Principles of Instruction Research-Based Strategies That All Teachers Should Know

Size: px
Start display at page:

Download "Principles of Instruction Research-Based Strategies That All Teachers Should Know"

Transcription

1 Principles of Instruction Research-Based Strategies That All Teachers Should Know illustrations by James Yang By Barak Rosenshine This article presents 10 research-based principles of instruction, along with suggestions for classroom practice. These principles come from three sources: (a) research in cognitive science, (b) research on master teachers, and (c) research on cognitive supports. Each is briefly explained below. A: Research in cognitive science: This research focuses on how our brains acquire and use information. This cognitive research also provides suggestions on how we might overcome the limitations of our working memory (i.e., the mental space in which thinking occurs) when learning new material. B: Research on the classroom practices of master teachers: Master teachers are those teachers whose classrooms made the highest gains on achievement tests. In a series of studies, a wide range of teachers were observed as they taught, and the investigators coded how they presented new material, how and whether they checked for student understanding, the types of support they provided to their students, and a number of other instructional activities. By also gathering student achievement data, researchers were able to identify the ways in which the more and less effective teachers differed. C: Research on cognitive supports to help students learn complex tasks: Effective instructional procedures such as thinking aloud, providing students with scaffolds, and providing students with models come from this research. Barak Rosenshine is an emeritus professor of educational psychology in the College of Education at the University of Illinois at Urbana-Champaign. A distinguished researcher, he has spent much of the past four decades identifying the hallmarks of effective teaching. He began his career as a high school history teacher in the Chicago public schools. This article is adapted with permission from Principles of Instruction by Barak Rosenshine. Published by the International Academy of Education in 2010, the original report is available at Publications/Educational_Practices/EdPractices_21.pdf. Even though these are three very different bodies of research, there is no conflict at all between the instructional suggestions that come from each of these three sources. In other words, these three sources supplement and complement each other. The fact that the instructional ideas from three different sources supplement and complement each other gives us faith in the validity of these findings. Education involves helping a novice develop strong, readily accessible background knowledge. It s important that background knowledge be readily accessible, and this occurs when knowledge is well rehearsed and tied to other knowledge. The most effective teachers ensured that their students efficiently acquired, rehearsed, and connected background knowledge by providing a good deal of instructional support. They provided this support by teaching new material in manageable amounts, modeling, guiding student practice, helping students when they made errors, and providing for sufficient practice and review. Many of these teachers also went on to experiential, hands-on activities, but they always did the experiential activities after, not before, the basic material was learned. The following is a list of some of the instructional principles that have come from these three sources. These ideas will be described and discussed in this article: Begin a lesson with a short review of previous learning. 1 Present new material in small steps with student practice after each step. 2 Ask a large number of questions and check the responses of all students. 3 Provide models. 4 Guide student practice. 5 Check for student understanding. 6 Obtain a high success rate. 7 Provide scaffolds for difficult tasks. 8 Require and monitor independent practice. 9 Engage students in weekly and monthly review AMERICAN EDUCATOR SPRING 2012

2 1. Begin a lesson with a short review of previous learning: Daily review can strengthen previous learning and can lead to fluent recall. Daily review is an important component of instruction. Review can help us strengthen the connections among the material we have learned. The review of previous learning can help us recall words, concepts, and procedures effortlessly and automatically when we need this material to solve problems or to understand new material. The development of expertise requires thousands of hours of practice, and daily review is one component of this practice. For example, daily review was part of a successful experiment in elementary school mathematics. Teachers in the experiment were taught to spend eight minutes every day on review. Teachers used this time to check the homework, go over problems where there were errors, and practice the concepts and skills that needed to become automatic. As a result, students in these classrooms had higher achievement scores than did students in other classrooms. Daily practice of vocabulary can lead to seeing each practiced word as a unit (i.e., seeing the whole word automatically rather than as individual letters that have to be sounded out and blended). When students see words as units, they have more space available in their working memory, and this space can now be used for comprehension. Mathematical problem solving is also improved when the basic skills (addition, multiplication, etc.) are overlearned and become automatic, thus freeing working-memory capacity. The most effective teachers in the studies of classroom instruction understood the importance of practice, and they began their lessons with a five- to eight-minute review of previously covered material. Some teachers reviewed vocabulary, formulae, events, or previously learned concepts. These teachers provided additional practice on facts and skills that were needed for recall to become automatic. Effective teacher activities also included reviewing the concepts and skills that were necessary to do the homework, having students correct each others papers, and asking about points on which the students had difficulty or made errors. These reviews ensured that the students had a firm grasp of the skills and concepts that would be needed for the day s lesson. Effective teachers also reviewed the knowledge and concepts that were relevant for that day s lesson. It is important for a teacher to help students recall the concepts and vocabulary that will be relevant for the day s lesson because our working memory is very limited. If we do not review previous learning, then we will have to make a special effort to recall old material while learning new material, and this makes it difficult for us to learn the new material. Daily review is particularly important for teaching material that will be used in subsequent learning. Examples include reading sight words (i.e., any word that is known by a reader automatically), grammar, math facts, math computation, math factoring, and chemical equations. When planning for review, teachers might want to consider which words, math facts, procedures, and concepts need to The most effective teachers ensured that students efficiently acquired, rehearsed, and connected knowledge. Many went on to hands-on activities, but always after, not before, the basic material was learned. become automatic, and which words, vocabulary, or ideas need to be reviewed before the lesson begins. In addition, teachers might consider doing the following during their daily review: Correct homework. Review the concepts and skills that were practiced as part of the homework. Ask students about points where they had difficulties or made errors. Review material where errors were made. Review material that needs overlearning (i.e., newly acquired skills should be practiced well beyond the point of initial mastery, leading to automaticity). 2. Present new material in small steps with student practice after each step: Only present small amounts of new material at any time, and then assist students as they practice this material. Our working memory, the place where we process information, is small. It can only handle a few bits of information at once too much information swamps our working memory. Presenting too much material at once may confuse students because their working memory will be unable to process it. Therefore, the more effective teachers do not overwhelm their students by presenting too much new material at once. Rather, AMERICAN EDUCATOR SPRING

3 these teachers only present small amounts of new material at any time, and then assist the students as they practice this material. Only after the students have mastered the first step do teachers proceed to the next step. The procedure of first teaching in small steps and then guiding student practice represents an appropriate way of dealing with the limitation of our working memory. The more successful teachers did not overwhelm their students by presenting too much new material at once. Rather, they presented only small amounts of new material at one time, and they taught in such a way that each point was mastered before the next point was introduced. They checked their students understanding on each point and retaught material when necessary. Some successful teachers taught by giving a series of short presentations using many examples. The examples provided concrete learning and elaboration that were useful for processing new material. Teaching in small steps requires time, and the more effective teachers spent more time presenting new material and guiding student practice than did the less effective teachers. In a study of mathematics instruction, for instance, the most effective mathematics teachers spent about 23 minutes of a 40-minute period in lecture, demonstration, questioning, and working examples. In contrast, the least effective teachers spent only 11 minutes presenting new material. The more effective teachers used this extra time to provide additional explanations, give many examples, check for student understanding, and provide sufficient instruction so that the students could learn to work independently without difficulty. In one study, the least effective teachers asked only nine questions in a 40-minute period. Compared with the successful teachers, the less effective teachers gave much shorter presentations and explanations, and then passed out worksheets and told students to solve the problems. The less successful teachers were then observed going from student to student and having to explain the material again. Similarly, when students were taught a strategy for summarizing a paragraph, an effective teacher taught the strategy using small steps. First, the teacher modeled and thought aloud as she identified the topic of a paragraph. Then, she led practice on identifying the topics of new paragraphs. Then, she taught students to identify the main idea of a paragraph. The teacher modeled this step and then supervised the students as they practiced both finding the topic and locating the main idea. Following this, the teacher taught the students to identify the supporting details in a paragraph. The teacher modeled and thought aloud, and then the students practiced. Finally, the students practiced carrying out all three steps of this strategy. Thus, the strategy of summarizing a paragraph was divided into smaller steps, and there was modeling and practice at each step. 3. Ask a large number of questions and check the responses of all students: Questions help students practice new information and connect new material to their prior learning. Students need to practice new material. The teacher s questions and student discussion are a major way of providing this necessary practice. The most successful teachers in these studies spent more than half of the class time lecturing, demonstrating, and asking questions. Questions allow a teacher to determine how well the material has been learned and whether there is a need for additional instruction. The most effective teachers also ask students to explain the process they used to answer the question, to explain how the answer was found. Less successful teachers ask fewer questions and almost no process questions. In one classroom-based experimental study, one group of teachers was taught to follow the presentation of new material with lots of questions. 11 They were taught to increase the number of factual questions and process questions they asked during this guided practice. Test results showed that their students achieved higher scores than did students whose teachers did not receive the training. Imaginative teachers have found ways to involve all students in answering questions. Examples include having all students: Tell the answer to a neighbor. Summarize the main idea in one or two sentences, writing the summary on a piece of paper and sharing this with a neighbor, or repeating the procedures to a neighbor. Write the answer on a card and then hold it up. Raise their hands if they know the answer (thereby allowing the teacher to check the entire class). Raise their hands if they agree with the answer that someone else has given. Across the classrooms that researchers observed, the purpose of all these procedures was to provide active participation for the students and also to allow the teacher to see how many students were correct and confident. The teacher may then reteach some material when it was considered necessary. An alternative was for students to write their answers and then trade papers with each other. Other teachers used choral responses to provide sufficient practice when teaching new vocabulary or lists of items. This made the practice seem more like a game. To be effective, how- 14 AMERICAN EDUCATOR SPRING 2012

