t] open source Hadoop Beginner's Guide ij$ data avalanche Garry Turkington Learn how to crunch big data to extract meaning from

Size: px
Start display at page:

Download "t] open source Hadoop Beginner's Guide ij$ data avalanche Garry Turkington Learn how to crunch big data to extract meaning from"

Transcription

1 Hadoop Beginner's Guide Learn how to crunch big data to extract meaning from data avalanche Garry Turkington [ PUBLISHING t] open source I I community experience distilled ftu\ ij$ BIRMINGHAMMUMBAI

2 ') infrastructure Preface 1 Chapter 1: What It's All About 7 Big data processing 8 The value of data 8 Historically for the few and not the many 9 Classic data processing systems 9 Limiting factors 10 A different approach 11 All roads lead to scaleout 11 Share nothing 11 Expect failure 12 Smart software, dumb hardware 13 Move processing, not data 13 Build applications, not infrastructure 14 Hadoop 15 Thanks, Google 15 Thanks, Doug 15 Thanks, Yahoo 15 Parts of Hadoop 15 Common building blocks 16 HDFS 16 MapReduce 17 Better together 18 Common architecture 19 What it is and isn't good for 19 Cloud computing with Amazon Web Services 20 Too many clouds 20 A third way 20 Different types of costs 21 AWS on demand from Amazon 22 Elastic Compute Cloud (EC2) 22 Simple Storage Service (S3) 22

3 checking downloading setting configuring formatting starting WordCount, WordCount Elastic MapReduce (EMR) 22 What this book covers 23 A dual approach 23 Summary 24 Chapter 2: Getting Hadoop Up and Running 25 Hadoop on a local Ubuntu host 25 Other operating systems 26 the prerequisites 26 Setting up Hadoop 27 A note on versions 27 Hadoop 28 up SSH 29 Configuring and running Hadoop 30 using Hadoop to calculate Pi 30 Three modes 32 the pseudodistributed mode 32 Configuring the base directory and formatting the filesystem 34 changing the base HDFS directory 34 the NameNode 35 Starting and using Hadoop 36 Hadoop 36 using HDFS 38 the Hello World of MapReduce 39 Monitoring Hadoop from the browser 42 The HDFS web UI 42 Using Elastic MapReduce 45 Setting up an account on Amazon Web Services 45 Creating an AWS account 45 Signing up for the necessary services 45 in EMR using the management console 46 Other ways of using EMR 54 AWS credentials 54 The EMR commandline tools 54 The AWS ecosystem 55 Comparison of local versus EMR Hadoop 55 Summary 56 Chapter 3: Understanding MapReduce 57 Key/value pairs 57 What it mean 57 Why key/value data? 58 Some realworld examples 59 MapReduce as a series of key/value transformations 59

4 implementing building running running WordCount The Hadoop Java API for MapReduce 60 The 0.20 MapReduce Java API 61 The Mapper class 61 The Reducer class 62 The Driver class 63 Writing MapReduce programs 64 setting up the classpath 65 WordCount 65 a JAR file 68 WordCount on a local Hadoop cluster 68 WordCount on EMR 69 The pre0.20 Java MapReduce API 72 Hadoopprovided mapper and reducer implementations 73 WordCount the easy way 73 Walking through a run of WordCount 75 Startup 75 Splitting the input 75 Task assignment 75 Task startup 76 Ongoing JobTracker monitoring 76 Mapper input 76 Mapper execution 77 Mapper output and reduce input 77 Partitioning 77 The optional partition function 78 Reducer input 78 Reducer execution 79 Reducer output 79 Shutdown 79 That's all there is to it! 80 Apart from the combiner...maybe 80 Why have a combiner? 80 with a combiner 80 When you can use the reducer as the combiner 81 fixing WordCount to work with a combiner 81 Reuse is your friend 82 Hadoopspecific data types 83 The Writable and WritableComparable interfaces 83 Introducing the wrapper classes 84 Primitive wrapper classes 85 Array wrapper classes 85 Map wrapper classes 85 I in 1

