological projects. To assume the CC commitments with a high quality level, the CC unit urgently requires the addition of new support personnel and the promotion of the current staff to permanent positions. [060] Service Webpage: [070] Service Realm: Both internal and external [080] Does the Service have ISO Certificates?: NO [090] Is the service included in the CSIC network of scientific-technical Services?: No [100] Internal Revenue (k euros): not applicable [110] Revenue to Other CSIC Centres (k euros): -- [120] Revenue to Universities (k euros): --

8 [130] Revenue to Private Companies (k euros): -- [140] Number of groups users of the Service: All IAA scientific groups and service units. [150] Staff trained in the use of equipment : Instrumental and Technological Development Unit [010] Name of the Service: Instrumental and Technological Development Unit (UDIT Unidad de Desarrollo Instrumental y Tecnológico) [020] Service Category: Technological [030] Scientific Responsible: Technology vice- director (Dr. Olga Muñoz) [040] Technical Responsible: José Miguel Ibáñez [050] Service Description: The Instrumental and Technological Development Unit (UDIT Unidad de Desarrollo Instrumental y Tecnológico) is in operation at the IAA since its foundation in State- of- the- art instruments designed and built at the UDIT for balloon and terrestrial rocket payloads in early times and nowadays for both space missions and ground- based observatories have put the IAA on the map as a reference center for technological- challenging research projects. Technical production at the UDIT can be split into two major lines: - Analysis, design, integration and verification of astronomical instruments for interplanetary scientific missions. - Analysis, design, integration and verification of astronomical instruments for ground- based telescopes at the IAA observatories and other telescopes. The UDIT staff is composed of highly qualified engineers whose expertise covers four main technological branches: A. Electronics: digital, analog electronics, control and processing codes design for FPGAs, power control systems, and quality control. B. Software: control software for telescopes and astronomical instrumentation, astronomical data archiving and processing, maintenance of equipment in astronomical observatories. C. Mechanics: high performance mechanical structures, opto- mechanics, high accuracy positioners, thermal analysis. D. Optics: design, assembly and verification of optical and infrared astronomical instrumentation, maintenance and calibration of astronomical optical instrumentation. We provide below an overview of the research projects that demand or have demanded at different levels the involvement of the IAA- UDIT: Space Missions (alphabetical order): - BEpi Colombo Laser Altimeter (BELA) on board Bepi Colombo, target Mercury (under development). - Exoplanet Characterization Observatory (ECHO). Space Observatory, target, exo- planets. (ESA Cosmic Vision review process). - Ganymede Laser Altimeter (GALA) y Jovis, Amorum ac Natorum (Janus) onboard (ESA) JUICE. Target: Jupiter & Icy moons, (under development). - GIADA & OSIRIS onboard Rosetta, target: comet Churyumov- Gerasimenko, (operational). - Imaging Magnetograph experiment (IMAX) onboard SUNRISE (stratospheric balloon, target Sun) (operational).

9 - Marco Polo Narrow Angle Camera (MANAC) y Marco Polo Visible Near Infrared Imaging Spectrometer (MARIS) onboard Marco Polo- R, target: Near Earth Asteroid (ESA Cosmic Vision review process). - Nadir and Occultation for MArs Discovery (NOMAD) on board (ESA) ExoMars, target: Mars (under development). - Polarimetric and Helioseismic Imager (PHI) on board (ESA) Solar Orbiter (Space Observatory); target: Sun. (under development). - PLanetAry Transits and Oscillations of stars (PLATO), an ESA M3 candidate. Ground Based Instrumentation (alphabetical order): - COsmic DUst LABoratory (CODULAB) located at the IAA- UDIT (Operational). - Calar Alto high- Resolution search for M dwarfs with Exoearths with Near- infrared and optical Echelle Spectrographs (CARMENES). Observatorio de Calar Alto. (Under development) - Multi- Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). Gran telescopio Canario (GRANTECAN). (Under development) - PAnoramic Near- Infrared Camera (PANIC). Observatorio de Calar Alto. (under development). - GRAnada Sprite Spectrograph and Polarimeter (GRASSP), installed at the Observatorio de Calar Alto; in operation since May During the time- lapse from 2008 to 2011, the development of the above projects has resulted in 143 internal and external technical reports for the consortia. Apart from its involvement in the mentioned strategic projects of the IAA, the UDIT also gives and will give maintenance support to the OSN and CAHA observatories. [060] Webpage of the Service: Under development at www- udit.iaa.es [070] Service Realm: Both internal and external [080] Does the Service have ISO Certificates?: [090] Is the service included in the CSIC network of scientific-technical Services?: Yes, Optical Engineering Service. [100] Internal Revenue (k euros): not applicable [110] Revenue to Other CSIC Centres (k euros): [120] Revenue to Universities (k euros): [130] Facturación a Empresas (k euros): - [140] Number of Groups which are users of the Service: Six IAA Research Groups. [150] Staff Trained in the use of equipment : 6 Sierra Nevada Observatory [010] Service Name: Sierra Nevada Obsrvatory (OSN Observatorio de Sierra Nevada) [020] Service Category: Scientific [030] Scientific Responsible: Dr. Susana Martín Ruiz [040] Technical Responsible: Luis Pedro Costillo Iciarra [050] Service Description: The OSN is a high mountain observatory located at Loma de Dilar (2896m altitude) in the Sierra Nevada National Park (Granada). It consists of a main building which hosts two Nasmyth optical telescopes of 90- cm and m diameter each (hereafter T90 and T150). The astronomical instruments attached to those telescopes consist of a Strömgren- Crawford six- channel