4 ever, all students needed to start together, on a signal. When students did not start together, only the faster students answered. In addition to asking questions, the more effective teachers facilitated their students rehearsal by providing explanations, giving more examples, and supervising students as they practiced the new material. The following is a series of stems 12 for questions that teachers might ask when teaching literature, social science content, or science content to their students. Sometimes, students may also develop questions from these stems to ask questions of each other. Many of the skills that are taught in classrooms can be conveyed by providing prompts, modeling use of the prompt, and then guiding students as they develop independence. When teaching reading comprehension strategies, for example, effective teachers provided students with prompts that the students could use to ask themselves questions about a short passage. In one class, students were given words such as who, where, why, and how to help them begin a question. Then, everyone read a passage and the teacher modeled how to use these words to ask questions. Many examples were given. Next, during guided practice, the teacher helped the students practice asking questions by helping them select a prompt and Many of the skills taught in classrooms can be conveyed by providing prompts, modeling use of the prompt, and then guiding students as they develop independence. How are and alike? What is the main idea of? What are the strengths and weaknesses of? In what way is related to? Compare and with regard to. What do you think causes? How does tie in with what we have learned before? Which one is the best, and why? What are some possible solutions for the problem of? Do you agree or disagree with this statement:? What do you still not understand about? 4. Provide models: Providing students with models and worked examples can help them learn to solve problems faster. Students need cognitive support to help them learn to solve problems. The teacher modeling and thinking aloud while demonstrating how to solve a problem are examples of effective cognitive support. Worked examples (such as a math problem for which the teacher not only has provided the solution but has clearly laid out each step) are another form of modeling that has been developed by researchers. Worked examples allow students to focus on the specific steps to solve problems and thus reduce the cognitive load on their working memory. Modeling and worked examples have been used successfully in mathematics, science, writing, and reading comprehension. develop a question that began with that prompt. The students practiced this step many times with lots of support from the teacher. Then, the students read new passages and practiced asking questions on their own, with support from the teacher when needed. Finally, students were given short passages followed by questions, and the teacher expressed an opinion about the quality of the students questions. This same procedure providing a prompt, modeling, guiding practice, and supervising independent practice can be used for many tasks. When teaching students to write an essay, for example, an effective teacher first modeled how to write each paragraph, then the students and teacher worked together on two or more new essays, and finally students worked on their own with supervision from the teacher. Worked examples are another form of modeling that has been used to help students learn how to solve problems in mathematics and science. A worked example is a step-by-step demonstration of how to perform a task or how to solve a problem. The presentation of worked examples begins with the teacher modeling and explaining the steps that can be taken to solve a specific problem. The teacher also identifies and explains the underlying principles for these steps. Usually, students are then given a series of problems to complete at their desks as independent practice. But, in research carried out in Australia, students were given a mixture of problems to solve and worked examples. So, during independent practice, students first studied a worked example, then they solved a problem; then they studied another worked example and solved another problem. In this way, the worked examples showed students how to focus on the essential parts of the problems. Of course, not all students studied the worked examples. To correct AMERICAN EDUCATOR SPRING

5 this problem, the Australian researchers also presented partially completed problems in which students had to complete the missing steps and thus pay more attention to the worked example. 5. Guide student practice: Successful teachers spend more time guiding students practice of new material. It is not enough simply to present students with new material, because the material will be forgotten unless there is sufficient rehearsal. An important finding from information-processing research is that students need to spend additional time rephrasing, elaborating, and summarizing new material in order to store this material in their long-term memory. When there has been sufficient rehearsal, the students are able to retrieve this material easily and thus are able to make use of this material to foster new learning and aid in problem solving. But when the rehearsal time is too short, students are less able to store, remember, or use the material. As we know, it is relatively easy to place something in a filing cabinet, but it can be very difficult to recall where exactly we filed it. Rehearsal helps us remember where we filed it so we can access it with ease when needed. A teacher can facilitate this rehearsal process by asking questions; good questions require students to process and rehearse the material. Rehearsal is also enhanced when students are asked to summarize the main points, and when they are supervised as they practice new steps in a skill. The quality of storage in long-term memory will be weak if students only skim the material and do not engage in it. It is also important that all students process the new material and receive feedback, so they do not inadvertently store partial information or a misconception in long-term memory. In one study, the more successful teachers of mathematics spent more time presenting new material and guiding practice. The more successful teachers used this extra time to provide additional explanations, give many examples, check for student understanding, and provide sufficient instruction so that the students could learn to work independently without difficulty. In contrast, the less successful teachers gave much shorter presentations and explanations, and then they passed out worksheets and told students to work on the problems. Under these conditions, the students made too many errors and had to be retaught the lesson. The most successful teachers presented only small amounts of material at a time. After this short presentation, these teachers then guided student practice. This guidance often consisted of the teacher working the first problems at the blackboard and explaining the reason for each step, which served as a model for the students. The guidance also included asking students to come to the blackboard to work out problems and discuss their procedures. Through this process, the students seated in the classroom saw additional models. Although most teachers provided some guided practice, the most successful teachers spent more time in guided practice, more time asking questions, more time checking for understanding, more time correcting errors, and more time having students work out problems with teacher guidance. Teachers who spent more time in guided practice and had higher success rates also had students who were more engaged during individual work at their desks. This finding suggests that, when teachers provided sufficient instruction during guided practice, the students were better prepared for the independent practice (e.g., seatwork and homework activities), but when the guided practice was too short, the students were not prepared for the seatwork and made more errors during independent practice. 6. Check for student understanding: Checking for student understanding at each point can help students learn the material with fewer errors. The more effective teachers frequently checked to see if all the students were learning the new material. These checks provided some of the processing needed to move new learning into longterm memory. These checks also let teachers know if students were developing misconceptions. Effective teachers also stopped to check for student understanding. They checked for understanding by asking questions, by asking students to summarize the presentation up to that point or to repeat directions or procedures, or by asking students whether they agreed or disagreed with other students answers. This checking has two purposes: (a) answering the questions might cause the students to elaborate on the material they have learned and augment connections to other learning in their long-term memory, and (b) alerting the teacher to when parts of the material need to be retaught. In contrast, the less effective teachers simply asked, Are there any questions? and, if there were no questions, they assumed the students had learned the material and proceeded to pass out worksheets for students to complete on their own. Another way to check for understanding is to ask students to think aloud as they work to solve mathematical problems, plan an essay, or identify the main idea in a paragraph. Yet another check is to ask students to explain or defend their position to others. Having to explain a position may help students integrate and elaborate their knowledge in new ways, or may help identify gaps in their understanding. 16 AMERICAN EDUCATOR SPRING 2012