5 using creating the Writable wrapper classes 86 Other wrapper classes 88 Making your own 88 Input/output 88 Files, splits, and records 89 InputFormat and RecordReader 89 Hadoopprovided InputFormat 90 Hadoopprovided RecordReader 90 Output formats and RecordWriter 91 Hadoopprovided OutputFormat 91 Don't forget Sequence files 91 Summary 92 Chapter 4: Developing MapReduce Programs 93 Using languages other than Java with Hadoop 94 How Hadoop Streaming works 94 Why to use Hadoop Streaming 94 WordCount using Streaming 95 Differences in jobs when using Streaming 97 Analyzing a large dataset 98 Getting the UFO sighting dataset 98 Getting a feel for the dataset 99 summarizing the UFO data 99 Examining UFO shapes 101 summarizing the shape data 102 correlating sighting duration to UFO shape 103 Using Streaming scripts outside Hadoop 106 performing the shape/time analysis from the command line 107 Java shape and location analysis 107 using ChainMapper for field validation/analysis 108 Too many abbreviations 112 Using the Distributed Cache 113 using the Distributed Cache to improve location output 114 Counters, status, and other output 117 counters, task states, and writing log output 118 Too much information! 125 Summary 126 Chapter 5: Advanced MapReduce Techniques 127 Simple, advanced, and inbetween 127 Joins 128

6 representing the creating examining a When this is a bad idea 128 Mapside versus reduceside joins 128 Matching account and sales information 129 reduceside joins using Multiplelnputs 129 DataJoinMapper and TaggedMapperOutput 134 Implementing mapside joins 135 Using the Distributed Cache 135 Pruning data to fit in the cache 135 Using a data representation instead of raw data 136 Using multiple mappers 136 To join or not to join Graph algorithms 137 Graph Graphs and MapReduce match made somewhere 138 Representing a graph 139 the graph 140 Overview of the algorithm 140 The mapper 141 The reducer 141 Iterative application 141 creating the source code 142 first run 146 Time for action the second run 147 the third run 148 the fourth and last run 149 Running multiple jobs 151 Final thoughts on graphs 151 Using languageindependent data structures 151 Candidate technologies 152 Introducing Avro 152 getting and installing Avro 152 Avro and schemas 154 Time for action defining the schema 154 the source Avro data with Ruby 155 Time for action consuming the Avro data with Java 156 Using Avro within MapReduce 158 generating shape summaries in MapReduce 158 examining the output data with Ruby 163 the output data with Java 163 Going further with Avro 165 Summary 166

7 the killing Chapter 6: When Things Break 167 Failure 167 Embrace failure 168 Or at least don't fear it 168 Don't try this at home 168 Types of failure 168 Hadoop node failure 168 The dfsadmin command 169 Cluster setup, test files, and block sizes 169 Fault tolerance and Elastic MapReduce 170 killing a DataNode process 170 NameNode and DataNode communication 173 replication factor in action 174 Time for action intentionally causing missing blocks 176 When data may be lost 178 Block corruption 179 killing a TaskTracker process 180 Comparing the DataNode and TaskTracker failures 183 Permanent failure 184 Killing the cluster masters 184 killing the JobTracker 184 Starting a replacement JobTracker 185 the NameNode process 186 Starting a replacement NameNode 188 The role of the NameNode in more detail 188 File systems, files, blocks, and nodes 188 The single most important piece of data in the cluster fsimage 189 DataNode startup 189 Safe mode 190 SecondaryNameNode 190 So what to do when the NameNode process has a critical failure? 190 BackupNode/CheckpointNode and NameNode HA 191 Hardware failure 191 Host failure 191 Host corruption 192 The risk of correlated failures 192 Task failure due to software 192 Failure of slow running tasks 192 causing task failure 193 Hadoop's handling of slowrunning tasks 195 Speculative execution 195 Hadoop's handling of failing tasks 195 Task failure due to data 196 Handling dirty data through code 196 Using Hadoop's skip mode 197 Ivil

8 examining handling dirty data by using skip mode 197 To skip or not to skip Summary 202 Chapter 7: Keeping Things Running 205 A note on EMR 206 Hadoop configuration properties 206 Default values 206 browsing default properties 206 Additional property elements 208 Default storage location 208 Where to set properties 209 Setting up a cluster 209 How many hosts? 210 Calculating usable space on a node 210 Location of the master nodes 211 Sizing hardware 211 Processor/memory/storage ratio 211 EMR as a prototyping platform 212 Special node requirements 213 Storage types 213 Commodity versus enterprise class storage 214 Single disk versus RAID 214 Finding the balance 214 Network storage 214 Hadoop networking configuration 215 How blocks are placed 215 Rack awareness 216 the default rack configuration 216 adding a rack awareness script 217 What is commodity hardware anyway? 219 Cluster access control 220 The Hadoop security model 220 demonstrating the default security 220 User identity 223 More granular access control 224 Working around the security model via physical access control 224 Managing the NameNode 224 Configuring multiple locations for the fsimage class 225 adding an additional fsimage location 225 Where to write the fsimage copies 226 Swapping to another NameNode host 227 Having things ready before disaster strikes 227