10 spectrophotometer, a 2048x2048 CCD camera, and Albireo: a low- resolution optical spectrograph. The astronomical observations carried out at OSN respond to proposals submitted by the different groups of the IAA, although the number of observing requests of external collaborators is growing with time. In addition to the typical visitor and service observing modes, the OSN offers the possibility to carry out observations in remote mode. Beside the main telescopes, there are secondary astronomical facilities carrying out observations for specific projects: the 60- cm IR semi- automated telescope (T60) for early follow- up of gamma- ray bust (GRB), the 35- cm telescope (T35) for the observation of variable stars, and SATI (Spectral Airglow Temperature Imager), a Fabry- Perot spectrometer dedicated to the study of the high layers of the Earth s atmosphere. Moreover, two seeing- monitors take continuously dome and open- sky measurements in order to characterize the sky of Sierra Nevada. The most relevant scientific results of the observations are published in international journals: in average 20 articles per year have been published in the period using OSN observations. Due to the size of their telescopes, the OSN is especially suited for projects requiring a prompt response (Target of Opportunity) and/or monitoring observations during long periods of time. OSN observations are to be used frequently by our PhD students to support their work. The OSN does not only contribute to the scientific production of the IAA and to the formation of its students, but it also participates in multiple outreach activities. It must be particularly emphasized the guided visits, public observations, and talks organized at OSN every summer since [060] Service Webpage: [070] Service Realm: Both internal and external [080] Does the Service have ISO Certificates?: No [090] Is the service included in the CSIC network of scientific-technical Services?: No. [100] Internal Revenue (k euros): not applicable [110] Revenue to Other CSIC Centres (k euros): 0.4 [120] Revenue to Universities (k euros): 0.5 [130] Revenue to Private Companies (k euros): [140] Number of Groups which are users of the Service: Most groups of the IAA take advantage of the observing opportunity at OSN. Other groups from Spanish universities also make use of these facilities. [150] Staff Trained in the use of equipment : The OSN staff consists of 7 support astronomers and engineers that are constantly trained. Communication, Education and Public Outreach Unit [010] Name of the Service: Communication, Education and Public Outreach (UCC Unidad de Comunicación Científica) [020] Servicio Category: Special [030] Scientific Responsible: Emilio José García Gómez- Caro [040] Technical Responsible: Silbia López de Lacalle [050] Service Description: Public outreach has a long tradition at the IAA, since 1995, although the communication office was not officially established as a Unit until Since then, the number of activities has steadily grown and their format diversified.

11 The IAA, through its UCC, has been recognized with numerous national awards in science popularization. Currently, the unit is a member of the Scientific Culture Units Network (COMCIRED coordinated by the Spanish Foundation for Science and Technology (FECYT). The UCC works to provide citizens with a background on astronomy and science, offering activities not necessarily related to our research areas. Under such criteria, the UCC has built an important collection of articles, audiovisual pieces, exhibits, educational projects, conferences, and street activities. The three main lines of actions are: - Communication: make the IAA scientific and technological achievements reach the media through the preparation of press releases, replying information requests from the media, and managing the social networks. - Education: foster the interest for science at all educational levels by organizing school visits to the IAA headquarters and by coordinating the PIIISA Project (Proyecto de Iniciación a la Investigación de Innovación en Secundaria en Granada - a multidisciplinary project which allows students from 20 high schools to work with scientists in real research projects. - Public Outreach: popularize astronomy (concepts, history, etc.) among the general public. The activity in this line is extensive: (1) publication of a popular science journal ( IAA: Información y Actualidad Astronómica ) every four months, (2) preparation of radio ( El Radioscopio, and TV ( Con-Ciencia", divulgacion.iaa.es/antes- de- que- anochezca) shows broadcast by Canal Sur RTVA, podcasts (e.g., "Ocho Minutos-Luz, ocho- minutos- luz.htm) and audiovisual pieces ( Henrrietta and Tesla: two historic fake videoblogs, - (3) continuation of the Lucas Lara conference series (http://www- divulgacion.iaa.es/ciclo- lucas- lara), (4) organization of visits to the OSN and IRAM 30m antenna in Sierra Nevada ( Eres de óptico o de radio?, OSN- IRAM), and (5) organization of activities for the European Science Weeks (http://www.iaa.es/scyt2009, and International Year of Astronomy 2009 in Spain (AIA- IYA These activities have made it possible to build a solid connection between the IAA and the citizenship of Granada, which has been the scenario of many of our activities. Our efforts to communicate science have also reached a wider audience, not only from Spain but also from South America, since all the materials are available on our web site (http://www.iaa.es/). As a result, the IAA CCU has received a significant number of national awards including the First Prize in the 2007 and 2012 contests "Ciencia en Acción", First Honorable Mention in the 2004 contest "Física y Matemáticas en Acción", Best newspaper article in the 2003 contest "Prismas Casa de las Ciencias" granted by the Casa de las Ciencias in La Coruña, among many others. [060] Service Webpage: www- divulgacion.iaa.es [070] Service Realm: External [080] Does the Service have ISO Certificates?: NO [090] Is the service included in the CSIC network of scientific-technical Services?: No. [100] Internal Revenue (k euros): not applicable [110] Revenue to Other CSIC Centres (k euros):

12 [120] Revenue to Universities (k euros): [130] Revenue to Private Companies (k euros): [140] Number of Groups which are users of the Service: All thirteen scientific groups of the IAA, in addition to several of its service units. [150] Staff Trained in the use of equipment : None.

13 2. Critical Analysis 2.1 SWOT Strengths i. The IAA presents a unique combination of research in nearly all major areas and spectral ranges of Astrophysics, together with active instrumental and technological developments, and the participation in educational, academic, and outreach activities. Its harvest in all these areas has steadily grown since the IAA started operations, helping to promote Astronomy in Spain and in the world. ii. The number and great diversity of scientists at the IAA should be emphasized. It allows the scientific exploitation of large facilities across the whole spectral range using different observational techniques (photometry, spectroscopy, imaging, spectropolarimetry, interferometry, ), and it motivates a complementary approach to astrophysical problems, adding observations and technological developments to theory and numerical simulations. iii. The rate and quality of scientific publications in highly ranked journals, PhD production, outreach activities, and technological contributions of the IAA represents a significant asset of the whole CSIC Physics area. iv. The IAA plays a significant leadership in its research activity. The IAA scientists are leading authors or represent an important share of the author list for a huge fraction of their peer- reviewed publications. Furthermore, the research performed at the IAA has reached a high internationalization degree. v. The IAA is traditionally open to international scientific exchange. IAA scientists maintain well- established collaborations with world leading groups and institutes, and they have access to (and frequently use of) worldwide ground- based observing facilities and international space observatories. A significant fraction of our scientific staff, post- doc fellows, and PhD students are international. The IAA scientists organize yearly an average of 15 international scientific meetings, from small workshops to large conferences, plus a series of weekly talks and seminars (in English). vi. The IAA fully operates the Observatorio de Sierra Nevada (OSN, Granada), a high- mountain facility ideally suited for large- term projects and quick response to transient phenomena. vii. The IAA is committed to the scientific operation of the Spanish- German Astronomical Center at Calar Alto (CAHA, Almería) jointly with the Max Planck Institut für Astronomie in Heidelberg (Germany). viii. The IAA scientists and its technology branch (the so called UDIT) build instrumentation for spacecrafts of major international space agencies (e.g. ESA, NASA), in close collaboration with highly qualified technology and science groups. The IAA is leading instrumental projects for ground- based telescopes (e.g., Calar Alto and the GTC m telescope, at Observatorio de El Roque de los Muchachos, La Palma). Our research activity greatly benefits from all these technological contributions. ix. The IAA hosted one of the few CSIC GRID nodes, now transformed into a Supercomputing Infrastructure capable of cloud massive computing.