6 The most effective teachers obtained this success level by teaching in small steps (i.e., by combining short presentations with supervised student practice), and by giving sufficient practice on each part before proceeding to the next step. These teachers frequently checked for understanding and required responses from all students. It is important that students achieve a high success rate during instruction and on their practice activities. Practice, we are told, makes perfect, but practice can be a disaster if students are practicing errors! If the practice does not have a high success level, there is a chance that students are practicing and learning errors. Once errors have been learned, they are very difficult to overcome. As discussed in the previous section, when we learn new material, we construct a gist of this material in our long-term memory. However, many students make errors in the process of constructing this mental summary. These errors can occur when the information is new and the student did not have adequate or The most successful teachers spent more time in guided practice, more time asking questions, more time checking for understanding, and more time correcting errors. Another reason for the importance of teaching in small steps, guiding practice, and checking for understanding (as well as obtaining a high success rate, which we ll explore in principle 7) comes from the fact that we all construct and reconstruct knowledge as we learn and use what we have learned. We cannot simply repeat what we hear word for word. Rather, we connect our understanding of the new information to our existing concepts or schema, and we then construct a mental summary (i.e., the gist of what we have heard). However, when left on their own, many students make errors in the process of constructing this mental summary. These errors occur, particularly, when the information is new and the student does not have adequate or well-formed background knowledge. These constructions are not errors so much as attempts by the students to be logical in an area where their background knowledge is weak. These errors are so common that there is a research literature on the development and correction of student misconceptions in science. Providing guided practice after teaching small amounts of new material, and checking for student understanding, can help limit the development of misconceptions. 7. Obtain a high success rate: It is important for students to achieve a high success rate during classroom instruction. In two of the major studies on the impact of teachers, the investigators found that students in classrooms with more effective teachers had a higher success rate, as judged by the quality of their oral responses during guided practice and their individual work. In a study of fourth-grade mathematics, it was found that 82 percent of students answers were correct in the classrooms of the most successful teachers, but the least successful teachers had a success rate of only 73 percent. A high success rate during guided practice also leads to a higher success rate when students are working on problems on their own. The research also suggests that the optimal success rate for fostering student achievement appears to be about 80 percent. A success rate of 80 percent shows that students are learning the material, and it also shows that the students are challenged. well-formed background knowledge. These constructions are not errors so much as attempts by the students to be logical in an area where their background knowledge is weak. But students are more likely to develop misconceptions if too much material is presented at once, and if teachers do not check for student understanding. Providing guided practice after teaching small amounts of new material, and checking for student understanding, can help limit the development of misconceptions. I once observed a class where an effective teacher was going from desk to desk during independent practice and suddenly realized that the students were having difficulty. She stopped the work, told the students not to do the problems for homework, and said she would reteach this material the next day. She stopped the work because she did not want the students to practice errors. Unless all students have mastered the first set of lessons, there is a danger that the slower students will fall further behind when the next set of lessons is taught. So there is a need for a high success rate for all students. Mastery learning is a form of instruction where lessons are organized into short units and all students are required to master one set of lessons before they proceed to the next set. In mastery learning, tutoring by other students or by teachers is provided to help students master each unit. Variations of this approach, particularly the tutoring, might be useful in many classroom settings. AMERICAN EDUCATOR SPRING

7 8. Provide scaffolds for difficult tasks: The teacher provides students with temporary supports and scaffolds to assist them when they learn difficult tasks. Investigators have successfully provided students with scaffolds, or instructional supports, to help them learn difficult tasks. A scaffold is a temporary support that is used to assist a learner. These scaffolds are gradually withdrawn as learners become more competent, although students may continue to rely on scaffolds when they encounter particularly difficult problems. Providing scaffolds is a form of guided practice. Scaffolds include modeling the steps by the teacher, or thinking aloud by the teacher as he or she solves the problem. Scaffolds also may be tools, such as cue cards or checklists, that complete part of the task for the students, or a model of the completed task against which students can compare their own work. One characteristic of effective teachers is their ability to anticipate students errors and warn them about possible errors some of them are likely to make. The process of helping students solve difficult problems by modeling and providing scaffolds has been called cognitive apprenticeship. Students learn strategies and content during this apprenticeship that enable them to become competent readers, writers, and problem solvers. They are aided by a master who models, coaches, provides supports, and scaffolds them as they become independent. One form of scaffolding is to give students prompts for steps they might use. Prompts such as who, why, and how have helped students learn to ask questions while they read. Teaching students to ask questions has been shown to help students reading comprehension. Similarly, one researcher developed the following prompt to help students organize material Draw a central box and write the title of the article in it. 2. Skim the article to find four to six main ideas. 3. Write each main idea in a box below the central box. 4. Find and write two to four important details to list under each main idea. Another form of scaffolding is thinking aloud by the teacher. For example, teachers might think aloud as they try to summarize a paragraph. They would show the thought processes they go through as they determine the topic of the paragraph and then use the topic to generate a summary sentence. Teachers might think aloud while solving a scientific equation or writing an essay, and at the same time provide labels for their mental processes. Such thinking aloud provides novice learners with a way to observe expert thinking that is usually hidden from the student. Teachers also can study their students thought processes by asking them to think aloud during problem solving. One characteristic of effective teachers is their ability to anticipate students errors and warn them about possible errors some of them are likely to make. For example, a teacher might have students read a passage and then give them a poorly written topic sentence to correct. In teaching division or subtraction, the teacher may show and discuss with students the mistakes other students have frequently made. In some of the studies, students were given a checklist to evaluate their work. Checklist items included Have I found the most important information that tells me more about the main idea? and Does every sentence start with a capital letter? The teacher then modeled use of the checklist. In some studies, students were provided with expert models with which they could compare their work. For example, when students were taught to generate questions, they could compare their questions with those generated by the teacher. Similarly, when learning to write summaries, students could compare their summaries on a passage with those generated by an expert. 9. Require and monitor independent practice: Students need extensive, successful, independent practice in order for skills and knowledge to become automatic. In a typical teacher-led classroom, guided practice is followed by independent practice by students working alone and practicing the new material. This independent practice is necessary because a good deal of practice (overlearning) is needed in order to become fluent and automatic in a skill. When material is overlearned, it can be recalled automatically and doesn t take up any space in working memory. When students become automatic in an area, they can then devote more of their attention to comprehension and application. Independent practice provides students with the additional review and elaboration they need to become fluent. This need for fluency applies to facts, concepts, and discriminations that must be used in subsequent learning. Fluency is also needed in operations, such as dividing decimals, conjugating a regular verb in a foreign language, or completing and balancing a chemical equation. 18 AMERICAN EDUCATOR SPRING 2012