9 swapping to a new NameNode host 227 Don't celebrate quite yet! 229 What about MapReduce? 229 Managing HDFS 230 Where to write data 230 Using balancer 230 When to rebalance 230 MapReduce management 231 Command line job management 231 Job priorities and scheduling 231 changing job priorities and killing a job 232 Alternative schedulers 233 Capacity Scheduler 233 Fair Scheduler 234 Enabling alternative schedulers 234 When to use alternative schedulers 234 Scaling 235 Adding capacity to a local Hadoop cluster 235 Adding capacity to an EMR job flow 235 Expanding a running job flow 235 Summary 236 Chapter 8: A Relational View on Data with Hive 237 Overview of Hive 237 Why use Hive? 238 Thanks, Facebook! 238 Setting up Hive 238 Prerequisites 238 Getting Hive 239 installing Hive 239 Using Hive 241 creating a table for the UFO data 241 inserting the UFO data 244 Validating the data 246 validating the table 246 redefining the table with the correct column separator 248 Hive tablesreal or not? 250 creating a table from an existing file 250 performing a join 252 Hive and SQL views 254 using views 254 Handling dirty data in Hive villi

10 making installing configuring setting exporting exporting query output 258 Partitioning the table 260 a partitioned UFO sighting table 260 Bucketing, clustering, and sorting... oh my! 264 User Defined Function 264 adding a new User Defined Function (UDF) 265 To preprocess or not to preprocess Hive versus Pig 269 What we didn't cover 269 Hive on Amazon Web Services 270 running UFO analysis on EMR 270 Using interactive job flows for development 277 Integration with other AWS products 278 Summary 278 Chapter 9: Working with Relational Databases 279 Common data paths 279 Hadoop as an archive store 280 Hadoop as a preprocessing step 280 Hadoop as a data input tool 281 The serpent eats its own tail 281 Setting up MySQL 281 and setting up MySQL 281 Did it have to be so hard? 284 MySQL to allow remote connections 285 Don't do this in production! 286 up the employee database 286 Be careful with data file access rights 287 Getting data into Hadoop 287 Using MySQL tools and manual import 288 Accessing the database from the mapper 288 A better wayintroducing Sqoop 289 downloading and configuring Sqoop 289 Sqoop and Hadoop versions 290 Sqoop and HDFS 291 data from MySQL to HDFS 291 Sqoop's architecture 294 Importing data into Hive using Sqoop 294 exporting data from MySQL into Hive 295 a more selective import 297 Datatype issues 298 llxl

11 importing importing fixing getting capturing capturing using a type mapping 299 data from a raw query Sqoop and Hive partitions 302 Field and line terminators 302 Getting data out of Hadoop 303 Writing data from within the reducer 303 Writing SQL import files from the reducer 304 A better waysqoop again 304 importing data from Hadoop into MySQL 304 Differences between Sqoop imports and exports 306 Inserts versus updates 307 Sqoop and Hive exports 300 Hive data into MySQL 308 the mapping and rerunning the export 310 Other Sqoop features 312 AWS considerations 313 Considering RDS 313 Summary 314 Chapter 10: Data Collection with Flume 315 A note about AWS 315 Data data everywhere 316 Types of data 316 Getting network traffic into Hadoop 316 web server data into Hadoop 316 Getting files into Hadoop 318 Hidden issues 318 Keeping network data on the network 318 Hadoop dependencies 318 Reliability 318 Recreating the wheel 318 A common framework approach 319 Introducing Apache Flume 319 A note on versioning 319 installing and configuring Flume 320 Using Flume to capture network data 321 network traffic to a log file 321 logging to the console 324 Writing network data to log files 326 capturing the output of a command in a flat file 326 Logs versus files 327 a remote file in a local flat file 328 Sources, sinks, and channels