14 x. The IAA contributes significantly to the outreach of astronomical research. As a result, we are well known by local and national social agents, surely impinging a positive influence on the funding bodies of the scientific and technological research. IAA hosts a Unidad de Cultura Científica node certified by FECYT. Opportunities i. The IAA will benefit of the scientific exploitation of the exoplanet finder CARMENES at the 3.5- m telescope of CAHA. CARMENES has been identified by the Astronet scientific committee's review of European 2-4m telescopes (ETSRC) as one of the to- be- supported spectroscopic capabilities for the next decade. It will provide the IAA and Spanish Astronomical communities a unique scientific opportunity for the exploration of the diversity of exoplanets and for the determination of the frequency of Earth- like planets in habitable zones. ii. The experience gained by the IAA in the development of front- line instruments for CAHA places it in a prominent position for contributing to potential consortia established to build instruments for large telescopes. In this sense, CARMENES can be considered as a precursor of HIRES for the E- ELT. Similar opportunities are provided by our involvement in projects for SKA. iii. The IAA has a proven expertise for the scientific exploitation of large ground- based and space- borne facilities covering the whole spectral range: ALMA, VLA, HST, ESO VLT, GTC, XMM-Newton, and Chandra among others. iv. The IAA is very well positioned for the timely scientific exploitation of massive databases produced by either ongoing surveys - CALIFA, ALHAMBRA- or just- completed projects such as CoRoT, MOST, and Kepler (through the SPACEINN European project for the preparation of an astroseismology space missions data legacy) and Rosetta, amongst others v. Similarly, the IAA has access to the IMaX data on board Sunrise and PHI in preparation for the ESA Solar Orbiter mission. This places the IAA in a prevalent position for leading potential large international projects in Solar physics, such as EST, the European Solar Telescope. vi. The IAA involvement in Solar system space missions ensures our participation in the exploitation of data obtained by present (Giada and Osiris on board ESA Rosetta, VIRTIS on Venus Express, PFS and SPICAM on Mars Express, and VIMS on Cassini), and future (BELA on board ESA Bepi Colombo, NOMAD on board of ESA ExoMars, GALA and Janus on board of ESA JUICE) space missions. The Mars program envisioned by the Horizon can provide opportunities to access EU research networks and resources from the ERC. vii. The IAA is involved as well in ESA and NASA Earth Observation missions, such as MIPAS on Envisat and SABER on TIMED. It is in close cooperation with European groups for proposing new missions. viii. The IAA will take advantage of the positive public perception of Astronomy achieved in our local environment to promote social interest in scientific and technological activities. It is important to continue reaching out to the media and to gain recognition from the local and regional governments. ix. The transfer of basic research and technology to other CSIC institutes, national or international Universities and Research Institutes, and industry contributes to the economic and social progress.

15 x. The implementation of an Astrophysics Masters program, in collaboration with UNED, will provide us the opportunity to attract Spanish and international physics students. This is an essential first step in the training of future astronomers and scientists. The students will be able to carry out professional astronomical observations at the OSN facilities, thus providing our Masters program a distinctive advantage. xi. The proven capability to apply for funds not only to the Space Sciences area of the European Research Council, but also to the areas of Earth Observation and Geophysics. Weaknesses i. There is room to invigorate the intellectual exchange between the different Departments and research groups of the IAA in order to enhance our scientific and technological productivity. ii. The capacity of the IAA to attract highly talented researchers is undermined by the more attractive conditions, both in terms of salary and permanent positions, offered by international research institutes. iii. The IAA leadership of world- class projects for large ground- based facilities or space missions is limited by the funding conditions and employment instability of some of the scientists involved in technological and scientific projects. iv. The technical staff of the IAA is insufficient for the upcoming technological and instrumental challenges springing from our commitment to the Calar Alto Observatory and the opportunities resulting from new existing large facilities, as GTC, VLT, and future challenges of SKA, E- ELT and ESA space missions. v. The Computer Center staff is insufficient for internal needs, particularly as for providing support to supercomputing and other IAA external commitments, including the management of networks used by other CSIC institutes. vi. The presence of IAA researchers in international decision- making bodies needs to be enhanced; likewise our visibility in committees of the regional (Junta de Andalucía) and national governments. vii. Our own Astrophysics Masters program has not been implemented yet, thus making it difficult for us to attract competitive PhD students. viii. Sabbatical leaves of staff scientists and technicians have become scarce, as are long- term stays of top- scientists from other research centers. Threats The present budgetary situation in Spain poses a number of risks to the activity, finances, and staff stability of many research centers. The IAA is not an exception. Among the main threads to our research activity, we highlight: i. Limited support and funding opportunities for long- term projects. The uncertain commitment of Spain to large international projects such as E- ELT and SKA, or to ESA is certainly worrisome. It threatens our possibilities to participate in large science projects. ii. The unreliability in the date, number, and budget of the calls for public funds by the Spanish research system threatens the research activity, especially when collaborating with international teams. This prevents many groups from making

16 mid- term planning. Furthermore, the 3- year periodicity of the Spanish research grants does not suit at all the duration of large instrumental projects. iii. The average age of the scientific staff of the IAA is reaching a critical point, as many of them will soon retire. The almost complete lack of new permanent positions for young and well- trained scientists and engineers, or the incapability to extend their employment, will put in risk the continuity of the scientific activity of many research groups. Projects demanding the contribution of a large team of researchers (for instance, multi- wavelength observation programs) will be severely affected. iv. The lack of definition of a technological career poses its own risks. Very few permanent positions are offered to senior engineers, implying that too many projects depend on junior engineers. The subsequent loss of the know- how provided by well- experienced engineers deeply impacts in the progress of technological projects. v. Decreasing number of Physics graduate and PhD students in Spanish universities. vi. The procedures to acquire the hardware required for the development of instrument and space missions are extremely inefficient. The time- lapse for the delivery of such material usually exceeds three months after the payment date, resulting in great management difficulties. vii. Severe budgetary reductions at Calar Alto observatory have imposed strong difficulties for its scientific operation, therefore significantly reducing the efficiency and quality of the data gathering system and powering the drain of the know- how and talented staff. This impacts greatly the scientific return from CAHA. viii. The heavy bureaucratic load in the CSIC prevents a dynamic recruitment system and a more efficient funding scheme. The current policy of the CSIC as for the economic remnants of projects is creating a situation of legal insecurity that is playing against a solid international reputation for the management of UE funds. 2.2 Selective Advantages 1. The IAA provides a unique environment to carry out research in all major areas and spectral ranges of Astrophysics covering the four Astronet Science Vision key questions for research in Europe. To achieve these goals the IAA has undertaken a program of instrumental and technological developments, and participates actively in educational, academic, and outreach activities. All these activities provide an excellent environment for grad students and young researchers and engineers. 2. The rate and quality of scientific publications in highly ranked journals, PhD production, outreach activities, and technological contributions of the IAA are significant. With an h- index of 88 and a high rate of publications in multidisciplinary journals of high social impact such as Nature and Science, the IAA is an important asset of the CSIC Physics Area. 3. The IAA operates the Spanish- German Astronomical Center at Calar Alto (CAHA, Almería) jointly with the Max Planck Institut für Astronomie in Heidelberg (Germany), an ICTS included in the ESFRI map, and is part of the Astronet infrastructure roadmap. Together with the OSN observatory, fully