8 The more successful teachers provided for extensive and successful practice, both in the classroom and after class. Independent practice should involve the same material as the guided practice. If guided practice deals with identifying types of sentences, for example, then independent practice should deal with the same topic or, perhaps, with a slight variation, like creating individual compound and complex sentences. It would be inappropriate if the independent practice asked the students to do an activity such as Write a paragraph using two compound and two complex sentences, however, because the students have not been adequately prepared for such an activity. Students need to be fully prepared for their independent practice. Sometimes, it may be appropriate for a teacher to practice some of the seatwork problems with the entire class before students begin independent practice. Research has found that students were more engaged when their teacher circulated around the room, and monitored and The best way to become an expert is through practice thousands of hours of practice. The more the practice, the better the performance. 17 Principles of Effective Instruction The following list of 17 principles emerges from the research discussed in the main article. It overlaps with, and offers slightly more detail than, the 10 principles used to organize that article. Begin a lesson with a short review of previous learning. Present new material in small steps with student practice after each step. Limit the amount of material students receive at one time. Give clear and detailed instructions and explanations. Ask a large number of questions and check for understanding. Provide a high level of active practice for all students. Guide students as they begin to practice. Think aloud and model steps. Provide models of worked-out problems. Ask students to explain what they have learned. Check the responses of all students. Provide systematic feedback and corrections. Use more time to provide explanations. Provide many examples. Reteach material when necessary. Prepare students for independent practice. Monitor students when they begin independent practice. B.R. supervised their seatwork. The optimal time for these contacts was 30 seconds or less. Classrooms where the teachers had to stop at students desks and provide a great deal of explanation during seatwork were the classrooms where students were making errors. These errors occurred because the guided practice was not sufficient for students to engage productively in independent practice. This reiterates the importance of adequately preparing students before they begin their independent practice. Some investigators 14 have developed procedures, such as cooperative learning, during which students help each other as they study. Research has shown that all students tend to achieve more in these settings than do students in regular settings. Presumably, some of the advantage comes from having to explain the material to someone else and/or having someone else (other than the teacher) explain the material to the student. Cooperative learning offers an opportunity for students to get feedback from their peers about correct as well as incorrect responses, which promotes both engagement and learning. These cooperative/ competitive settings are also valuable for helping slower students in a class by providing extra instruction for them. 10. Engage students in weekly and monthly review: Students need to be involved in extensive practice in order to develop well-connected and automatic knowledge. Students need extensive and broad reading, and extensive practice in order to develop well-connected networks of ideas (schemas) in their long-term memory. When one s knowledge on a particular topic is large and well connected, it is easier to learn new information and prior knowledge is more readily available for use. The more one rehearses and reviews information, the stronger these interconnections become. It is also easier to solve new problems when one has a rich, well-connected body of knowledge and strong ties among the connections. One of the goals of education is to help students develop extensive and available background knowledge. Knowledge (even very extensive knowledge) stored in longterm memory that is organized into patterns only occupies a tiny amount of space in our limited working memory. So having larger and better-connected patterns of knowledge frees up space in our working memory. This available space can be used for reflecting on new information and for problem solving. The development of well-connected patterns (also called unitization and chunking ) and the freeing of space in the working memory is one of the hallmarks of an expert in a field. Thus, research on cognitive processing supports the need for a teacher to assist students by providing for extensive reading of a variety of materials, frequent review, and discussion and application activities. The research on cognitive processing suggests that these classroom activities help students increase the number of pieces of information in their long-term memory and organize this information into patterns and chunks. The more one rehearses and reviews information, the stronger the interconnections between the materials become. Review also helps students develop their new knowledge into patterns, and it (Continued on page 39) AMERICAN EDUCATOR SPRING

9 INTENTIONALLY LEFT BLANK Principles (Continued from page 19) helps them acquire the ability to recall past learning automatically. The best way to become an expert is through practice thousands of hours of practice. The more the practice, the better the performance. Many successful programs, especially in the elementary grades, provided for extensive review. One way of achieving this goal is to review the previous week s work every Monday and the previous month s work every fourth Monday. Some effective teachers also gave tests after their reviews. Research has found that even at the secondary level, classes that had weekly quizzes scored better on final exams than did classes with only one or two quizzes during the term. These reviews and tests provided the additional practice students needed to become skilled, successful performers who could apply their knowledge and skills in new areas. Teachers face a difficult problem when they need to cover a lot of material and don t feel they have the time for sufficient review. But the research states (and we all know from personal experience) that material that is not adequately practiced and reviewed is easily forgotten. The 10 principles in this article come from three different sources: research on how the mind acquires and uses information, the instructional procedures that are used by the most successful teachers, and the procedures invented by researchers to help students learn difficult tasks. The research from each of these three sources has implications for classroom instruction, and these implications are described in each of these 10 principles. Even though these principles come from three different sources, the instructional procedures that are taken from one source do not conflict with the instructional procedures that are taken from another source. Instead, the ideas from each of the sources overlap and add to each other. This overlap gives us faith that we are developing a valid and research-based understanding of the art of teaching. Endnotes 1. Suggested readings: George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information, Psychological Review 63, no. 2 (1956): 81 97; and David LaBerge and S. Jay Samuels, Toward a Theory of Automatic Information Processing in Reading, Cognitive Psychology 6, no. 2 (1974): Suggested readings: Carolyn M. Evertson, Charles W. Anderson, Linda M. Anderson, and Jere E. Brophy, Relationships between Classroom Behaviors and Student Outcomes in Junior High Mathematics and English Classes, American Educational Research Journal 17, no. 1 (1980): 43 60; and Thomas L. Good and Jere E. Brophy, Educational Psychology: A Realistic Approach, 4th ed. (New York: Longman, 1990). 3. Suggested readings: Thomas L. Good and Douglas A. Grouws, The Missouri Mathematics Effectiveness Project, Journal of Educational Psychology 71, no. 3 (1979): ; and Alison King, Guiding Knowledge Construction in the Classroom: Effects of Teaching Children How to Question and How to Explain, American Educational Research Journal 31, no. 2 (1994): Suggested readings: John Sweller, Cognitive Load Theory, Learning Difficulty, and Instructional Design, Learning and Instruction 4, no. 4 (1994): ; Barak Rosenshine, Carla Meister, and Saul Chapman, Teaching Students to Generate Questions: A Review of the Intervention Studies, Review of Educational Research 66, no. 2 (1996): ; and Alan H. Schoenfeld, Mathematical Problem Solving (New York: Academic Press, 1985). 5. Suggested readings: Evertson et al., Relationships between Classroom Behaviors and Student Outcomes ; and Paul A. Kirschner, John Sweller, and Richard E. Clark, Why Minimal Guidance during Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching, Educational Psychologist 41, no. 2 (2006): Suggested readings: Douglas Fisher and Nancy Frey, Checking for Understanding: Formative Assessment Techniques for Your Classroom (Alexandria, VA: Association for Supervision and Curriculum Development, 2007); and Michael J. Dunkin, Student Characteristics, Classroom Processes, and Student Achievement, Journal of Educational Psychology 70, no. 6 (1978): Suggested readings: Lorin W. Anderson and Robert B. Burns, Values, Evidence, and Mastery Learning, Review of Educational Research 57, no. 2 (1987): ; and Norman Frederiksen, Implications of Cognitive Theory for Instruction in Problem Solving, Review of Educational Research 54, no. 3 (1984): Suggested readings: Michael Pressley and Vera Woloshyn, Cognitive Strategy Instruction that Really Improves Children s Academic Performance, 2nd ed. (Cambridge, MA: Brookline Books, 1995); and Barak Rosenshine and Carla Meister, The Use of Scaffolds for Teaching Higher-Level Cognitive Strategies, Educational Leadership 49, no. 7 (April 1992): Suggested readings: Barak Rosenshine, The Empirical Support for Direct Instruction, in Constructivist Instruction: Success or Failure? ed. Sigmund Tobias and Thomas M. Duffy (New York: Routledge, 2009), ; and Robert E. Slavin, Education for All (Exton, PA: Swets and Zeitlinger, 1996). 10. Suggested readings: Good and Grouws, The Missouri Mathematics Effectiveness Project ; and James A. Kulik and Chen-Lin C. Kulik, College Teaching, in Research on Teaching: Concepts, Findings, and Implications, ed. Penelope L. Peterson and Herbert J. Walberg (Berkeley, CA: McCutchan, 1979). 11. Good and Grouws, The Missouri Mathematics Effectiveness Project. 12. These stems were developed by King, Guiding Knowledge Construction in the Classroom. 13. Sandra J. Berkowitz, Effects of Instruction in Text Organization on Sixth-Grade Students Memory for Expository Reading, Reading Research Quarterly 21, no. 2 (1986): For additional strategies to help students organize material, see Wisconsin Department of Public Instruction, Strategic Learning in the Content Areas (Madison, WI: Wisconsin Department of Public Instruction, 2005). 14. Slavin, Education for All. AMERICAN EDUCATOR SPRING

BEFORE-DURING-AFTER (BDA)

BEFORE-DURING-AFTER (BDA) Curriculum & Instruction Resources Content Reading & Writing Resources: A teacher resource page providing strategies to improve reading comprehension in all content areas BEFORE-DURING-AFTER (BDA) Reading

More information

Instructional Scaffolding to Improve Learning

Instructional Scaffolding to Improve Learning Instructional Scaffolding to Improve Learning When you incorporate scaffolding in the classroom, you become more of a mentor and facilitator of knowledge rather than the dominant content expert. Although

More information

The Use of Scaffolds for Teaching Higher-Level Cognitive Strategies

The Use of Scaffolds for Teaching Higher-Level Cognitive Strategies The Use of Scaffolds for Teaching Higher-Level Cognitive Strategies Not only are scaffolds useful for teaching well-structured skills, but they also provide the support students need to tackle higher-level

More information

Polynomials and Factoring. Unit Lesson Plan

Polynomials and Factoring. Unit Lesson Plan Polynomials and Factoring Unit Lesson Plan By: David Harris University of North Carolina Chapel Hill Math 410 Dr. Thomas, M D. 2 Abstract This paper will discuss, and give, lesson plans for all the topics

More information

Karen Fuson, Pam Richards, and Robyn Seifert

Karen Fuson, Pam Richards, and Robyn Seifert The Math Expressions Mastery Learning Loop Keeping All Students on the Grade-Level Learning Path by Giving More Time and Support to In-Class Periodic Interventions and Out-of-Class Tier 2 & Tier 3 Follow

More information

Scientifically Based Reading Programs. Marcia L. Kosanovich, Ph.D. Florida Center for Reading Research SLP Academy Fall, 2005

Scientifically Based Reading Programs. Marcia L. Kosanovich, Ph.D. Florida Center for Reading Research SLP Academy Fall, 2005 Scientifically Based Reading Programs Marcia L. Kosanovich, Ph.D. Florida Center for Reading Research SLP Academy Fall, 2005 Goals for Today 1. Understand the big picture of an effective reading program.