12 adding multi Sources Sinks Channels Or roll your own 331 Understanding the Flume configuration files 331 It's all about events 332 writing network traffic onto HDFS 333 timestamps 335 To Sqoop or to Flume level Flume networks 338 writing to multiple sinks 340 Selectors replicating and multiplexing 342 Handling sink failure 342 Next, the world 343 The bigger picture 343 Data lifecycle 343 Staging data 344 Scheduling 344 Summary 345 Chapter 11: Where to Go Next 347 What we did and didn't cover in this book 347 Upcoming Hadoop changes 348 Alternative distributions 349 Why alternative distributions? 349 Bundling 349 Free and commercial extensions 349 Choosing a distribution 351 Other Apache projects 352 HBase 352 Oozie 352 Whir 353 Mahout 353 MRUnit 354 Other programming abstractions 354 Pig 354 Cascading 354 AWS resources 355 HBase on EMR 355 SimpleDB 355 DynamoDB 355

13 Sources of information Source code Mailing lists and forums Linkedln groups HUGs Conferences Summary Appendix: Pop Quiz Answers Chapter 3, Understanding MapReduce Chapter 7, Keeping Things Running Index

HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM

HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM 1. Introduction 1.1 Big Data Introduction What is Big Data Data Analytics Bigdata Challenges Technologies supported by big data 1.2 Hadoop Introduction

More information

Peers Techno log ies Pv t. L td. HADOOP

Peers Techno log ies Pv t. L td. HADOOP Page 1 Peers Techno log ies Pv t. L td. Course Brochure Overview Hadoop is a Open Source from Apache, which provides reliable storage and faster process by using the Hadoop distibution file system and

More information

COURSE CONTENT Big Data and Hadoop Training

COURSE CONTENT Big Data and Hadoop Training COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop

More information

Complete Java Classes Hadoop Syllabus Contact No: 8888022204

Complete Java Classes Hadoop Syllabus Contact No: 8888022204 1) Introduction to BigData & Hadoop What is Big Data? Why all industries are talking about Big Data? What are the issues in Big Data? Storage What are the challenges for storing big data? Processing What

More information

ITG Software Engineering

ITG Software Engineering Introduction to Cloudera Course ID: Page 1 Last Updated 12/15/2014 Introduction to Cloudera Course : This 5 day course introduces the student to the Hadoop architecture, file system, and the Hadoop Ecosystem.

More information

Qsoft Inc www.qsoft-inc.com

Qsoft Inc www.qsoft-inc.com Big Data & Hadoop Qsoft Inc www.qsoft-inc.com Course Topics 1 2 3 4 5 6 Week 1: Introduction to Big Data, Hadoop Architecture and HDFS Week 2: Setting up Hadoop Cluster Week 3: MapReduce Part 1 Week 4:

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763

International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763 International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing

More information

Workshop on Hadoop with Big Data

Workshop on Hadoop with Big Data Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly

More information

Hadoop: The Definitive Guide

Hadoop: The Definitive Guide FOURTH EDITION Hadoop: The Definitive Guide Tom White Beijing Cambridge Famham Koln Sebastopol Tokyo O'REILLY Table of Contents Foreword Preface xvii xix Part I. Hadoop Fundamentals 1. Meet Hadoop 3 Data!

More information

Map Reduce & Hadoop Recommended Text:

Map Reduce & Hadoop Recommended Text: Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately

More information

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets

More information

BIG DATA - HADOOP PROFESSIONAL amron

BIG DATA - HADOOP PROFESSIONAL amron 0 Training Details Course Duration: 30-35 hours training + assignments + actual project based case studies Training Materials: All attendees will receive: Assignment after each module, video recording

More information

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce

More information

Hadoop Job Oriented Training Agenda

Hadoop Job Oriented Training Agenda 1 Hadoop Job Oriented Training Agenda Kapil CK hdpguru@gmail.com Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module

More information

ITG Software Engineering

ITG Software Engineering Introduction to Apache Hadoop Course ID: Page 1 Last Updated 12/15/2014 Introduction to Apache Hadoop Course Overview: This 5 day course introduces the student to the Hadoop architecture, file system,

More information

Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware

Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

MapReduce, Hadoop and Amazon AWS

MapReduce, Hadoop and Amazon AWS MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables

More information

Introduction to Hadoop

Introduction to Hadoop Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction

More information

Big Data Course Highlights

Big Data Course Highlights Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like

More information

Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data

Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give

More information

Implement Hadoop jobs to extract business value from large and varied data sets

Implement Hadoop jobs to extract business value from large and varied data sets Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to

More information

Prepared By : Manoj Kumar Joshi & Vikas Sawhney

Prepared By : Manoj Kumar Joshi & Vikas Sawhney Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks

More information

BIG DATA HADOOP TRAINING

BIG DATA HADOOP TRAINING BIG DATA HADOOP TRAINING DURATION 40hrs AVAILABLE BATCHES WEEKDAYS (7.00AM TO 8.30AM) & WEEKENDS (10AM TO 1PM) MODE OF TRAINING AVAILABLE ONLINE INSTRUCTOR LED CLASSROOM TRAINING (MARATHAHALLI, BANGALORE)

More information

Open source Google-style large scale data analysis with Hadoop

Open source Google-style large scale data analysis with Hadoop Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: ikons@cslab.ece.ntua.gr Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical

More information

Introduction to Hadoop

Introduction to Hadoop 1 What is Hadoop? Introduction to Hadoop We are living in an era where large volumes of data are available and the problem is to extract meaning from the data avalanche. The goal of the software tools

More information

Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP

Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools

More information

brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 PART 2 PART 3 BIG DATA PATTERNS...253 PART 4 BEYOND MAPREDUCE...385

brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 PART 2 PART 3 BIG DATA PATTERNS...253 PART 4 BEYOND MAPREDUCE...385 brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 1 Hadoop in a heartbeat 3 2 Introduction to YARN 22 PART 2 DATA LOGISTICS...59 3 Data serialization working with text and beyond 61 4 Organizing and

More information

Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay

Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability

More information

PASS4TEST. IT Certification Guaranteed, The Easy Way! We offer free update service for one year

PASS4TEST. IT Certification Guaranteed, The Easy Way!  We offer free update service for one year PASS4TEST IT Certification Guaranteed, The Easy Way! \ http://www.pass4test.com We offer free update service for one year Exam : CCD-410 Title : Cloudera Certified Developer for Apache Hadoop (CCDH) Vendor

More information

Hadoop: The Definitive Guide

Hadoop: The Definitive Guide Hadoop: The Definitive Guide Tom White foreword by Doug Cutting O'REILLY~ Beijing Cambridge Farnham Köln Sebastopol Taipei Tokyo Table of Contents Foreword Preface xiii xv 1. Meet Hadoop 1 Da~! 1 Data

More information

Certified Big Data and Apache Hadoop Developer VS-1221

Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer Certification Code VS-1221 Vskills certification for Big Data and Apache Hadoop Developer Certification

More information

Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.

Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture. Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in

More information

A very short Intro to Hadoop

A very short Intro to Hadoop 4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,

More information

Hadoop Certification (Developer, Administrator HBase & Data Science) CCD-410, CCA-410 and CCB-400 and DS-200

Hadoop Certification (Developer, Administrator HBase & Data Science) CCD-410, CCA-410 and CCB-400 and DS-200 Hadoop Learning Resources 1 Hadoop Certification (Developer, Administrator HBase & Data Science) CCD-410, CCA-410 and CCB-400 and DS-200 Author: Hadoop Learning Resource Hadoop Training in Just $60/3000INR

More information

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com Hadoop, Why? Need to process huge datasets on large clusters of computers

More information

Getting Started with Hadoop. Raanan Dagan Paul Tibaldi

Getting Started with Hadoop. Raanan Dagan Paul Tibaldi Getting Started with Hadoop Raanan Dagan Paul Tibaldi What is Apache Hadoop? Hadoop is a platform for data storage and processing that is Scalable Fault tolerant Open source CORE HADOOP COMPONENTS Hadoop

More information

Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah

Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah Pro Apache Hadoop Second Edition Sameer Wadkar Madhu Siddalingaiah Contents J About the Authors About the Technical Reviewer Acknowledgments Introduction xix xxi xxiii xxv Chapter 1: Motivation for Big