17 operated by IAA, these observatories represent an excellent school for training and a benchmark laboratory for testing and developing new astronomical instrumentation. 5. The IAA researchers have access to the most powerful ground- based telescopes, including the four 8m Very Large Telescopes (VLT) operated by ESO on Chile and the 10m Gran Telescopio de Canarias (GTC) at Roque de Los Muchachos observatory (La Palma, Spain). 4. The IAA s large experience in instrumentation for space missions has made it a reference in planetary and solar science, placing the IAA in a prevalent position for its participation and leading contribution to new opportunities in space missions. 5. The IAA is very well positioned for the timely scientific exploitation of massive databases produced by either ongoing surveys (e.g., CALIFA, ALHAMBRA, Rosetta) or just- completed projects such as CoRoT, amongst others. It is equally in excellent conditions for the use of data obtained by spacecrafts targeting the Sun and planet and minor bodies of the Solar System. In the near future, CARMENES will allow the IAA to search for exoplanets and to investigate the frequency of Earth- like planets in habitable zones.

18 3. Objectives and Actions 3.1 General Objectives Objectives The main general scientific objective of the Instituto de Astrofísica de Andalucía (IAA) is to advance in the knowledge of the universe, from the smallest and closest scales, here in our Solar System, up to the cosmological scales. Given the nature of the study, our goal is approached from a multidisciplinary perspective, requiring a combination of observations, theory and technology, and covering a wide range of aspects in physics and engineering. Being the IAA an institute devoted to basic science generation, we are also deeply involved in new instrumentation, given the role that Astrophysics plays as a driver in the generation of new technologies. The IAA is devoted to forefront research in Astronomy and Astrophysics. All major Astrophysics areas are covered by the IAA research activity, from the exploration of the solar system, stellar physics, star formation and interstellar medium physics to extragalactic astronomy and cosmology. All wavelengths of the spectral range are subject to observations by the experienced IAA scientific staff: gamma- and X- rays, UV, optical, IR, and radio. The strategy of the IAA research program is central to the fundamental questions defined in the Astronet Science Vision for European Astronomy, for which significant advances are expected in the coming decade: i.- Do we understand the extremes of the Universe? ii.-how do galaxies form and evolve? iii.- What is the origin and evolution of stars and planets? iv.- How do we (and the Solar System) fit in? This unique broad view of the Astronomy and Astrophysics offered by IAA is complemented by research on theoretical Astronomy, as well as by the presence of a supercomputing facility, and more importantly by the long tradition in building instrumentation for space missions and a boosting activity in instrumentation development for manned and robotic ground- based telescopes. The main goal of the IAA for the PA is the consolidation of its leadership in Spain and to strengthen its international position keeping and reinforcing the status of a reference center in Astrophysics research. To reach these objectives, the IAA pursues scientific excellence and strongly promotes the participation and leading initiative of IAA scientists and engineers in current and future world- class science and instrumentation for space and ground- based projects. Moreover, as the reference CSIC center for CAHA, the IAA aims at fulfilling and complete the commitments agreed by the CSIC and MPG on Calar Alto, the largest and most productive astronomical observatory in mainland Europe Proposed Actions The IAA will pursue the following actions for the present PA : 1.- Reinforce internationalization

19 The internationalization of the scientific activity is key. The IAA will promote international exchange and collaborations at all possible levels: individuals, groups, and institutions. The main objectives and actions for the PA in these respects are described in the corresponding section of this document. 2.- Determination for seeking funds from European sources The current budgetary situation in Spain motivates more than ever the application for funding to European sources. We will encourage and provide the means to outstanding IAA scientists to apply for funds provided by national and international agencies such as the European Research Council (ERC). This will allow us to better align our scientific activity to the demands of the European society expressed in the Horizon Plan. 3.- Promote International large projects The IAA will promote the participation and leading initiative of IAA scientists and engineers in current and future large international projects, such as world- wide scientific projects, space science missions, and in world- class facilities and their instrumentation such as ESO, GTC, SKA among others. Specific initiatives are described in more detail in the section devoted to scientific actions. 4.- Enhancing external visibility of scientific excellence Linked to the previous two items, the IAA is strongly motivated to enhance its visibility in the national and international levels, and also in most relevant decision making bodies and scientific organizations. The IAA research main driver is aimed towards excellence in the field of astrophysics and space sciences. 5.- Advance in theoretical and computational Astrophysics The IAA is proud of the role played by its team of theoreticians in all research lines and groups. Their theoretical contribution is an essential piece to define new instrumentation and for the interpretation of the scientific return of large international projects. It will also allow us to take advantage of the IAA massive computing infrastructure, using it to solve the most outstanding scientific problems in Computational Astrophysics. 6.- Education and Academics The involvement of IAA scientists and engineers in educational and academic activities, mostly in close collaboration with the Universidad de Granada (UGr), has a long tradition. The IAA will keep promoting these activities and further steps to increase our academic activities are being taken. In this vein, the IAA should be able to offer talented students very attractive research projects, at the front line of astrophysics research. The main objectives and actions for the PA are described in the corresponding section of this document. 7.- Outreach of our scientific activity The outreach of the scientific activity is a key action. The IAA will promote these activities, following the successful track record of our outreach unit (Unidad de Divulgación del IAA), which hosts a FECYT Unidad de Cultura Científica. The main objectives and actions for the PA are described in the corresponding section of this document. 8.- Efficient management We shall procure an efficient Management Plan for the IAA to foresee our current and future challenges. This new management plan should support the increasing research activity and help the management of strategic technological projects, aided by computing tools and an efficient team. The actions undertaken to