More information

Mastery approaches to mathematics and the new national curriculum

Mastery approaches to mathematics and the new national curriculum October 2014 Mastery approaches to mathematics and the new national curriculum Mastery in high performing countries The content and principles underpinning the 2014 mathematics curriculum reflect those

More information

Selecting Research Based Instructional Programs

Selecting Research Based Instructional Programs Selecting Research Based Instructional Programs Marcia L. Grek, Ph.D. Florida Center for Reading Research Georgia March, 2004 1 Goals for Today 1. Learn about the purpose, content, and process, for reviews

More information

Helping English Language Learners Understand Content Area Texts

Helping English Language Learners Understand Content Area Texts Helping English Language Learners Understand Content Area Texts English language learners (ELLs) experience intense problems in content area learning because they have not yet acquired the language proficiency

More information

SUPPORTING STUDENTS WITH WORKING MEMORY DIFFICULTIES

SUPPORTING STUDENTS WITH WORKING MEMORY DIFFICULTIES SUPPORTING STUDENTS WITH WORKING MEMORY DIFFICULTIES No matter how motivated you are, it is hard to learn and retrieve key knowledge and skills if you can only hold on to a limited amount of information

More information

Essays on Teaching Excellence. Practice Tests: a Practical Teaching Method

Essays on Teaching Excellence. Practice Tests: a Practical Teaching Method Essays on Teaching Excellence Toward the Best in the Academy Volume 17, Number 7, 2005-06 A publication of The Professional & Organizational Development Network in Higher Education (www.podnetwork.org).

More information

AP Psychology Course Syllabus and Survival Guide

AP Psychology Course Syllabus and Survival Guide AP Psychology Course Syllabus and Survival Guide Mr. Koch dkoch@forestlake.k12.mn.us 651 982 8550 Course website: http://hs.forestlake.k12.mn.us/staff_sites/dan_koch_home/koch_ap_psychology/ Wiki page:

More information

GUIDELINES FOR THE IEP TEAM DATA COLLECTION &

GUIDELINES FOR THE IEP TEAM DATA COLLECTION & GUIDELINES FOR THE IEP TEAM DATA COLLECTION & Progress Monitoring Decisions about the effectiveness of an intervention must be based on data, not guesswork. Frequent, repeated measures of progress toward

More information

Scientifically Based Reading Programs: What are they and how do I know?

Scientifically Based Reading Programs: What are they and how do I know? Scientifically Based Reading Programs: What are they and how do I know? Elissa J. Arndt, M.S. CCC-SLP Florida Center for Reading Research Alternate Assessment Summer Training Institute July, 2007 1 Goals

More information

FORMATIVE ASSESSMENT STRATEGIES, DEFINITIONS, EXAMPLES

FORMATIVE ASSESSMENT STRATEGIES, DEFINITIONS, EXAMPLES FORMATIVE ASSESSMENT STRATEGIES, DEFINITIONS, EXAMPLES 1 Minute Essay Give students an open-ended question and one to three minutes to write their answers. Good questions: What is the most important thing

More information

LEARNING THEORIES Ausubel's Learning Theory

LEARNING THEORIES Ausubel's Learning Theory LEARNING THEORIES Ausubel's Learning Theory David Paul Ausubel was an American psychologist whose most significant contribution to the fields of educational psychology, cognitive science, and science education.

More information

Modifying Curriculum and Instruction

Modifying Curriculum and Instruction Modifying Curriculum and Instruction Purpose of Modification: The purpose of modification is to enable an individual to compensate for intellectual, behavioral, or physical disabi1ities. Modifications

More information

Five Meanings of Direct Instruction

Five Meanings of Direct Instruction Five Meanings of Direct Instruction Barak Rosenshine Center on Innovation & Improvement Twin paths to better schools Center on Innovation & Improvement 121 N. Kickapoo Street Lincoln, IL 62656 USA Phone:

More information

Transcript: What Is Progress Monitoring?

Transcript: What Is Progress Monitoring? Transcript: What Is Progress Monitoring? Slide 1: Welcome to the webinar, What Is Progress Monitoring? This is one of 11 webinars developed by the National Center on Response to Intervention (NCRTI). This

More information

How To Teach A Sociological Course

How To Teach A Sociological Course Course: Introduction to Sociology Kirkwood Community College CASTLE Case Study Analysis Questions Introduction to Sociology Jeff Sherman May 4, 2004 Learning Outcomes: Evaluate the techniques of different

More information

2 Mathematics Curriculum

2 Mathematics Curriculum New York State Common Core 2 Mathematics Curriculum GRADE GRADE 2 MODULE 3 Topic E: Model Numbers Within 1000 with Place Value Disks 2.NBT.A Focus Standard: 2.NBT.A Understand place value. Instructional

More information

Learning Today Smart Tutor Supports English Language Learners

Learning Today Smart Tutor Supports English Language Learners Learning Today Smart Tutor Supports English Language Learners By Paolo Martin M.A. Ed Literacy Specialist UC Berkley 1 Introduction Across the nation, the numbers of students with limited English proficiency

More information

Beads Under the Cloud

Beads Under the Cloud Beads Under the Cloud Intermediate/Middle School Grades Problem Solving Mathematics Formative Assessment Lesson Designed and revised by Kentucky Department of Education Mathematics Specialists Field-tested

More information

A Hands-On Exercise Improves Understanding of the Standard Error. of the Mean. Robert S. Ryan. Kutztown University

A Hands-On Exercise Improves Understanding of the Standard Error. of the Mean. Robert S. Ryan. Kutztown University A Hands-On Exercise 1 Running head: UNDERSTANDING THE STANDARD ERROR A Hands-On Exercise Improves Understanding of the Standard Error of the Mean Robert S. Ryan Kutztown University A Hands-On Exercise

More information

What Does Research Tell Us About Teaching Reading to English Language Learners?

What Does Research Tell Us About Teaching Reading to English Language Learners? Jan/Feb 2007 What Does Research Tell Us About Teaching Reading to English Language Learners? By Suzanne Irujo, ELL Outlook Contributing Writer As a classroom teacher, I was largely ignorant of, and definitely

More information

FINAL REPORT 2005 08 RESEARCH GRADE 7 TO 12 PROGRAMS. Frontier College would like to thank the Ontario Ministry of Education for their support.