More information

Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop

Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social

More information

Cloudera Certified Developer for Apache Hadoop

Cloudera Certified Developer for Apache Hadoop Cloudera CCD-333 Cloudera Certified Developer for Apache Hadoop Version: 5.6 QUESTION NO: 1 Cloudera CCD-333 Exam What is a SequenceFile? A. A SequenceFile contains a binary encoding of an arbitrary number

More information

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model

More information

Open source large scale distributed data management with Google s MapReduce and Bigtable

Open source large scale distributed data management with Google s MapReduce and Bigtable Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: ikons@cslab.ece.ntua.gr Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory

More information

Professional Hadoop Solutions

Professional Hadoop Solutions Brochure More information from http://www.researchandmarkets.com/reports/2542488/ Professional Hadoop Solutions Description: The go-to guidebook for deploying Big Data solutions with Hadoop Today's enterprise

More information

Big Data With Hadoop

Big Data With Hadoop With Saurabh Singh singh.903@osu.edu The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials

More information

Apache Hadoop. Alexandru Costan

Apache Hadoop. Alexandru Costan 1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open

More information

MapReduce. Tushar B. Kute, http://tusharkute.com

MapReduce. Tushar B. Kute, http://tusharkute.com MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity

More information

Lecture 2 (08/31, 09/02, 09/09): Hadoop. Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015

Lecture 2 (08/31, 09/02, 09/09): Hadoop. Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015 Lecture 2 (08/31, 09/02, 09/09): Hadoop Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015 K. Zhang BUDT 758 What we ll cover Overview Architecture o Hadoop

More information

MapReduce with Apache Hadoop Analysing Big Data

MapReduce with Apache Hadoop Analysing Big Data MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside gavin.heavyside@journeydynamics.com About Journey Dynamics Founded in 2006 to develop software technology to address the issues

More information

Deploying Hadoop with Manager

Deploying Hadoop with Manager Deploying Hadoop with Manager SUSE Big Data Made Easier Peter Linnell / Sales Engineer plinnell@suse.com Alejandro Bonilla / Sales Engineer abonilla@suse.com 2 Hadoop Core Components 3 Typical Hadoop Distribution

More information

Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook

Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future

More information

Hadoop Ecosystem B Y R A H I M A.

Hadoop Ecosystem B Y R A H I M A. Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open

More information

Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics

Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)

More information

CURSO: ADMINISTRADOR PARA APACHE HADOOP

CURSO: ADMINISTRADOR PARA APACHE HADOOP CURSO: ADMINISTRADOR PARA APACHE HADOOP TEST DE EJEMPLO DEL EXÁMEN DE CERTIFICACIÓN www.formacionhadoop.com 1 Question: 1 A developer has submitted a long running MapReduce job with wrong data sets. You

More information

Hadoop Architecture. Part 1

Hadoop Architecture. Part 1 Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,

More information

Big Data and Hadoop. Module 1: Introduction to Big Data and Hadoop. Module 2: Hadoop Distributed File System. Module 3: MapReduce

Big Data and Hadoop. Module 1: Introduction to Big Data and Hadoop. Module 2: Hadoop Distributed File System. Module 3: MapReduce Big Data and Hadoop Module 1: Introduction to Big Data and Hadoop Learn about Big Data and the shortcomings of the prevailing solutions for Big Data issues. You will also get to know, how Hadoop eradicates

More information

HADOOP BIG DATA DEVELOPER TRAINING AGENDA

HADOOP BIG DATA DEVELOPER TRAINING AGENDA HADOOP BIG DATA DEVELOPER TRAINING AGENDA About the Course This course is the most advanced course available to Software professionals This has been suitably designed to help Big Data Developers and experts

More information

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org June 3 rd, 2008

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org June 3 rd, 2008 Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed

More information

Introduction to Big Data Training

Introduction to Big Data Training Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB

More information

Hadoop implementation of MapReduce computational model. Ján Vaňo

Hadoop implementation of MapReduce computational model. Ján Vaňo Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed

More information

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop

More information

Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.

Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware. Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software

More information

Big Data Management and NoSQL Databases

Big Data Management and NoSQL Databases NDBI040 Big Data Management and NoSQL Databases Lecture 3. Apache Hadoop Doc. RNDr. Irena Holubova, Ph.D. holubova@ksi.mff.cuni.cz http://www.ksi.mff.cuni.cz/~holubova/ndbi040/ Apache Hadoop Open-source

More information

Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software. 22 nd October 2013 10:00 Sesión B - DB2 LUW

Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software. 22 nd October 2013 10:00 Sesión B - DB2 LUW Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software 22 nd October 2013 10:00 Sesión B - DB2 LUW 1 Agenda Big Data The Technical Challenges Architecture of Hadoop

More information

Firebird meets NoSQL (Apache HBase) Case Study

Firebird meets NoSQL (Apache HBase) Case Study Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI

More information

MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015

MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015 7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan aidhog@gmail.com Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE

More information

CSE-E5430 Scalable Cloud Computing Lecture 2

CSE-E5430 Scalable Cloud Computing Lecture 2 CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 14.9-2015 1/36 Google MapReduce A scalable batch processing

More information

HADOOP. Revised 10/19/2015

HADOOP. Revised 10/19/2015 HADOOP Revised 10/19/2015 This Page Intentionally Left Blank Table of Contents Hortonworks HDP Developer: Java... 1 Hortonworks HDP Developer: Apache Pig and Hive... 2 Hortonworks HDP Developer: Windows...

More information

Communicating with the Elephant in the Data Center

Communicating with the Elephant in the Data Center Communicating with the Elephant in the Data Center Who am I? Instructor Consultant Opensource Advocate http://www.laubersoltions.com sml@laubersolutions.com Twitter: @laubersm Freenode: laubersm Outline

More information

H2O on Hadoop. September 30, 2014. www.0xdata.com

H2O on Hadoop. September 30, 2014. www.0xdata.com H2O on Hadoop September 30, 2014 www.0xdata.com H2O on Hadoop Introduction H2O is the open source math & machine learning engine for big data that brings distribution and parallelism to powerful algorithms

More information

Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software?

Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? 可 以 跟 資 料 庫 結 合 嘛? Can Hadoop work with Databases? 開 發 者 們 有 聽 到

More information

Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks

Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks Hadoop Introduction Olivier Renault Solution Engineer - Hortonworks Hortonworks A Brief History of Apache Hadoop Apache Project Established Yahoo! begins to Operate at scale Hortonworks Data Platform 2013

More information

Internals of Hadoop Application Framework and Distributed File System

Internals of Hadoop Application Framework and Distributed File System International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop

More information

PassTest. Bessere Qualität, bessere Dienstleistungen!

PassTest. Bessere Qualität, bessere Dienstleistungen! PassTest Bessere Qualität, bessere Dienstleistungen! Q&A Exam : CCD-410 Title : Cloudera Certified Developer for Apache Hadoop (CCDH) Version : DEMO 1 / 4 1.When is the earliest point at which the reduce

More information

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data

More information

BIG DATA TECHNOLOGY. Hadoop Ecosystem

BIG DATA TECHNOLOGY. Hadoop Ecosystem BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big

More information

Hadoop in Action. Justin Quan March 15, 2011

Hadoop in Action. Justin Quan March 15, 2011 Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop

More information

Extreme Computing. Hadoop MapReduce in more detail. www.inf.ed.ac.uk

Extreme Computing. Hadoop MapReduce in more detail. www.inf.ed.ac.uk Extreme Computing Hadoop MapReduce in more detail How will I actually learn Hadoop? This class session Hadoop: The Definitive Guide RTFM There is a lot of material out there There is also a lot of useless

More information

University of Maryland. Tuesday, February 2, 2010

University of Maryland. Tuesday, February 2, 2010 Data-Intensive Information Processing Applications Session #2 Hadoop: Nuts and Bolts Jimmy Lin University of Maryland Tuesday, February 2, 2010 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Hadoop & Spark Using Amazon EMR

Hadoop & Spark Using Amazon EMR Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?

More information

HADOOP MOCK TEST HADOOP MOCK TEST II

HADOOP MOCK TEST HADOOP MOCK TEST II http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at

More information

Click the link below to get more detail

Click the link below to get more detail Click the link below to get more detail http://www.examkill.com/ ExamCode: Apache-Hadoop-Developer ExamName: Hadoop 2.0 Certification exam for Pig and Hive Developer Vendor Name: Hortonworks Edition =

More information

Hadoop Parallel Data Processing

Hadoop Parallel Data Processing MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for