20 compete for UE funds require of a technically well- prepared management office. To achieve these goals, the SA unit requires the addition of new support personnel and the promotion of the current staff to permanent positions. 9.- Promotion of bright young RyC fellows to permanent positions All IAA RyC fellows will see (two of them have already seen) their 5- yr grants finished during the present PA , implying severe risks for highly productive research lines and groups of the IAA. It is paramount to take all actions needed to ensure that these researchers have the chance of becoming permanent scientists. 3.2 Scientific Objectives Objectives The IAA is a center devoted to basic research in Astrophysics. It has a broad view of this Science, which allows covering all major areas of modern Astrophysics. To support its leading contribution to Astrophysical research, the IAA has been and is currently engaged in the design and construction of instrumentation for space probes and satellites, and large ground- based telescopes. As if it were a journey taking us to any place of the observable Universe, the scientific objectives of the IAA can be summarized as: i. The study of the origin and evolution of the Universe as a whole, which is the subject of Cosmology. Our research encompasses the advance in General Relativity, the cosmological significance of the large- scale distribution of galaxies, and the empirical measurement of the fundamental parameters of the Universe, in order to verify the validity of theories about its structure and evolution. ii. The observational characterization of the stellar, gaseous, molecular, and dark- matter components of galaxies of the local universe, reaching the faintest outer regions that trace the fossil record of their formation. Our research wants to isolate the effects of internal processes, formative evolution, and environment on the present- epoch properties of galaxies, particularly on their star formation and nuclear activity. The cold intergalactic medium is also target of our research. iii. The investigation of the formation and evolution of black holes, its cosmological effects, and the production of relativistic jets in multiple astrophysical sites, from active galactic nuclei (AGN) to gamma- ray bursts (GRB) and micro- quasars. iv. The study of optical transients, with especial interest in X- ray binaries and gamma- ray bursts. The latter are enigmatic stellar explosions occurring early in the evolution of the Universe, resulting of great interest the study of their environments and how these high- energy phenomena affect to the surrounding interstellar medium. v. The advance in our knowledge of the Galactic structure and its components. The characterization of stellar clusters and massive stars in the Galaxy, and the study of the Galactic Centre are pursued, linking star- forming processes with spatial and kinematic structures on different scales. vi. The study in detail of individual components of the Galaxy, namely (1) the internal structure of stars, uniquely studied through astroseismology techniques, (2) the formation of stars (and their planetary systems) at all mass scales and its

Undergraduate Studies Department of Astronomy

Undergraduate Studies Department of Astronomy WIYN 3.5-meter Telescope at Kitt Peak near Tucson, AZ Undergraduate Studies Department of Astronomy January 2014 Astronomy at Indiana University General Information The Astronomy Department at Indiana

More information

Teaching Astronomy in the University of Granada. Eduardo Battaner Departamento de Física Teórica y del Cosmos

Teaching Astronomy in the University of Granada. Eduardo Battaner Departamento de Física Teórica y del Cosmos Teaching Astronomy in the University of Granada Eduardo Battaner Departamento de Física Teórica y del Cosmos Some history University created by Charles V in the XVI century (An arabic Madraza was created

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

A long time ago, people looked

A long time ago, people looked Supercool Space Tools! By Linda Hermans-Killam A long time ago, people looked into the dark night sky and wondered about the stars, meteors, comets and planets they saw. The only tools they had to study

More information

CAUP s Astronomical Instrumentation and Surveys

CAUP s Astronomical Instrumentation and Surveys CAUP s Astronomical Instrumentation and Surveys CENTRO DE ASTROFÍSICA DA UNIVERSIDADE DO PORTO www.astro.up.pt Sérgio A. G. Sousa Team presentation sousasag@astro.up.pt CAUP's Astronomical Instrumentation

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Electromagnetic Radiation (including visible light)

Electromagnetic Radiation (including visible light) An expert is a man who has made all the mistakes, which can be made in a narrow field. Neils Bohr Electromagnetic Radiation (including visible light) Behaves like a particle. light particles are called

More information

The Virtual Observatory: What is it and how can it help me? Enrique Solano LAEFF / INTA Spanish Virtual Observatory

The Virtual Observatory: What is it and how can it help me? Enrique Solano LAEFF / INTA Spanish Virtual Observatory The Virtual Observatory: What is it and how can it help me? Enrique Solano LAEFF / INTA Spanish Virtual Observatory Astronomy in the XXI century The Internet revolution (the dot com boom ) has transformed

More information

Swarthmore College Newsletter

Swarthmore College Newsletter 93 Fog, clouds, and light pollution limit the effectiveness of even the biggest optical telescopes on Earth. Astronomers who study ultraviolet or X-ray emission of stars have been more limited because

More information

Science Investigations: Investigating Astronomy Teacher s Guide

Science Investigations: Investigating Astronomy Teacher s Guide Teacher s Guide Grade Level: 6 12 Curriculum Focus: Astronomy/Space Duration: 7 segments; 66 minutes Program Description This library of videos contains seven segments on celestial bodies and related science.

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Einstein Rings: Nature s Gravitational Lenses

Einstein Rings: Nature s Gravitational Lenses National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

NASA s Future Missions in X-ray Astronomy

NASA s Future Missions in X-ray Astronomy NASA s Future Missions in X-ray Astronomy Nicholas E. White NASA s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, MD 20771 USA nwhite@lheapop.gsfc.nasa.gov Abstract The

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements

Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements THIRTY METER TELESCOPE The past century of astronomy research has yielded remarkable insights into the nature and origin of the Universe. This scientific advancement has been fueled by progressively larger

More information

Computational Astrophysics and Cosmology. Professor Ben Moore, University of Zurich, Switzerland

Computational Astrophysics and Cosmology. Professor Ben Moore, University of Zurich, Switzerland Program Title Computational Astrophysics and Cosmology Program Acronym ASTROSIM Principal Applicant Professor Ben Moore, University of Zurich, Switzerland Abstract This program aims to bring together European

More information

A short history of telescopes and astronomy: Galileo to the TMT

A short history of telescopes and astronomy: Galileo to the TMT A short history of telescopes and astronomy: Galileo to the TMT Telescopes in the last 400 years Galileo 1608 Hans Lippershey applied for a patent for seeing things far away as if they were nearby 1609

More information

Software challenges in the implementation of large surveys: the case of J-PAS

Software challenges in the implementation of large surveys: the case of J-PAS Software challenges in the implementation of large surveys: the case of J-PAS 1/21 Paulo Penteado - IAG/USP pp.penteado@gmail.com http://www.ppenteado.net/ast/pp_lsst_201204.pdf (K. Taylor) (A. Fernández-Soto)

More information

Association of Universities for Research in Astronomy

Association of Universities for Research in Astronomy Association of Universities for Research in Astronomy Site Review Application of the University of Virginia For AURA Membership AURA s policy regarding new Member Institutions is based on a determination

More information

Are We Alone?! Exoplanet Characterization and Direct Imaging!