FINAL REPORT 2005 08 RESEARCH GRADE 7 TO 12 PROGRAMS. Frontier College would like to thank the Ontario Ministry of Education for their support. FINAL REPORT 2005 08 RESEARCH GRADE 7 TO 12 PROGRAMS Frontier College would like to thank the Ontario Ministry of Education for their support. 1 Introduction For the past three years, Frontier College

More information

Integrated STEM Education through Project-Based Learning

Integrated STEM Education through Project-Based Learning Integrated STEM Education through Project-Based Learning by Diana Laboy-Rush, STEM Solutions Manager at Learning.com Table of Contents: Abstract...2 Math and Science Education Crisis...3 Integrated STEM

More information

To answer the secondary question, if hands-on activities would increase student interest and comprehension, several hands-on activities were used:

To answer the secondary question, if hands-on activities would increase student interest and comprehension, several hands-on activities were used: 1 The Effect of an Overarching Topic on Student Performance in Algebra II Christine Consoletti and David Collins J.E.B. Stuart High School Fairfax County (VA) Public Schools June 2003 Question Does an

More information

CLASS PARTICIPATION: MORE THAN JUST RAISING YOUR HAND

CLASS PARTICIPATION: MORE THAN JUST RAISING YOUR HAND STUDENT LEARNING SUPPORT TUTORIAL PRODUCED BY THE CENTER FOR TEACHING AND FACULTY DEVELOPMENT CLASS PARTICIPATION: MORE THAN JUST RAISING YOUR HAND CHAPTER 1: LEARNING THROUGH CLASS PARTICIPATION CLASS

More information

Principles of Data-Driven Instruction

Principles of Data-Driven Instruction Education in our times must try to find whatever there is in students that might yearn for completion, and to reconstruct the learning that would enable them autonomously to seek that completion. Allan

More information

AN EXPERT IS... INSTRUCTIONAL DESIGN FOR DEVELOPING EXPERTISE 1/25/14. Rebecca L. Fiedler, Ph.D. Kaner, Fiedler & Associates, LLC

AN EXPERT IS... INSTRUCTIONAL DESIGN FOR DEVELOPING EXPERTISE 1/25/14. Rebecca L. Fiedler, Ph.D. Kaner, Fiedler & Associates, LLC INSTRUCTIONAL DESIGN FOR DEVELOPING EXPERTISE Rebecca L. Fiedler, Ph.D. Kaner, Fiedler & Associates, LLC AN EXPERT IS... someone widely recognized as a reliable source of technique or skill whose faculty

More information

Cover Letter Handbook for Teachers. Table of Contents

Cover Letter Handbook for Teachers. Table of Contents Cover Letter Handbook for Teachers Table of Contents Effective Cover Letters... 1 Guidelines... 1 Cover Letter Format for Teachers... 2 Sample Cover Letters... 3 Cover Letter Guidelines for Educational

More information

District 203 K-4 Elementary Summer School 2015

District 203 K-4 Elementary Summer School 2015 District 203 K-4 Elementary Summer School 2015 The following Elementary Summer School courses will be conducted from Monday, June 8, 2014, through Friday, June 26, 2015. THE SAME COURSES WILL BE OFFERED

More information

Eli Terry Jr. Middle School School Improvement Plan 2008-2009

Eli Terry Jr. Middle School School Improvement Plan 2008-2009 Eli Terry Jr. Middle School District Goal 1: To systematically improve student performance and accelerate academic achievement for all students. School Goal: To systematically improve student performance

More information

TAS Instructional Program Design/ Scientifically-based Instructional Strategies 2012-2013

TAS Instructional Program Design/ Scientifically-based Instructional Strategies 2012-2013 TAS Instructional Program Design/ Scientifically-based Instructional Strategies 2012-2013 Use effective methods and instructional strategies that are based on scientifically based research that strengthens

More information

Concept-Mapping Software: How effective is the learning tool in an online learning environment?

Concept-Mapping Software: How effective is the learning tool in an online learning environment? Concept-Mapping Software: How effective is the learning tool in an online learning environment? Online learning environments address the educational objectives by putting the learner at the center of the

More information

COS 160 - Course Assessment Student Responses

COS 160 - Course Assessment Student Responses COS 160: Course Assessment Student Responses from Focus Group Sessions Spring 2005 Office of Academic Assessment University of Southern Maine Spring 2005 Introduction The Computer Science department was

More information

Developing Critical Thinking Skills Saundra Yancy McGuire. Slide 1 TutorLingo On Demand Tutor Training Videos

Developing Critical Thinking Skills Saundra Yancy McGuire. Slide 1 TutorLingo On Demand Tutor Training Videos Developing Critical Thinking Skills Saundra Yancy McGuire Slide 1 TutorLingo On Demand Tutor Training Videos To view Closed Captioning, click on the Notes tab to the left. For screen reader accessible

More information

AND LEARNING 21st Century Teaching and Learning

AND LEARNING 21st Century Teaching and Learning 21ST CENTURY TEACHING AND LEARNING 21st Century Teaching and Learning Dr. Grace Surdovel, Director of Master's Programs/Faculty of Practice The Master of Science in Education with a major in 21st Century

More information

CHARACTERISTICS FOR STUDENTS WITH: LIMITED ENGLISH PROFICIENCY (LEP)

CHARACTERISTICS FOR STUDENTS WITH: LIMITED ENGLISH PROFICIENCY (LEP) CHARACTERISTICS FOR STUDENTS WITH: LIMITED ENGLISH PROFICIENCY (LEP) Research has shown that students acquire a second language in the same way that they acquire the first language. It is an exploratory

More information

Plot Connections Grade Five

Plot Connections Grade Five Ohio Standards Connection Reading Applications: Literary Text Benchmark C Identify the elements of plot and establish a connection between an element and a future event. Indicator 3 Identify the main incidents

More information

Curriculum and Instruction

Curriculum and Instruction Curriculum and Instruction Core curriculum is the foundation of Tier 1 instruction and is the basis for building K-12 literacy in Arizona students. The curriculum at each level must be based upon the 2010

More information

Spring 2013 Structured Learning Assistance (SLA) Program Evaluation Results

Spring 2013 Structured Learning Assistance (SLA) Program Evaluation Results Crafton Hills College RRN 682 July 2013 Research Brief Spring 2013 Structured Learning Assistance (SLA) Program Evaluation Results Prepared by Lorena Guadiana Summary of Main Findings 85% of respondents

More information

Fractions as Numbers INTENSIVE INTERVENTION. National Center on. at American Institutes for Research

Fractions as Numbers INTENSIVE INTERVENTION. National Center on. at American Institutes for Research National Center on INTENSIVE INTERVENTION at American Institutes for Research Fractions as Numbers 000 Thomas Jefferson Street, NW Washington, DC 0007 E-mail: NCII@air.org While permission to reprint this

More information

Integrating Reading and Writing for Effective Language Teaching

Integrating Reading and Writing for Effective Language Teaching Integrating Reading and Writing for Effective Language Teaching Ruwaida Abu Rass (Israel) Writing is a difficult skill for native speakers and nonnative speakers alike, because writers must balance multiple

More information

Using Direct Instruction Programs as Intervention Programs in Grades K 3

Using Direct Instruction Programs as Intervention Programs in Grades K 3 Using Direct Instruction Programs as Intervention Programs in Grades K 3 Direct Instruction News Volume 5, Number 2 Summer 2005 Introduction This article is about the use of Direct Instruction as an intervention

More information

Cadet Teaching for Credit

Cadet Teaching for Credit Cadet Teaching for Credit The Missouri Association of Future Teachers of America This booklet serves as a guide for creating your local Cadet Teaching Program Cadet Teaching for Credit Cadet teaching is

More information

Know-How Nancy Protheroe

Know-How Nancy Protheroe research report Program Evaluation Know-How Nancy Protheroe Take a critical look at specific school programs and approaches by using these research-based strategies In the assessment-driven environment

More information

Reading in a Foreign Language April 2009, Volume 21, No. 1 ISSN 1539-0578 pp. 88 92

Reading in a Foreign Language April 2009, Volume 21, No. 1 ISSN 1539-0578 pp. 88 92 Reading in a Foreign Language April 2009, Volume 21, No. 1 ISSN 1539-0578 pp. 88 92 Reviewed work: Teaching Reading to English Language Learners: A Reflective Guide. (2009). Thomas S. C. Farrell. Thousand

More information

Sample Fraction Addition and Subtraction Concepts Activities 1 3

Sample Fraction Addition and Subtraction Concepts Activities 1 3 Sample Fraction Addition and Subtraction Concepts Activities 1 3 College- and Career-Ready Standard Addressed: Build fractions from unit fractions by applying and extending previous understandings of operations

More information

Alignment Guide Supplemental Educational Services Featuring ReadAbout

Alignment Guide Supplemental Educational Services Featuring ReadAbout Alignment Guide Supplemental Educational Services Featuring ReadAbout The following chart details how ReadAbout can support the development of a Supplemental Educational Services (SES) program. The criteria