More information

Cloudera Manager Training: Hands-On Exercises

Cloudera Manager Training: Hands-On Exercises 201408 Cloudera Manager Training: Hands-On Exercises General Notes... 2 In- Class Preparation: Accessing Your Cluster... 3 Self- Study Preparation: Creating Your Cluster... 4 Hands- On Exercise: Working

More information

Click Stream Data Analysis Using Hadoop

Click Stream Data Analysis Using Hadoop Governors State University OPUS Open Portal to University Scholarship Capstone Projects Spring 2015 Click Stream Data Analysis Using Hadoop Krishna Chand Reddy Gaddam Governors State University Sivakrishna

More information

WA2341 Hadoop Programming EVALUATION ONLY

WA2341 Hadoop Programming EVALUATION ONLY WA2341 Hadoop Programming Web Age Solutions Inc. USA: 1-877-517-6540 Canada: 1-866-206-4644 Web: http://www.webagesolutions.com The following terms are trademarks of other companies: Java and all Java-based

More information

Introduction to Hadoop

Introduction to Hadoop Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh miles@inf.ed.ac.uk October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples

More information

Chapter 7. Using Hadoop Cluster and MapReduce

Chapter 7. Using Hadoop Cluster and MapReduce Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in

More information

Hadoop 2.6 Configuration and More Examples

Hadoop 2.6 Configuration and More Examples Hadoop 2.6 Configuration and More Examples Big Data 2015 Apache Hadoop & YARN Apache Hadoop (1.X)! De facto Big Data open source platform Running for about 5 years in production at hundreds of companies

More information

HDFS. Hadoop Distributed File System

HDFS. Hadoop Distributed File System HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files

More information

L1: Introduction to Hadoop

L1: Introduction to Hadoop L1: Introduction to Hadoop Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revision: December 1, 2014 Today we are going to learn... 1 General

More information

Hadoop IST 734 SS CHUNG

Hadoop IST 734 SS CHUNG Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to

More information

CURSO: DESARROLLADOR PARA APACHE HADOOP

CURSO: DESARROLLADOR PARA APACHE HADOOP CURSO: DESARROLLADOR PARA APACHE HADOOP TEST DE EJEMPLO DEL EXÁMEN DE CERTIFICACIÓN www.formacionhadoop.com 1 Question: 1 When is the earliest point at which the reduce method of a given Reducer can be

More information

BIG DATA & HADOOP DEVELOPER TRAINING & CERTIFICATION

BIG DATA & HADOOP DEVELOPER TRAINING & CERTIFICATION FACT SHEET BIG DATA & HADOOP DEVELOPER TRAINING & CERTIFICATION BIGDATA & HADOOP CLASS ROOM SESSION GreyCampus provides Classroom sessions for Big Data & Hadoop Developer Certification. This course will

More information

Data-Intensive Computing with Map-Reduce and Hadoop

Data-Intensive Computing with Map-Reduce and Hadoop Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan humbetov@gmail.com Abstract Every day, we create 2.5 quintillion

More information

THE HADOOP DISTRIBUTED FILE SYSTEM

THE HADOOP DISTRIBUTED FILE SYSTEM THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,

More information

Hadoop and Map-Reduce. Swati Gore

Hadoop and Map-Reduce. Swati Gore Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data

More information

NETWORK TRAFFIC ANALYSIS: HADOOP PIG VS TYPICAL MAPREDUCE

NETWORK TRAFFIC ANALYSIS: HADOOP PIG VS TYPICAL MAPREDUCE NETWORK TRAFFIC ANALYSIS: HADOOP PIG VS TYPICAL MAPREDUCE Anjali P P 1 and Binu A 2 1 Department of Information Technology, Rajagiri School of Engineering and Technology, Kochi. M G University, Kerala

More information

Apache Hadoop new way for the company to store and analyze big data

Apache Hadoop new way for the company to store and analyze big data Apache Hadoop new way for the company to store and analyze big data Reyna Ulaque Software Engineer Agenda What is Big Data? What is Hadoop? Who uses Hadoop? Hadoop Architecture Hadoop Distributed File

More information

Apache Hadoop FileSystem and its Usage in Facebook

Apache Hadoop FileSystem and its Usage in Facebook Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System dhruba@apache.org Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs

More information

Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart

Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart Hadoop/MapReduce Object-oriented framework presentation CSCI 5448 Casey McTaggart What is Apache Hadoop? Large scale, open source software framework Yahoo! has been the largest contributor to date Dedicated

More information