Are We Alone?! Exoplanet Characterization and Direct Imaging! From Cosmic Birth to Living Earths A Vision for Space Astronomy in the 2020s and Beyond Are We Alone?! Exoplanet Characterization and Direct Imaging! A Study Commissioned by the Associated Universities

More information

The Sino-French Gamma-Ray Burst Mission SVOM (Space-based multi-band astronomical Variable Objects Monitor)

The Sino-French Gamma-Ray Burst Mission SVOM (Space-based multi-band astronomical Variable Objects Monitor) The Sino-French Gamma-Ray Burst Mission SVOM (Space-based multi-band astronomical Variable Objects Monitor) Didier BARRET on behalf of the SVOM collaboration didier.barret@cesr.fr Outline SVOM background

More information

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data The Gaia Archive Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de 1 2 Gaia 2013-2018 and beyond Progress with Gaia 3 HIPPARCOS Gaia accuracy

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Exploring the Universe Through the Hubble Space Telescope

Exploring the Universe Through the Hubble Space Telescope Exploring the Universe Through the Hubble Space Telescope WEEK FIVE: THE HUBBLE DEEP FIELD + LIMITATIONS OF HUBBLE, COLLABORATIONS, AND THE FUTURE OF ASTRONOMY Date: October 14, 2013 Instructor: Robert

More information

UNIVERSITY PROPOSAL SAMPLES

UNIVERSITY PROPOSAL SAMPLES UNIVERSITY PROPOSAL SAMPLES Appalachian State University: The Institution and Physics Department Appalachian state University (ASU) is a mid-sized regional state university serving approximately 15,000

More information

CURRICULUM VITAE PERSONAL DATA. ID/Passport: (NIE) Y0265573-Y Date of birth: 08-19-1979 Gender: Female Nationality: Mexican ACADEMIC BACKGROUND

CURRICULUM VITAE PERSONAL DATA. ID/Passport: (NIE) Y0265573-Y Date of birth: 08-19-1979 Gender: Female Nationality: Mexican ACADEMIC BACKGROUND CURRICULUM VITAE PERSONAL DATA Family name: Rodríguez Martínez Forename: Mónica Ivette ID/Passport: (NIE) Y0265573-Y Date of birth: 08-19-1979 Gender: Female Nationality: Mexican E-mail: mrm@iaa.es ACADEMIC

More information

Please note that only the German version of the Curriculum is legally binding. All other linguistic versions are provided for information only

Please note that only the German version of the Curriculum is legally binding. All other linguistic versions are provided for information only Please note that only the German version of the Curriculum is legally binding. All other linguistic versions are provided for information only Curriculum for the Erasmus Mundus Joint Master Program in

More information

THE SOLAR SYSTEM Syllabus

THE SOLAR SYSTEM Syllabus THE SOLAR SYSTEM Syllabus Course Title The Solar System: Earth and Space Science Course Description This course provides an overview of what we know about the Solar System: how it began and evolved, its

More information

PhD student at Max-Planck-Institut für Astronomie. Heidelberg, Germany.

PhD student at Max-Planck-Institut für Astronomie. Heidelberg, Germany. Dr. Elena Manjavacas Curriculum Vitae Max-Planck-Institut für Astronomie Königstuhl, 17 D-69117, Heidelberg, Germany +49 6221 528 442 manjavacas@mpia.de www.mpia.de/homes/manjavacas/elena_manjavacas.html

More information

M. Rovira Instituto de Astronomía y Física del Espacio C.C.67 Suc.28 (1428) Buenos Aires. in Argentina

M. Rovira Instituto de Astronomía y Física del Espacio C.C.67 Suc.28 (1428) Buenos Aires. in Argentina Recent Observations of the solar corona with a new ground-based coronagraph in Argentina (MICA) G. Stenborg, R. Schwenn, N. Srivastava, B. Inhester, B. Podlipnik Max-Planck-Institut für Aeronomie Max-Planck-Str.

More information

Astronomy Research Strategic Planning Vision 2015

Astronomy Research Strategic Planning Vision 2015 Astronomy Research Strategic Planning Vision 2015 Astronomy is entering an amazing era of giant new telescopes able to probe to the very limits of the visible universe, and huge national surveys to explore

More information

Esa Mandatory Programme Opportunities as seen by Astrium Satellites. Wolfram Lork // July 07

Esa Mandatory Programme Opportunities as seen by Astrium Satellites. Wolfram Lork // July 07 Esa Mandatory Programme Opportunities as seen by Astrium Satellites Wolfram Lork // July 07 Overview Esa member states are contributing to Esa by mandatory contributions, calculated along GNP Gross National

More information

REQUIRED TEXT: The Cambridge Guide to the Solar System (Second Edition), Kenneth R. Lang, Cambridge University Press, 2011.

REQUIRED TEXT: The Cambridge Guide to the Solar System (Second Edition), Kenneth R. Lang, Cambridge University Press, 2011. REQUIRED TEXT: The Cambridge Guide to the Solar System (Second Edition), Kenneth R. Lang, Cambridge University Press, 2011. COURSE DESCRIPTION: This course will be an introductory astronomy survey course

More information

Indiana University Science with the WIYN One Degree Imager

Indiana University Science with the WIYN One Degree Imager Indiana University Science with the WIYN One Degree Imager Katherine Rhode (Indiana University, WIYN SAC member) Indiana University Department of Astronomy Nine faculty members, plus active emeritus faculty

More information

EVALUATION GUIDELINES

EVALUATION GUIDELINES EVALUATION GUIDELINES Introduction This document outlines the reviewing process and defines the responsibilities of the participants in the process. It details a number of important issues, such as: FCT

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

and the VO-Science Francisco Jiménez Esteban Suffolk University

and the VO-Science Francisco Jiménez Esteban Suffolk University The Spanish-VO and the VO-Science Francisco Jiménez Esteban CAB / SVO (INTA-CSIC) Suffolk University The Spanish-VO (SVO) IVOA was created in June 2002 with the mission to facilitate the international

More information

PRESENTATION SPACE MISSIONS

PRESENTATION SPACE MISSIONS GENERAL PRESENTATION SPACE MISSIONS CONTENTS 1. Who we are 2. What we do 3. Space main areas 4. Space missions Page 2 WHO WE ARE GENERAL Multinational conglomerate founded in 1984 Private capital Offices

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS

Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS H. Kurlandczyk 1 M.Sarazin 1 1 European Organisation for Astronomical

More information

The Origin of the Solar System and Other Planetary Systems

The Origin of the Solar System and Other Planetary Systems The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation

More information

Stony Brook University Caltech Palomar Observatory Partnership

Stony Brook University Caltech Palomar Observatory Partnership Stony Brook University Caltech Palomar Observatory Partnership Proposal Stanimir Metchev, Jin Koda, Frederick Walter, Michal Simon Department of Physics & Astronomy, Stony Brook University, NY 11794 and

More information

WHAT POWERED THE BIG BANG? WHAT HAPPENS AT THE EDGE OF A BLACK HOLE? WHAT IS DARK ENERGY? National Aeronautics and Space Administration

WHAT POWERED THE BIG BANG? WHAT HAPPENS AT THE EDGE OF A BLACK HOLE? WHAT IS DARK ENERGY? National Aeronautics and Space Administration WHAT POWERED THE BIG BANG? WHAT HAPPENS AT THE EDGE OF A BLACK HOLE? WHAT IS DARK ENERGY? National Aeronautics and Space Administration Einstein s Predictions Three startling predictions of Einstein s

More information

UNIVERSITY OF HAWAI I AT MĀNOA ASTRONOMY & ASTROPHYSICS. The University of Hawai i is an equal opportunity/affirmative action institution.