More information

Reading Comprehension: 1. "Click or Clunk?": A Student Comprehension Self-Check: Step 1: Tell students that they will be

Reading Comprehension: 1. Click or Clunk?: A Student Comprehension Self-Check: Step 1: Tell students that they will be Research Based Interventions/Strategies The following interventions/strategies are broken into Reading Comprehension, Reading Fluency, Math Computation, and Math Reasoning. These are examples, not a list

More information

Exploring the Foundations of Explicit Instruction

Exploring the Foundations of Explicit Instruction From Explicit Instruction: Effective and Efficient Teaching by Anita L. Archer and Charles A. Hughes. Copyright 2011 by The Guilford Press. All rights reserved. Chapter 1 Exploring the Foundations of Explicit

More information

First Principles 1. First Principles of Instruction: A synthesis

First Principles 1. First Principles of Instruction: A synthesis First Principles 1 Running head: First Principles of Instruction First Principles of Instruction: A synthesis * Merrill, M. D. (2007). First principles of instruction: a synthesis. Trends and Issues in

More information

Research on Graphic Organizers

Research on Graphic Organizers Research on Graphic Organizers Graphic Organizers are visual representations of a text or a topic. Organizers provide templates or frames for students or teachers to identify pertinent facts, to organize

More information

Information for candidates For exams from 2015

Information for candidates For exams from 2015 Ready for success in study, work and life Information for candidates For exams from 2015 First Certificate in English (FCE) www.cambridgeenglish.org/first How to use this guide You can print this document

More information

Teacher Questionnaire

Teacher Questionnaire PCAP Main Administration (2010) Teacher Questionnaire Council of Ministers of Education, Canada Funds for the Pan Canadian Assessment Program are provided by participating jurisdictions through the Council

More information

Middle School Physical Science Curriculum Guide

Middle School Physical Science Curriculum Guide Middle School Physical Science Curriculum Guide Contents General Course Information... 2 Instructor Orientation... 2 Core Instruction... 2 Supplemental Instruction... 2 Complementary Instruction... 2 Types

More information

Student Preferences for Learning College Algebra in a Web Enhanced Environment

Student Preferences for Learning College Algebra in a Web Enhanced Environment Abstract Student Preferences for Learning College Algebra in a Web Enhanced Environment Laura Pyzdrowski West Virginia University Anthony Pyzdrowski California University of Pennsylvania It is important

More information

I. School- Wide DL Components

I. School- Wide DL Components AISD Guidelines for Implementation of the Gómez and Gómez Dual Language Enrichment Model These PK 5 guidelines are designed to promote fidelity in the implementation of the Gómez and Gómez Dual Language

More information

Steps to Successful Student Book Review Blogging

Steps to Successful Student Book Review Blogging Steps to Successful Student Book Review Blogging Abstract: In order to promote independent reading and scaffold the language arts curriculum, students write and post book recommendations on their school-based

More information

Office of Disability Support Service 0106 Shoemaker 301.314.7682 Fax: 301.405.0813 www.counseling.umd.edu/dss. A Guide to Services for Students with a

Office of Disability Support Service 0106 Shoemaker 301.314.7682 Fax: 301.405.0813 www.counseling.umd.edu/dss. A Guide to Services for Students with a Office of Disability Support Service 0106 Shoemaker 301.314.7682 Fax: 301.405.0813 www.counseling.umd.edu/dss A Guide to Services for Students with a Learning Disability (Revised 4.28.14) Do I Have A Learning

More information

Engaging Middle School Students in the Analysis and Interpretation of Real-World Data

Engaging Middle School Students in the Analysis and Interpretation of Real-World Data Engaging Middle School Students in the Analysis and Interpretation of Real-World Data by Cheryl A. McLaughlin Copyright 2013, National Science Teachers Association (NSTA). Reprinted with permission from

More information

Jean Chen, Assistant Director, Office of Institutional Research University of North Dakota, Grand Forks, ND 58202-7106

Jean Chen, Assistant Director, Office of Institutional Research University of North Dakota, Grand Forks, ND 58202-7106 Educational Technology in Introductory College Physics Teaching and Learning: The Importance of Students Perception and Performance Jean Chen, Assistant Director, Office of Institutional Research University

More information

Grading Benchmarks FIRST GRADE. Trimester 4 3 2 1 1 st Student has achieved reading success at. Trimester 4 3 2 1 1st In above grade-level books, the

Grading Benchmarks FIRST GRADE. Trimester 4 3 2 1 1 st Student has achieved reading success at. Trimester 4 3 2 1 1st In above grade-level books, the READING 1.) Reads at grade level. 1 st Student has achieved reading success at Level 14-H or above. Student has achieved reading success at Level 10-F or 12-G. Student has achieved reading success at Level

More information

Reading Strategies by Level. Early Emergent Readers

Reading Strategies by Level. Early Emergent Readers The charts below were created as a common language for teachers and students in the Wallingford Public Schools in kindergarten through eighth grade. The level of the chart selected for use in the classroom

More information

Pre-Requisites EDAM-5001 Early Literacy Guiding Principles and Language

Pre-Requisites EDAM-5001 Early Literacy Guiding Principles and Language . EDAM EDAM-5001. EARLY LITERACY: GUIDING PRINCIPLES AND LANGUAGE DEVELOPMENT This course is the prerequisite for all other courses in the Early Childhood Literacy program. It outlines the philosophical

More information

Student Learning Outcomes in Hybrid and Face-to-Face Beginning Spanish Language Courses

Student Learning Outcomes in Hybrid and Face-to-Face Beginning Spanish Language Courses Student Learning Outcomes in Hybrid and Face-to-Face Beginning Spanish Language Courses Casilde A. Isabelli University of Nevada, (United States of America) Isabelli@unr.edu Abstract This study investigates

More information

The Grant Writing Game

The Grant Writing Game 101 Ways to Win The Grant Writing Game by Steve Price, Ed.D. and Stephen Price, M.A. Introduction In this brief ebook, Dr. Steve Price and Stephen Price share 101 strategies for successful grant writing

More information

xxx Lesson 19 how memory works and techniques to improve it, and (2) appreciate the importance of memory skills in education and in his or her life.

xxx Lesson 19 how memory works and techniques to improve it, and (2) appreciate the importance of memory skills in education and in his or her life. xxx Lesson 19 Memory Skills! Overview: This lesson provides a basic look at how our memory works and how it can be improved by using some simple techniques. Objectives: The objective of this lesson is

More information

Representing Data Using Frequency Graphs

Representing Data Using Frequency Graphs Lesson 25 Mathematics Assessment Project Formative Assessment Lesson Materials Representing Data Using Graphs MARS Shell Center University of Nottingham & UC Berkeley Alpha Version If you encounter errors

More information

Sample Student Learning Objectives-Educator/Student Support Specialists

Sample Student Learning Objectives-Educator/Student Support Specialists Subject Area: Intellectual Disabilities Grade(s): 6 # of students covered by SLO: 5 % of students covered by SLO: 100% of Grade 6 Student Learning Objective: My 6th grade students will improve their social

More information

Assessing Fundamentals in Every Course Through Mastery Learning

Assessing Fundamentals in Every Course Through Mastery Learning 2 We are all accustomed to periodic summative testing for achievement, but in this chapter the importance of requiring mastery of fundamentals as the baseline for evaluation, regardless of the level of

More information

How to Improve Reading Comprehension

How to Improve Reading Comprehension How to Improve Reading Comprehension Daniel E. Himes, Ph.D. Virtual Learning Environment Solutions, Inc. July, 2007 Your reading comprehension program should implement a multiple-strategy approach using

More information

Text of article appearing in: Issues in Science and Technology, XIX(2), 48-52. Winter 2002-03. James Pellegrino Knowing What Students Know

Text of article appearing in: Issues in Science and Technology, XIX(2), 48-52. Winter 2002-03. James Pellegrino Knowing What Students Know Text of article appearing in: Issues in Science and Technology, XIX(2), 48-52. Winter 2002-03. James Pellegrino Knowing What Students Know Recent advances in the cognitive and measurement sciences should

More information

John Hattie Visible Learning Lab Faculty of Education University of Auckland New Zealand

John Hattie Visible Learning Lab Faculty of Education University of Auckland New Zealand The Power of Feedback John Hattie Visible Learning Lab Faculty of Education University of Auckland New Zealand What is feedback? Feedback is information provided by an agent (e.g., teacher, peer, book,

More information

Teaching Reading and Writing to Struggling Middle School and High School Students: The Case for Reciprocal Teaching

Teaching Reading and Writing to Struggling Middle School and High School Students: The Case for Reciprocal Teaching Teaching Reading and Writing to Struggling Middle School and High School Students: The Case for Reciprocal Teaching WAYNE H. SLATER and FRANKLIN R. HORSTMAN Wayne H. Slater is an associate professor in

More information

Teaching Math to English Language Learners

Teaching Math to English Language Learners Teaching Math to English Language Learners 1 If you are a classroom teacher, it is likely that you have students in your class for whom English is a second language. It is also likely that, while language

More information

INSTRUCTIONAL DESIGN: A Comparison of Models Instructional Design Spring Semester 2012 MEDT-7461-N01

INSTRUCTIONAL DESIGN: A Comparison of Models Instructional Design Spring Semester 2012 MEDT-7461-N01 Instructional Design Spring Semester MEDT-7461-N01 Heather North 3/20/ Instructional Design has many definitions. Although each model is different, they all incorporate student centered components that

More information

Time needed. Before the lesson Assessment task:

Time needed. Before the lesson Assessment task: Formative Assessment Lesson Materials Alpha Version Beads Under the Cloud Mathematical goals This lesson unit is intended to help you assess how well students are able to identify patterns (both linear

More information

Mathematics Curriculum Evaluation Framework

Mathematics Curriculum Evaluation Framework MARCY STEIN and DIANE KINDER, University of Washington, Tacoma; SHERRY MILCHICK, Intermediate Unit #14, Pennsylvania State Department of Education Mathematics Curriculum Evaluation Framework Abstract:

More information

WHAT MAKES GREAT TEACHING AND LEARNING? A DISCUSSION PAPER ABOUT INTERNATIONAL RESEARCH APPLIED TO VOCATIONAL CONTEXTS

WHAT MAKES GREAT TEACHING AND LEARNING? A DISCUSSION PAPER ABOUT INTERNATIONAL RESEARCH APPLIED TO VOCATIONAL CONTEXTS WHAT MAKES GREAT TEACHING AND LEARNING? A DISCUSSION PAPER ABOUT INTERNATIONAL RESEARCH APPLIED TO VOCATIONAL CONTEXTS Background Good teaching is the core driver of high quality learning. Linked with

More information

Strategies to use When Working with ELL Students

Strategies to use When Working with ELL Students Vocabulary Building Strategies to use When Working with ELL Students Dr. María Torres Director of Diversity and ESOL Ilona Olancin Secondary ELL Curriculum Facilitator Academic Development We require English

More information

Representing Data with Frequency Graphs

Representing Data with Frequency Graphs CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Representing Data with Graphs Mathematics Assessment Resource Service University of Nottingham & UC

More information

INTERNET RESOURCES FOR SERVICE PROJECTS IN YOUR CLASSROOM

INTERNET RESOURCES FOR SERVICE PROJECTS IN YOUR CLASSROOM INTERNET RESOURCES FOR SERVICE PROJECTS IN YOUR CLASSROOM http://servicelearning.org This University of Colorado Web site has extensive links to helpful information about service learning, a list of topics

More information

Preparing Teachers for Grading Students With Learning Disabilities

Preparing Teachers for Grading Students With Learning Disabilities Copyright @ by LDW 2010 Preparing Teachers for Grading Students With Learning Disabilities Lee Ann Jung Thomas R. Guskey University of Kentucky Grading is a task faced by all teachers every day of their

More information

GRADE 6 MATH: SHARE MY CANDY

GRADE 6 MATH: SHARE MY CANDY GRADE 6 MATH: SHARE MY CANDY UNIT OVERVIEW The length of this unit is approximately 2-3 weeks. Students will develop an understanding of dividing fractions by fractions by building upon the conceptual

More information

Helping your child with Non-verbal Learning Disability

Helping your child with Non-verbal Learning Disability Helping your child with Non-verbal Learning Disability What is non-verbal learning disability? Non-verbal learning disability (NVLD) is a term used to describe a pattern of strengths and weaknesses in

More information

How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old.

How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old. How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem Will is w years old. Ben is 3 years older. 1. Write an expression, in terms of

More information

WiggleWorks Aligns to Title I, Part A

WiggleWorks Aligns to Title I, Part A WiggleWorks Aligns to Title I, Part A The purpose of Title I, Part A Improving Basic Programs is to ensure that children in high-poverty schools meet challenging State academic content and student achievement

More information

National Dissemination Center for Children with Disabilities

National Dissemination Center for Children with Disabilities Teaching Students with Disabilities Resources Developed by: National Dissemination Center for Children with Disabilities 1 Table of Contents* Disorder Page # Attention Deficit/Hyperactivity Disorder (AD/HD).3

More information

NOT AN OFFICIAL SCORE REPORT. Summary of Results

NOT AN OFFICIAL SCORE REPORT. Summary of Results From SAT TEST MARCH 8, 214 Summary of Results Page 1 of 1 Congratulations on taking the SAT Reasoning Test! You re showing colleges that you are serious about getting an education. The SAT is one indicator

More information

Becoming an Online Learner

Becoming an Online Learner Becoming an Online Learner Online education is where it is at. As an online student, I have control of when I learn, how I learn, and what extra I learn. I gain only as much as I put in; this is what distinguishes

More information

Measures of Spread and Their Effects Grade Seven

Measures of Spread and Their Effects Grade Seven Ohio Standards Connection Data Analysis and Probability Benchmark F Determine and use the range, mean, median and mode to analyze and compare data, and explain what each indicates about the data. Indicator

More information

The Art and Science of Teaching the Common Core State Standards

The Art and Science of Teaching the Common Core State Standards The Art and Science of Teaching the Common Core State Standards Author: Robert J. Marzano July 2013 Learning Sciences Marzano Center 3001 PGA Boulevard Palm Beach Gardens, Florida 33410 717.845.6300 MarzanoCenter.com

More information

A Guide to Curriculum Development: Purposes, Practices, Procedures

A Guide to Curriculum Development: Purposes, Practices, Procedures A Guide to Curriculum Development: Purposes, Practices, Procedures The purpose of this guide is to provide some general instructions to school districts as staff begin to develop or revise their curriculum

More information

Content Mathematics Course for Elementary Teachers

Content Mathematics Course for Elementary Teachers Content Mathematics Course for Elementary Teachers Paul Hartung Elizabeth Mauch Bloomsburg University of Pennsylvania Abstract Bloomsburg University revised their mathematics for elementary education majors

More information

RUNNING HEAD: TUTORING TO INCREASE STUDENT ACHIEVEMENT USING TUTORING TO INCREASE STUDENT ACHIEVEMENT ON END OF COURSE ASSESSMENTS. By KATHYRENE HAYES

RUNNING HEAD: TUTORING TO INCREASE STUDENT ACHIEVEMENT USING TUTORING TO INCREASE STUDENT ACHIEVEMENT ON END OF COURSE ASSESSMENTS. By KATHYRENE HAYES RUNNING HEAD: TUTORING TO INCREASE STUDENT ACHIEVEMENT Tutoring To Increase Student Achievement 1 USING TUTORING TO INCREASE STUDENT ACHIEVEMENT ON END OF COURSE ASSESSMENTS By KATHYRENE HAYES Submitted

More information

Literacy Place for the Early Years Evidence-Based Research K 3

Literacy Place for the Early Years Evidence-Based Research K 3 Literacy Place for the Early Years Evidence-Based Research K 3 Table of Contents Page Daily Challenges for Teachers 2 Literacy Place for the Early Years 2 Literacy Place for the Early Years Evidence-Based

More information

Increasing Student Success Using Online Quizzing in Introductory (Majors) Biology

Increasing Student Success Using Online Quizzing in Introductory (Majors) Biology CBE Life Sciences Education Vol. 12, 509 514, Fall 2013 Article Increasing Student Success Using Online Quizzing in Introductory (Majors) Biology Rebecca Orr and Shellene Foster Department of Mathematics

More information