UNIVERSITY OF HAWAI I AT MĀNOA ASTRONOMY & ASTROPHYSICS. The University of Hawai i is an equal opportunity/affirmative action institution. UNIVERSITY OF HAWAI I AT MĀNOA ASTRONOMY & The University of Hawai i is an equal opportunity/affirmative action institution. A M E SSAG E F R O M THE PROGRAM U N D E R G R A D U AT E P R O G R A M S I

More information

NASA's Postdoctoral Fellowship Programs

NASA's Postdoctoral Fellowship Programs NASA's Postdoctoral Fellowship Programs Einstein Fellowships Dr. Charles A. Beichman & Dr. Dawn M. Gelino NASA Exoplanet Science Institute Dr. Ron Allen Space Telescope Science Institute Dr. Andrea Prestwich

More information

African-European Radio Astronomy Platform. 2013 Africa-EU Cooperation Forum on ICT. Addis Ababa, Ethiopia 3 December 2013

African-European Radio Astronomy Platform. 2013 Africa-EU Cooperation Forum on ICT. Addis Ababa, Ethiopia 3 December 2013 African-European Radio Astronomy Platform 2013 Africa-EU Cooperation Forum on ICT Addis Ababa, Ethiopia 3 December 2013 Context The African European Radio Astronomy Platform European Parliament s Written

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

More information

Graduate Programs in Physics and Astronomy

Graduate Programs in Physics and Astronomy Graduate Programs in Physics and Astronomy Western s award winning faculty members, cutting edge research and interdisciplinary environment give you the tools to engage your imagination. The University

More information

Discover the Universe AST-1002 Section 0427, Spring 2016

Discover the Universe AST-1002 Section 0427, Spring 2016 Discover the Universe AST-1002 Section 0427, Spring 2016 Instructor: Dr. Francisco Reyes Office: Room 12 Bryant Space Science Center Telephone: 352-294-1885 Email: freyes@astro.ufl.edu Office hours: Monday

More information

Science 9 Worksheet 13-1 The Solar System

Science 9 Worksheet 13-1 The Solar System Name Date Due Date Science 9 Read pages 264-287 of SP to help you answer the following questions: Also, go to a school computer connected to the internet. Go to Mr. Colgur s Webpage at http://sd67.bc.ca/teachers/dcolgur

More information

An Act. To provide for a coordinated Federal program to ensure continued United States leadership in high-performance computing.

An Act. To provide for a coordinated Federal program to ensure continued United States leadership in high-performance computing. The High-Performance Computing Act of 1991 (Public Law 102-194) as amended by the Next Generation Internet Research Act of 1998 (P.L. 105-305) and the America COMPETES Act of 2007 (P.L 110-69) An Act To

More information

LLAMA Long Latin American Millimeter Array

LLAMA Long Latin American Millimeter Array LLAMA Long Latin American Millimeter Array The possibility of installing radio telescope(s) for millimeter and sub-millimeter wavelengths, in the Argentinean side of the Atacama desert at distances of

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

Astronomy = Big Science = ICT/ Big Data Opportunities for cooperation between Africa and Europe

Astronomy = Big Science = ICT/ Big Data Opportunities for cooperation between Africa and Europe Astronomy = Big Science = ICT/ Big Data Opportunities for cooperation between Africa and Europe Ronald Stark Head of Astronomy Netherlands Organisation for Scientific Research chair ASTRONET a comphrehensive

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset. Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?

More information

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points.

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points. HOMEWORK #1 Solar System Exploration Due Tuesday, January 27th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please

More information

The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.

The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete. The Scale of the Universe Some Introductory Material and Pretty Pictures The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete. A scientific theory is regarded

More information

Cosmic Variability Study in Taiwan

Cosmic Variability Study in Taiwan Cosmic Variability Study in Taiwan Wen-Ping Chen Institute of Astronomy National Central University, Taiwan 2010 November 16@Jena/YETI Advantages in Taiwan: - Many high mountains - Western Pacific longitude

More information

Kenya International Radio Observatory (KIRO) Joseph Otieno Malo, University of Nairobi, Kenya Bo Thide, Uppsala University, Sweden

Kenya International Radio Observatory (KIRO) Joseph Otieno Malo, University of Nairobi, Kenya Bo Thide, Uppsala University, Sweden Kenya International Radio Observatory (KIRO) Joseph Otieno Malo, University of Nairobi, Kenya Bo Thide, Uppsala University, Sweden ABSTRACT This paper proposes the building of a new type of versatile,

More information

Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

More information

NASA s Dawn Mission Journey to the Asteroid Frontier

NASA s Dawn Mission Journey to the Asteroid Frontier NASA s Dawn Mission Journey to the Asteroid Frontier Dawn Lucy McFadden, Co-Investigator University of Maryland College Park, MD January 12, 2009 SBAG update 9 th Discovery Mission Dawn Explores the Earliest

More information

15.6 Planets Beyond the Solar System

15.6 Planets Beyond the Solar System 15.6 Planets Beyond the Solar System Planets orbiting other stars are called extrasolar planets. Until 1995, whether or not extrasolar planets existed was unknown. Since then more than 300 have been discovered.

More information

Outreach Committee. Lunar Science Workshop Tempe, AZ Feb. 27-March 2, 2007

Outreach Committee. Lunar Science Workshop Tempe, AZ Feb. 27-March 2, 2007 Outreach Committee Lunar Science Workshop Tempe, AZ Feb. 27-March 2, 2007 1 Members of the Outreach Committee Name Location NASA Area Allen, Jaclyn NASA-JSC Planetary Protection Collins, Eileen Astronaut-JSC

More information

Science Drivers for Big Data Joseph Lazio SKA Program Development Office & Jet Propulsion Laboratory, California Institute of Technology

Science Drivers for Big Data Joseph Lazio SKA Program Development Office & Jet Propulsion Laboratory, California Institute of Technology Science Drivers for Big Data Joseph Lazio SKA Program Development Office & Jet Propulsion Laboratory, California Institute of Technology 2010 California Institute of Technology. Government sponsorship

More information

FRACTAL S.L.N.E. A private company for engineering of scientific projects. Instrumentation and Software for Astronomy

FRACTAL S.L.N.E. A private company for engineering of scientific projects. Instrumentation and Software for Astronomy FRACTAL S.L.N.E A private company for engineering of scientific projects Instrumentation and Software for Astronomy 1 Introducing FRACTAL FRACTAL S.L.N.E. is a private technological company funded in 2005.

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Solar System Observations contains two components: Planetary Astronomy and Near Earth Object Observations.

Solar System Observations contains two components: Planetary Astronomy and Near Earth Object Observations. C.6 SOLAR SYSTEM OBSERVATIONS 1. Scope of Program Solar System Observations supports both ground-based astronomical observations and suborbital investigations of our Solar System involving sounding rockets

More information

Ionospheric Research with the LOFAR Telescope

Ionospheric Research with the LOFAR Telescope Ionospheric Research with the LOFAR Telescope Leszek P. Błaszkiewicz Faculty of Mathematics and Computer Science, UWM Olsztyn LOFAR - The LOw Frequency ARray The LOFAR interferometer consist of a large

More information

on the establishment of a Brazilian Science Data Center (BSDC) General Guidelines

on the establishment of a Brazilian Science Data Center (BSDC) General Guidelines on the establishment of a Brazilian Science Data Center (BSDC) General Guidelines 1 Introduction Since the entrance of Brazil in ICRANet a variety of projects have been started to be developed a) in the

More information

El programa de ciencias del espacio de la ESA

El programa de ciencias del espacio de la ESA El programa de ciencias del espacio de la ESA Fabio Favata European Space Agency Astronomy and Fundamental Physics Missions Coordinator A broad mission portfolio A long-term commitment to the excellence

More information

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

TELESCOPE AS TIME MACHINE

TELESCOPE AS TIME MACHINE TELESCOPE AS TIME MACHINE Read this article about NASA s latest high-tech space telescope. Then, have fun doing one or both of the word puzzles that use the important words in the article. A TELESCOPE

More information

Towards the Detection and Characterization of Smaller Transiting Planets

Towards the Detection and Characterization of Smaller Transiting Planets Towards the Detection and Characterization of Smaller Transiting Planets David W. Latham 27 July 2007 Kepler MISSION CONCEPT Kepler Mission is optimized for finding habitable planets ( 10 to 0.5 M )

More information

Solar Activity and Earth's Climate

Solar Activity and Earth's Climate Rasmus E. Benestad Solar Activity and Earth's Climate Second Edition Published in association with Springer Praxis ids Publishing Publisl PRAXI Chichester, UK Contents Preface to the second edition Preface

More information

Activity: Multiwavelength Bingo

Activity: Multiwavelength Bingo ctivity: Multiwavelength background: lmost everything that we know about distant objects in the Universe comes from studying the light that is emitted or reflected by them. The entire range of energies

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

College of Science George Mason University Fairfax, VA 22030

College of Science George Mason University Fairfax, VA 22030 College of Science George Mason University Fairfax, VA 22030 Dr. Sidney Wolff and the LSST Board of Directors LSST Corporation 933 N. Cherry Avenue Tucson, AZ 85721-0009 June 14, 2010 Dear Dr. Wolff and

More information

The University of Toledo College of Engineering. Strategic Directions 2005-2015

The University of Toledo College of Engineering. Strategic Directions 2005-2015 The University of Toledo College of Engineering Strategic Directions 2005-2015 November 9, 2005 The University of Toledo College of Engineering Strategic Directions 2005-2015 Table of Contents EXECUTIVE

More information

Name: João Fernando Alves da Silva Class: 7-4 Number: 10

Name: João Fernando Alves da Silva Class: 7-4 Number: 10 Name: João Fernando Alves da Silva Class: 7-4 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands

More information

What is the Sloan Digital Sky Survey?

What is the Sloan Digital Sky Survey? What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining

More information

CoSADIE Data Centre Forum. Summary and conclusions

CoSADIE Data Centre Forum. Summary and conclusions CoSADIE Data Centre Forum Summary and conclusions A forum for the data centre community Tell the story of what they do and of their relationship with the VO Know each other better Community building Communication

More information

A Preliminary Summary of The VLA Sky Survey

A Preliminary Summary of The VLA Sky Survey A Preliminary Summary of The VLA Sky Survey Eric J. Murphy and Stefi Baum (On behalf of the entire Science Survey Group) 1 Executive Summary After months of critical deliberation, the Survey Science Group

More information

Image classification of night time images detected from the International Space Station

Image classification of night time images detected from the International Space Station Image classification of night time images detected from the International Space Station Alejandro Sánchez de Miguel, José Gómez Castaño and Jaime Zamorano Calvo. Universidad Complutense de Madrid. Image

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Pianeti extrasolari, un opportunità di Education and Public Outreach

Pianeti extrasolari, un opportunità di Education and Public Outreach Pianeti extrasolari, un opportunità di Education and Public Outreach Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Why so an interesting topic Fundamental question

More information

ASKAP Science Data Archive: Users and Requirements CSIRO ASTRONOMY AND SPACE SCIENCE (CASS)

ASKAP Science Data Archive: Users and Requirements CSIRO ASTRONOMY AND SPACE SCIENCE (CASS) ASKAP Science Data Archive: Users and Requirements CSIRO ASTRONOMY AND SPACE SCIENCE (CASS) Jessica Chapman, Data Workshop March 2013 ASKAP Science Data Archive Talk outline Data flow in brief Some radio

More information

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology Saturn s Moon Titan: Cassini-Huygens Reveals a New World Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology The year 2005 will be remembered in the history of space exploration

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY l0595. l. Course #:PHYSC 151 2. NAME OF ORIGINATOR /REVISOR: PAUL ROBINSON

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY l0595. l. Course #:PHYSC 151 2. NAME OF ORIGINATOR /REVISOR: PAUL ROBINSON SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY l0595 l. Course #:PHYSC 151 2. NAME OF ORIGINATOR /REVISOR: PAUL ROBINSON NAME OF COURSE: ASTRONOMY 3. CURRENT DATE: OCTOBER 26, 2011. Please indicate

More information

LSST and the Cloud: Astro Collaboration in 2016 Tim Axelrod LSST Data Management Scientist

LSST and the Cloud: Astro Collaboration in 2016 Tim Axelrod LSST Data Management Scientist LSST and the Cloud: Astro Collaboration in 2016 Tim Axelrod LSST Data Management Scientist DERCAP Sydney, Australia, 2009 Overview of Presentation LSST - a large-scale Southern hemisphere optical survey

More information

Panel Session II - Beyond Einstein: From the big bang to black holes

Panel Session II - Beyond Einstein: From the big bang to black holes The Space Congress Proceedings 2004 (41st) Space Congress Proceedings Apr 27th, 8:00 AM Panel Session II - Beyond Einstein: From the big bang to black holes Don Kniffen Beyond Einstein Program Scientist,

More information

Solar System Overview

Solar System Overview Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information